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PREFACE

This book covers the foundations of modern methods of quality conrol and improvement

that are used in the manufacturing and service industries. Quality is key to surviving

tough competition. Consequently, business needs technically competent people who are

well-versed in statistical quality control and improvement. This book should serve the needs

of students in business andmanagement and students in engineering, technology, and related

disciplines. Professionals will find this book to be a valuable reference in the field.

An outgrowth of many years of teaching, research, and consulting in the field of quality

assurance and statistical process control, the methods discussed in this book apply statistical

foundations to real-world situations. Mathematical derivations and proofs are kept to a

minimum to allow a better flow of material. Although an introductory course in statistics

would be useful to a reader, the foundations of statistical tools and techniques discussed in

Chapter 4 should enable students without a statistical background to understand the material.

Prominently featured are many real-world examples. For each major concept, at least one

example demonstrates its application. The field of health care within the service sector is of

immense importance. From an individual or a population perspective, creating processes that

provide quality health care are desirable. Additionally, the growing escalation of the cost of

providing quality care raises the question of improving the effectiveness and efficiency of all

processes associated with the delivery of such services. For this reason, issues related to

health care quality have been addressed in several chapters, for example, Chapters 3, 5, 7, 8,

11, and 13.

The book is divided into five parts. Part I, which deals with the philosophy and

fundamentals of quality control, consists of three chapters. Chapter 1 is an introduction to

quality control and the total quality system. In addition to introducing the reader to the

nomenclature associated with quality control and improvement, it provides a framework for

the systems approach to quality. Discussions of quality costs and their measurement, along

with activity-based costing, are presented. In Chapter 2 we examine philosophies of such

leading experts as Deming, Crosby, and Juran. Deming’s 14 points for management are

analyzed, and the three philosophies are compared. Features of quality in the service sector are

introduced. Chapter 3 covers qualitymanagement practices, tools, and standards. Topics such

as total quality management, balanced scorecard, quality function deployment, benchmark

ing, failure mode and effects criticality analysis, and tools for quality improvement are

presented. Concepts of health care analytics and its associated challenges are discussed.

xix
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Part II deals with the statistical foundations of quality control and consists of two chapters.

Chapter 4 offers a detailed coverage of statistical concepts and techniques in quality control

and improvement. It present a thorough treatment of inferential statistics. Depending on the

student’s background, only selected sections of this chapter will need to be covered.

Chapter 5 covers some graphical methods of analyzing empirical distributions. Identifi

cation of the population distribution using probability plotting along with the several

transformations to achieve normality are presented. Analysis of count data, including

contingency table analysis and measures of association, are discussed. Strategic and

operational decision making, through analyses of survey data from customers, is included.

Finally, some common sampling designs and determination of an appropriate sample size are

features of this chapter.

The field of statistical quality control consists of two areas: statistical process control

and acceptance sampling. Part III deals with statistical process control and consists of four

chapters. Chapter 6 provides an overview of the principles and use of control charts. A

variety of control charts for variables are discussed in detail in Chapter 7. In additon to

charts for the mean and range, those for the mean and standard deviation, individual units,

cumulative sum, moving average, and geometric moving average are presented. Several

types of risk-adjusted control charts are included. Multivariate control charts are also

introduced. Control charts for attributes are discussed in Chapter 8. Charts such as the p-

chart, np-chart, c-chart, u-chart, g-chart, andU-chart are presented. Here also, risk-adjusted

p-charts and u-charts are included. The topic of process capability analysis is discussed in

Chapter 9. The ability of a process to meet customer specifications is examined in detail.

Process capability analysis procedures and process capability indices are also treated in

depth. The chapter covers proper approaches to setting tolerances on assemblies and

components. Part III should form a core of material to be covered in most courses.

Part IV deals with acceptance sampling procedures and cosists of one chapter.Methods of

acceptance of a product based on information from a sample are described. Chapter 10

presents acceptance sampling plans for attributes and variables. Lot-by-lot attribute and

variable sampling plans are described. With the emphasis on process control and improve

ment, sampling plans do not occupy the forefront. Nevertheless, they are included to make

the discussion complete.

Part V deals with product and process design and consists of three chapters. With the

understanding that quality improvement efforts are generally being moved further upstream,

these chapters constitute the backbone of current methodology. Chapter 11 deals with

reliability and explores the effects of time on the proper functioning of a product. The topic of

survival analysis is included. Chapter 12 provides the fundamentals of experimentals design

and the Taguchi method. Different designs, such as the completely randomized design,

randomized block design, and Latin square design are presented. Estimation of treatment

effects using factorial experiments is included. This chapter also provides a treatment of the

Taguchi method for design and quality improvement; the philosophy and fundamentals of

this method are discussed. Chapter 13 discusses process modeling through regression

analysis. Estimation of model parameters, making inferences from the model, and issues

in multiple regression are covered. Logistic regression analysis is also introduced. Various

sections of Part V could also be included in the core material for a quality control course.

This book may serve as a text for an undergraduate or graduate course for students in

business and management. It may also serve the needs of students in engineering, technolo

gy, and related disciplines. For a one-semester or one-quarter course, Part I, selected portions

of Part II, selected portions of Part III, and selected portions of Part V could be covered. For a
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two-semester or two-quarter course, all of Parts II, III, and V, along with portions from

Part IV, could be covered as well.

CHANGES IN THE FOURTH EDITION

Some major changes have been made in the fourth edition. With the growing importance of

the field of health care, an effort has beenmade to incorporate concepts, tools, and techniques

to address issues in the domain of health care quality. These are dealt with over amultitude of

chapters, that is, Chapters 3, 5, 7, 8, 11, and 13.

Chapter 3 now includes a discussion of the uniqueness of the health care sector and the

utilization of health care analytics using data, from various sources, to create a decision

support system. Such a system will not only improve processes and patient outcomes as well

as physician performance but also lead to an improved population health.

An important form of feedback from customers on a product or service is through surveys.

In health care, patients, for example, indicate their degree of satisfaction, with the various

processes/procedures encountered, through questionnaires that are usually based on a five-

point ordinal Likert scale. Chapter 5 presents some methods for displaying and analyzing

ordinal or count data based on questionnaires. Strategic implications on decisions for

management are also discussed, based on the degree of satisfaction and the degree of

importance of each question item included in the survey.

The concept of risk adjustment, as it applies to health care applications, has been

incorporated in the material on variable control charts in Chapter 7. In this context, the

risk-adjustedcumulativesumchart, risk-adjustedsequentialprobability ratio test, risk-adjusted

exponentially weighted moving average chart, and variable life-adjusted display chart are

presented in this chapter.

Under attribute control charts, risk-adjusted p-charts for the proportion of patients that

survive a certain type of illness or surgical procedure and risk-adjusted u-charts for

monitoring the number of nonconformities per unit, for example, the number of pressure

ulcers per patient day, are presented in Chapter 8. Further, monitoring of low-occurrence

nonconformities in health care, such as surgical wound infections or gastrointestinal

infections, are also discussed. Such monitoring may be accomplished through tracking of

the time between events, in this case, infections, through a g-chart.

Another important application in health care is that of survival analysis. Often, in

observational studies dealing with patients, the exact time of death of a patient may not

be known. Moreover, some patients may leave the observational study. In such instances,

censored data are available. The Kaplan–Meier product limit estimator of the survival

function is introduced in Chapter 11. Methods are presented for comparison of survival

functions of two groups in order to determine the statistical significance of a particular

treatment.

A new chapter on process modeling through regression analysis has been added in this

edition. Regression modeling is a versatile tool that may be used in manufacturing and

service applications. It promotes the development of a functional relationship between a

selected dependent variable and one ormore independent variables. Chapter 13 discusses the

concepts in the formulation of such models and assists with the identification of independent

variables that have a significant effect on the dependent variable. In this chapter, logistic

regression models are also introduced where the dependent variable is binary in nature. Such

models have useful applications in health care.
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1-1 INTRODUCTION AND CHAPTER OBJECTIVES

“Dad, are we there yet?” “Howmuch longer will it take?” “Mom, I am hungry!” “Is there an

eating place nearby where we may stop and get something to eat?” It was a hot summer day

around themiddle of June as the familywas headed for a summer vacation.With due thanks to

advances in technology, the answers to these questions were at the couple’s finger tips,

reducing the uncertainty associated with traveling through a previously unknown place.

Through the use of a smart phone that is able to download information via a global positioning

system, directions to the nearly eating places were instantaneous. At the same time, estimates

of the travel time provided a sense of relief. The developments of the twenty-first century and

advances in quality make this possible. On the more philosophical question of “Are we there

yet?” as far as quality is considered, the answer is clearly “No.” The process of quality

improvement is a never-ending journey.

Fundamentals of Quality Control and Improvement, Fourth Edition. Amitava Mitra
 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com\go\mitra\QualityControl4e
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4 INTRODUCTION TO QUALITY CONTROL AND THE TOTAL QUALITY SYSTEM

The objectives of this chapter are, first, to define quality as it relates to the manufacturing

and service sector, to introduce the terminology related to quality, and to set up a framework

for the design and implementation of quality. Of importance will be the ability to identify the

unique needs of the customer, which will assist in maintaining and growing market share. A

study of activity-based product costing will be introduced along with the impact of quality

improvement on various quality-related costs. The reader should be able to interpret the

relationships among quality, productivity, long-term growth, and customer satisfaction.

1-2 EVOLUTION OF QUALITY CONTROL

The quality of goods produced and services rendered has been monitored, either directly or

indirectly, since time immemorial. However, using a quantitative base involving statistical

principles to control quality is a modern concept.

The ancient Egyptians demonstrated a commitment to quality in the construction of their

pyramids.TheGreeks set high standards in arts andcrafts.Thequality ofGreekarchitectureof

the fifth century B.C. was so envied that it profoundly affected the subsequent architectural

constructions of Rome. Roman-built cities, churches, bridges, and roads inspire us even

today.

During the Middle Ages and up to the nineteenth century, the production of goods and

services was confined predominantly to a single person or a small group. The groups were

often family-owned businesses, so the responsibility for controlling the quality of a product or

service lay with that person or small group—those also responsible for producing items

conforming to those standards. This phase, comprising the time period up to 1900, has been

labeled by Feigenbaum (1983) the operator quality control period. The entire product was

manufactured byoneperson or by avery small group of persons. For this reason, the quality of

the product could essentially be controlled by a person who was also the operator, and the

volume of production was limited. The worker felt a sense of accomplishment, which lifted

morale and motivated the worker to new heights of excellence. Controlling the quality of the

product was thus embedded in the philosophy of the worker because pride in workmanship

was widespread.

Starting in the early twentieth century and continuing to about 1920, a second phase

evolved, called the foreman quality control period (Feigenbaum 1983). With the Industrial

Revolution came the concept of mass production, which was based on the principle of

specialization of labor. A person was responsible not for production of an entire product but

rather for only a portion of it. One drawback of this approachwas the decrease in theworkers’

sense of accomplishment and pride in their work. However, most tasks were still not very

complicated, and workers became skilled at the particular operations that they performed.

People who performed similar operations were grouped together. A supervisor who directed

that operation nowhad the task of ensuring that qualitywas achieved. Foremen or supervisors

controlled the quality of the product, and they were also responsible for operations in their

span of control.

The period from about 1920 to 1940 saw the next phase in the evolution of quality control.

Feigenbaum (1983) calls this the inspection quality control period. Products and processes

became more complicated, and production volume increased. As the number of workers

reporting to a foreman grew in number, it became impossible for the foreman to keep close

watch over individual operations. Inspectorswere therefore designated to check the quality of

a product after certain operations. Standards were set, and inspectors compared the quality
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of the itemproduced against those standards. In the event of discrepancies between a standard

and a product, deficient items were set aside from those that met the standard. The non

conforming items were reworked, if feasible, or were discarded.

During this period, the foundations of statistical aspects of quality control were being

developed, although they did not gain wide usage in U.S. industry. In 1924, Walter A.

Shewhart of Bell Telephone Laboratories proposed the use of statistical charts to control the

variables of a product. These came to be known as control charts (sometimes referred to as

Shewhart control charts). They play a fundamental role in statistical process control. In the

late 1920s, H. F. Dodge and H. G. Romig, also from Bell Telephone Laboratories, pioneered

work in the areas of acceptance sampling plans. These plans were to become substitutes for

100% inspection.

The1930s saw the applicationof acceptance samplingplans in industry, bothdomestic and

abroad. Walter Shewhart continued his efforts to promote to industry the fundamentals of

statistical quality control. In 1929 he obtained the sponsorship of the American Society for

Testing andMaterials (ASTM), theAmerican Society ofMechanical Engineers (ASME), the

American Statistical Association (ASA), and the Institute ofMathematical Statistics (IMS) in

creating the Joint Committee for the Development of Statistical Applications in Engineering

and Manufacturing.

Interest in the field of quality control began to gain acceptance in England at this time. The

British Standards Institution Standard 600 dealt with applications of statistical methods to

industrial standardization and quality control. In the United States, J. Scanlon introduced the

Scanlon plan, which dealt with improvement of the overall quality of worklife (Feigenbaum

1983). Furthermore, the U.S. Food, Drug, and Cosmetic Act of 1938 had jurisdiction

over procedures and practices in the areas of processing, manufacturing, and packing.

The next phase in the evolution process, called the statistical quality control phase by

Feigenbaum (1983), occurred between 1940 and 1960. Production requirements escalated

duringWorldWar II. Since 100% inspectionwas often not feasible, the principles of sampling

plans gained acceptance. The American Society for Quality Control (ASQC) was formed in

1946, subsequently renamed the American Society for Quality (ASQ). A set of sampling

inspection plans for attributes calledMIL-STD-105Awas developed by the military in 1950.

These plans underwent several subsequent modifications, becoming MIL-STD-105B,

MIL-STD-105C, MIL-STD-105D, and MIL-STD-105E. Furthermore, in 1957, a set of

sampling plans for variables called MIL-STD-414 was also developed by the military.

Although suffering widespread damage during World War II, Japan embraced the

philosophy of statistical quality control wholeheartedly. When W. Edwards Deming visited

Japan and lectured on these new ideas in 1950, Japanese engineers and top management

became convinced of the importance of statistical quality control as a means of gaining a

competitive edge in the world market. J. M. Juran, another pioneer in quality control, visited

Japan in 1954 and further impressed on them the strategic role that management plays in the

achievement of a quality program. The Japanese were quick to realize the profound effects

that these principleswouldhaveon the future of business, and theymade a strongcommitment

to a massive program of training and education.

Meanwhile, in the United States, developments in the area of sampling plans were

taking place. In 1958, the Department of Defense (DOD) developed the Quality Control

and Reliability Handbook H-107, which dealt with single-level continuous sampling

procedures and tables for inspection by attributes. Revised in 1959, this book became the

Quality Control and Reliability Handbook H-108, which also covered multilevel conti

nuous sampling procedures as well as topics in life testing and reliability.
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The next phase, total quality control, took place during the 1960s (Feigenbaum 1983). An

important feature during this phase was the gradual involvement of several departments and

management personnel in the quality control process. Previously, most of these activities

were dealt with by people on the shop floor, by the production foreman, or by people from the

inspection and quality control department. The commonly held attitude prior to this period

was that quality control was the responsibility of the inspection department. The 1960s,

however, saw some changes in this attitude. People began to realize that each department had

an important role to play in the production of a quality item.The concept of zerodefects,which

centered around achieving productivity through worker involvement, emerged during this

time. For critical products andassemblies [e.g.,missiles and rockets used in the spaceprogram

by the National Aeronautics and Space Administration (NASA)] this concept proved to be

very successful. Along similar lines, the use of quality circles was beginning to grow in

Japan. This concept, which is based on the participative style of management, assumes that

productivity will improve through an uplift of morale and motivation, achieved in turn,

through consultation and discussion in informal subgroups.

The advent of the 1970s brought what Feigenbaum (1983) calls the total quality control

organizationwide phase, which involved the participation of everyone in the company, from

the operator to the first-line supervisor, manager, vice president, and even the chief executive

officer.Qualitywas associatedwith everyperson.As this notion continued in the1980s, itwas

termed by Feigenbaum (1983) the total quality system, which he defines as follows: “A

quality system is the agreed on companywide and plantwide operating work structure,

documented in effective, integrated technical and managerial procedures, for guiding the

coordinated actions of thepeople, themachines, and the information of the companyandplant

in the best and most practical ways to assure customer quality satisfaction and economical

costs of quality.”

In Japan, the 1970s marked the expanded use of a graphical tool known as the cause-and

effect diagram. This tool was introduced in 1943 by K. Ishikawa and is sometimes called an

Ishikawa diagram. It is also called a fishbone diagram because of its resemblance to a fish

skeleton. This diagramhelps identify possible reasons for a process to goout of control aswell

as possible effects on the process. It has become an important tool in the use of control charts

because it aids in choosing the appropriate action to take in the event of a process being out

of control. Also in this decade, G. Taguchi of Japan introduced the concept of quality

improvement through statistically designed experiments. Expanded use of this technique has

continued in the 1990s as companies have sought to improve the design phase.

In the 1980s, U.S. advertising campaigns placed quality control in the limelight. Consu

mers were bombarded with advertisements related to product quality, and frequent compar

isonsweremadewith thoseof competitors. These promotional efforts tried topoint out certain

product characteristics that were superior to those of similar products. Within the industry

itself, an awareness of the importance of quality was beginning to evolve at all levels. Top

management saw the critical need for themarriage of the quality philosophy to the production

of goods and services in all phases, starting with the determination of customer needs and

product design and continuing on to product assurance and customer service.

As computer use exploded during the 1980s, an abundance of quality control software

programs came on the market. The notion of a total quality system increased the emphasis on

vendor quality control, product design assurance, product and process quality audit, and related

areas. Industrial giants such as the Ford Motor Company and General Motors Corporation

adopted the quality philosophy and made strides in the implementation of statistical quality

control methods. They, in turn, pressured other companies to use quality control techniques.
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For example, Ford demanded documentation of statistical process control from its vendors.

Thus, smaller companies that had not used statistical quality control methods previously were

forced to adopt these methods to maintain their contracts. The strategic importance of quality

control and improvement was formally recognized in the United States through theMalcolm

Baldrige National Quality Award in 1987.

The emphasis on customer satisfaction and continuous quality improvement globally

created a need for a system of standards and guidelines that support the quality philosophy.

The International Organization for Standardization (ISO) developed a set of standards,

ISO 9000–9004, in the late 1980s. The American National Standards Institute (ANSI) and

ASQC brought their standards in line with the ISO standards when they developed the

ANSI/ASQC Q90–Q94 in 1987, which was subsequently revised in 1994 to ANSI/ASQC

Q9000–Q9004, and further in 2000, to ANSI/ISO/ASQ Q9000–2000. The ISO 9000–9004

standards were also revised in 1994, 2000, and 2008.

Beginning with the last decade of the twentieth century and continuing on to the current

century, theworld has seen the evolution of an era of information technology.This is themajor

revolution since the Industrial Revolution of the late eighteenth century. The twenty-first

century is undergoing its revolution in information technology digitally, using wireless

technology. Such advances promote the maintenace and protection of information quality

while delivering data in an effective manner. Further, advances in computational technology

have made it feasible to solve, in a timely fashion, complex and/or large-scale problems to be

used for decision making. Moreover, the Internet is part and parcel of our everyday lives.

Amongamultitudeof uses,wemake travel arrangements, purchase items, lookup information

on a variety of topics, and correspond.All of these activities are conducted on a real-time basis,

thus raising expectations regarding what constitutes timely completion. On receiving an order

through the Internet, service providerswill be expected to conduct an error-free transaction, for

example, either assemble the product or provide the service, receive payment, and provide an

online tracking system for the customer to monitor. Thus, the current century will continue to

experience a thrust in growth of quality assurance and improvement methods that can, using

technology, assimilate data and analyze them in real time and with no tolerance for errors.

One area that is expected to grow in the current century is that of “BigData” and associated

inferencesdrawn fromananalysis of suchdata.Web-based sourcesof data suchas the Internet

and Facebook and Twitter accounts reveal the existence of databases that are dynamic and

large. Data mining techniques could possibly capture trends in the variables of interest, for

example, demand for certain products and services. Measures of quality could also be

extracted based on customer satisfaction surveys that are ordinal scale based or qualitative

data, such as textual information of product/service liking. An important factor in such

analysis will be the ability to capture massive data in a “clean” format that is conducive to

analysis. In addition, access to appropriate hardware and software that can store, process, and

analyze such data will also be influential.

1-3 QUALITY

The notion of quality has been defined in different ways by various authors. Garvin (1984)

divides the definition of quality into five categories: transcendent, product-based, user-based,

manufacturing-based, and value-based. Furthermore, he identifies a framework of eight

attributes that may be used to define quality: performance, features, reliability, conformance,

durability, serviceability, aesthetics, and perceived quality. This frequently used definition is
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attributed to Crosby (1979): “Quality is conformance to requirements or specifications.” A

more general definition proposed by Juran (1974) is as follows: “Quality is fitness for use.”

In this book we adopt, the latter definition and expand it to cover both the manufacturing

and service sectors. The service sector accounts for a substantial segment of our present

economy; it is a major constituent that is not to be neglected, an example being the health

care field. Projections indicate that this service sector that includes information systems,

supply chain management, health care and wellness, marketing, and the entertainment

industry will expand even further in the future. Hence, quality may be defined as follows:

The quality of a product or service is the fitness of that product or service for meeting or

exceeding its intended use as required by the customer.

So,who is the driving force behind determining the level of quality that should be designed

into a product or service? The customer! Therefore, as the needs of customers change, so

should the level of quality. If, for example, customers prefer an automobile that gives

adequate service for 15 years, then that is preciselywhat the notion of a quality product should

be. Quality, in this sense, is not something that is held at a constant universal level. In this

view, the term quality implies different levels of expectations for different groups of

consumers. For instance, to some, a quality restaurant may be one that provides extraordinary

cuisine served on the finest china with an ambience of soft music. However, to another group

of consumers, the characteristics that comprise a quality restaurant may be quite different:

excellent food served buffet style at moderate prices until the early morning hours.

Quality Characteristics

The preceding example demonstrates that one or more elements define the intended quality

level of a product or service. These elements, known as quality characteristics, can be

categorized in these groupings: Structural characteristics include such elements as the length

of a part, theweight of a can, the strength of a beam, the viscosity of a fluid, and so on; sensory

characteristics include the taste of good food, the smell of a sweet fragrance, and the beauty of

a model, among others; time-oriented characteristics include such measures as time to

process a purchase order, warranty, reliability, andmaintainability associated with a product;

and ethical characteristics include honesty, courtesy, friendliness, and so on.

Variables and Attributes

Quality characteristics fall into two broad classes: variables and attributes. Characteristics

that aremeasurable andare expressed onanumerical scale are calledvariables. Thewaiting

time in a bank before being served, expressed in minutes, is a variable, as are the density of a

liquid in grams per cubic centimeter and the processing speed of a computer.

Prior to defining an attribute, we should define a nonconformity and a nonconforming

unit. A nonconformity is a quality characteristic that does not meet its stipulated

specifications. Let’s say that the specification on the fill volume of soft drink bottles is

750± 3 milliliters (mL). If we have a bottle containing 745 mL, its fill volume is a

nonconformity. A nonconforming unit has one or more nonconformities such that the

unit is unable to meet the intended standards and is unable to function as required. An

example of a nonconforming unit is a cast iron pipe whose internal diameter and weight

both fail to satisfy specifications, thereby making the unit dysfunctional.

A quality characteristic is said to be an attribute if it is classified as either conforming or

nonconforming to a stipulated specification. A quality characteristic that cannot bemeasured



9QUALITY

on a numerical scale is expressed as an attribute. For example, the smell of a cologne is

characterized as either acceptable or is not; the color of a fabric is either acceptable or is not.

However, there are somevariables that are treated as attributes because it is simpler tomeasure

them this way or because it is difficult to obtain data on them. Examples in this category are

numerous. For instance, the diameter of a bearing is, in theory, a variable. However, if

we measure the diameter using a go/no-go gage and classify it as either conforming or

nonconforming (with respect to some established specifications), the characteristic is

expressed as an attribute. The reasons for using a go/no-go gage, as opposed to amicrometer,

could be economic; that is, the time needed to obtain a measurement using a go/no-go gage

may be much shorter and consequently less expensive. Alternatively, an inspector may not

have enough time to obtainmeasurements on a numerical scale using amicrometer, so such a

classification of variables would not be feasible.

Defects

A defect is associated with a quality characteristic that does not meet certain standards.

Furthermore, the severity of one of more defects in a product or service may cause it to be

unacceptable (or defective). Themodern term for defect is nonconformity, and the term for

defective is nonconforming item. The American National Standards Institute, the Interna

tional Organization for Standardization, and the American Society for Quality provide a

definition of a defect in ANSI/ISO/ASQ Standard A8402 (ASQ 1994).

Standard or Specification

Since the definition of quality involves meeting the requirements of the customer, these

requirements need to be documented. A standard, or a specification, refers to a precise

statement that formalizes the requirements of the customer; it may relate to a product, a

process, or a service. For example, the specifications for an axlemight be 2± 0.1 centimeters

(cm) for the inside diameter, 4± 0.2 cm for the outside diameter, and 10± 0.5 cm for the

length. This means that for an axle to be acceptable to the customer, each of these dimensions

must be within the values specified. Definitions given by the National Bureau of Standards

(NBS, 2005) are as follows:

• Specification: a set of conditions and requirements, of specific and limited application,

that provide a detailed description of the procedure, process, material, product, or

service for use primarily in procurement and manufacturing. Standards may be

referenced or included in a specification.

• Standard: a prescribed set of conditions and requirements, of general or broad

application, established by authority or agreement, to be satisfied by a material,

product, process, procedure, convention, test method; and/or the physical, functional,

performance, or conformance characteristic thereof. A physical embodiment of a unit

of measurement (for example, an object such as the standard kilogram or an apparatus

such as the cesium beam clock).

Acceptable bounds on individual quality characteristics (say, 2± 0.1 cm for the inside

diameter) are usually known as specification limits, whereas the document that addresses

the requirements of all the quality characteristics is labeled the standard.
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FIGURE 1-1 Cost and value as a function of designed quality.

Three aspects are usually associated with the definition of quality: quality of design,

quality of conformance, and quality of performance.

Quality of Design

Quality of design dealswith the stringent conditions that a product or servicemustminimally

possess to satisfy the requirements of the customer. It implies that the product or service must

be designed to meet at least minimally the needs of the consumer. Generally speaking, the

design should be the simplest and least expensive while still meeting customer’s expectations.

Quality of design is influenced by such factors as the type of product, cost, profit policy of the

firm, demand for product, availability of parts and materials, and product safety. For example,

suppose that the quality level of the yield strength of steel cables desired by the customer is

100 kg/cm2 (kilograms per square centimeter). When designing such a cable, the parameters

that influence the yield strength would be selected so as to satisfy this requirement at least

minimally. In practice, the product is typically overdesigned so that the desired conditions are

exceeded. The choice of a safety factor (k) normally accomplishes this purpose. Thus, to design

a productwith a 25%stronger load characteristic over the specifiedweight, the value of kwould

equal 1.25, and the product will be designed for a yield strength of 100× 1.25= 125 kg/cm2.

Inmost situations, the effect of an increase in the design quality level is to increase the cost

at an exponential rate. The value of the product, however, increases at a decreasing rate, with

the rate of increase approaching zero beyond a certain designed quality level. Figure 1-1

shows the impact of the design quality level on the cost and value of the product or service.

Sometimes, it might be of interest to choose a design quality level b, which maximizes

the differences between value and cost given that the minimal customer requirements a are

met. This is done with the idea of maximizing the return on investment. It may be observed

from Figure 1-1 that for a designed quality level c the cost and value are equal. For any level

above c (say, d) the cost exceeds the value. This information is important when a suitable

design level is being chosen.

Quality of Conformance

Quality of conformance implies that a manufactured product or a service rendered must

meet the standards selected in the design phase.With respect to themanufacturing sector, this
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FIGURE 1-2 The three aspects of quality.

phase is concernedwith the degree towhich quality is controlled from the procurement of raw

material to the shipment of finished goods. It consists of the three broad areas of defect

prevention, defect finding, and defect analysis and rectification. As the name suggests, defect

prevention deals with the means to deter the occurrence of defects and is usually achieved

using statistical process control techniques. Locatingdefects is conducted through inspection,

testing, and statistical analysis of data from the process. Finally, the causes behind the

presence of defects are investigated, and corrective actions are taken.

Figure 1-2 shows how quality of design, conformance, and performance influence the

quality of a product or service. The quality of design has an impact on the quality of

conformance. Obviously, onemust be able to producewhat was designed. Thus, if the design

specification for the length of iron pins is 20± 0.2mm (millimeters), the question thatmust be

addressed is how to design the tools, equipment, and operations such that the manufactured

product will meet the design specifications. If such a system of production can be achieved,

the conformance phase will be capable of meeting the stringent requirements of the design

phase. On the other hand, if such a production system is not feasibly attained (e.g., if the

process is only capable of producing pins with a specification of 20± 0.36mm), the design

phase is affected. This feedback suggests that the product be redesigned because the current

design cannot be produced using the existing capability. Therefore, there should be a constant

exchange of information between the design and manufacturing phases so that a feasible

design can be achieved. This concept is also known as design for manufacturability

(Anderson 2010).

Quality of Performance

Quality of performance is concernedwith howwell a product functions or service performs

when put to use. It measures the degree towhich the product or service satisfies the customer.

This is a function of both the quality of design and the quality of conformance. Remember

that the final test of product or service acceptance always lies with the customers. Meeting

or exceeding their expectations is the major goal. If a product does not function well



12 INTRODUCTION TO QUALITY CONTROL AND THE TOTAL QUALITY SYSTEM

enough to meet these expectations, or if a service does not live up to customer standards,

adjustments need to be made in the design or conformance phase. This feedback from the

performance to the design phase, as shown in Figure 1-2, may prompt a change in the

design because the current design does not produce a product that performs adequately.

1-4 QUALITY CONTROL

Quality controlmaygenerallybedefined asa system thatmaintainsadesired level of quality,

through feedback on product/service characteristics and implementation of remedial actions,

in case of a deviation of such characteristics from a specified standard. This general area may

be divided into three main subareas: off-line quality control, statistical process control, and

acceptance sampling plans.

Off-Line Quality Control

Off-line quality control procedures deal with measures to select and choose controllable

product and process parameters in such a way that the deviation between the product or

process output and the standardwill beminimized.Much of this task is accomplished through

product and process design. The goal is to come up with a design within the constraints of

resources and environmental parameters such that when production takes place, the output

meets the standard. Thus, to the extent possible, the product and process parameters are set

before production begins. Principles of experimental design and the Taguchi method,

discussed in a later chapter, provide information on off-line process control procedures.

Statistical Process Control

Statistical process control involves comparing the output of a process or service with a

standard and taking remedial actions in case of a discrepancy between the two. It also involves

determining whether a process can produce a product that meets desired specifications or

requirements.

For example, to control paperwork errors in an administrative department, information

might be gathered daily on the number of errors. If the number observed exceeds a specified

standard, then on identificationof possible causes, action should be taken to reduce the number

of errors. Thismay involve training the administrative staff, simplifying operations if the error

is of an arithmetic nature, redesigning the form, or taking other appropriate measures.

Online statistical process controlmeans that information is gathered about the product,

process, or service while it is functional. When the output differs from a determined norm,

corrective action is taken in that operational phase. It is preferable to take corrective actionona

real-time basis for quality control problems. This approach attempts to bring the system to an

acceptable state as soon as possible, thusminimizing either the number of unacceptable items

produced or the time over which undesirable service is rendered. Chapters 6–9 cover the

background and procedures of online statistical process control methods.

One question that may come to mind is: Shouldn’t all procedures be controlled on an off

line basis? The answer is “yes,” to the extent possible. The prevailing theme of quality control

is that quality has to be designed into a product or service; it cannot be inspected into it.

However, despite taking off-line quality control measures, there may be a need for online

quality control, because variation in themanufacturing stage of a product or the delivery stage
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of a service is inevitable. Therefore, some rectifying measures are needed in this phase.

Ideally, a combination of off-line and online quality control measures will lead to a desirable

level of operation.

Acceptance Sampling Plans

Acceptance sampling plans involve inspection of a product or service. When 100%

inspection of all items is not feasible, a decision has to be made as to how many items

should be sampled or whether the batch should be sampled at all. The information obtained

from the sample is used to decide whether to accept or reject the entire batch or lot. In the case

of attributes, one parameter is the acceptable number of nonconforming items in the sample. If

the number of nonconforming items observed is less than or equal to this number, the batch is

accepted. This is known as the acceptance number. In the case of variables, one parameter

may be the proportion of items in the sample that are outside the specifications. This

proportion would have to be less than or equal to a standard for the lot to be accepted. A plan

that determines the number of items to sample and the acceptance criteria of the lot, based on

meeting certain stipulated conditions (such as the risk of rejecting a good lot or accepting a

bad lot), is known as an acceptance sampling plan.

Let’s consider a case of attribute inspectionwhere an item is classified as conformingor not

conforming to a specified thickness of 12± 0.4mm.Suppose that the items come inbatches of

500 units. If an acceptance sampling plan with a sample size of 50 and an acceptance number

of 3 is specified, the interpretation of the plan is as follows. Fifty items will be randomly

selected by the inspector from the batch of 500 items. Each of the 50 items will then be

inspected (say, with a go/no-go gage) and classified as conforming or not conforming. If the

number of nonconforming items in the sample is 3 or less, the entire batch of 500 items is

accepted. However, if the number of nonconforming items is greater than 3, the batch is

rejected. Alternatively, the rejected batch may be screened; that is, each item is inspected and

nonconforming ones are removed. Acceptance sampling plans for attributes and variables are

discussed in Chapter 10.

1-5 QUALITY ASSURANCE

Quality is not just the responsibility of one person in the organization—this is the message.

Everyone involved directly or indirectly in the production of an item or the performance of

a service is responsible. Unfortunately, something that is viewed as everyone’s responsibility

can fall apart in the implementation phase and become no one’s responsibility. This behavior

can create an ineffective system where the quality assurances exist only on paper. Thus, what

is needed is a system that ensures that all procedures that have been designed and planned

are followed. This is precisely the role and purpose of the quality assurance function.

The objective of the quality assurance function is to have in place a formal system that

continually surveys the effectiveness of the quality philosophy of the company. The quality

assurance team thus audits the various departments and assists them in meeting their

responsibilities for producing a quality product.

Quality assurancemaybe conducted, for example, at the product design level by surveying

the procedures used in design. An audit may be carried out to determine the type of

information that should be generated in the marketing department for use in designing the

product. Is this information representative of the customer’s requirements? If one of the
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customer’s key needs in a food wrap is that it withstand a certain amount of force, is that

information incorporated in the design? Do the data collected represent that information?

How frequently are the data updated? Are the forms and procedures used to calculate the

withstanding force adequate and proper? Are the measuring instruments calibrated and

accurate? Does the design provide a safety margin? The answers to all of these questions and

more will be sought by the quality assurance team. If discrepancies are found, the quality

assurance team will advise the relevant department of the changes that should be adopted.

This function acts as a watchdog over the entire system.

1-6 QUALITY CIRCLES AND QUALITY IMPROVEMENT TEAMS

A quality circle is typically an informal group of people that consists of operators,

supervisors, managers, and so on, who get together to improve ways to make a product

or deliver a service. The concept behind quality circles is that in most cases the persons who

are closest to an operation are in a better position to contribute ideas that will lead to an

improvement in it. Thus, improvement-seeking ideas do not come only from managers but

also fromall other personnelwhoare involved in theparticular activity.Aquality circle tries to

overcome barriers that may exist within the prevailing organizational structure so as to foster

an open exchange of ideas.

A quality circle can be an effective productivity improvement tool because it generates

new ideas and implements them. Key to its success is its participative style of management.

The group members are actively involved in the decision-making process and therefore

develop a positive attitude toward creating a better product or service. They identify with the

idea of improvement and no longer feel that they are outsiders or that only management may

dictate how things are done. Of course, whatever suggestions that a quality circle comes up

with will be examined by management for feasibility. Thus, members of the management

teammust understand clearly the workings and advantages of the action proposed. Only then

can they evaluate its feasibility objectively.

A quality improvement team is another means of identifying feasible solutions to quality

control problems. Such teamsare typically cross-functional in nature and involvepeople from

various disciplines. It is not uncommon to have a quality improvement team with personnel

from design and development, engineering, manufacturing, marketing, and servicing. A key

advantage of such a team is that it promotes cross-disciplinaryflowof information in real time

as it solves the problem.Whendesign changes aremade, the feasibility of equipment and tools

in meeting the new requirements must be analyzed. It is thus essential for information to flow

between design, engineering, andmanufacturing. Furthermore, the productmust be analyzed

from the perspective ofmeeting customer needs.Do the newdesign changes satisfy the unmet

needs of customers?What are typical customer complaints regarding the product? Including

personnel frommarketing and servicing on these teams assists in answering these questions.

The formation and implementation of quality improvement teams is influenced by several

factors. The first deals with selection of team members and its leader. Their knowledge and

experience must be relevant to the problem being addressed. People from outside the

operational and technical areas can also make meaningful contributions; the objective is

to cover a broad base of areas that have an impact. Since the team leader has the primary

responsibility for team facilitation and maintenance, he or she should be trained in accom

plishing task concerns aswell as people concerns,whichdealwith the needs andmotivationof

team members.
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Team objectives should be clearly defined at the beginning of any quality improvement

team project. These enable members to focus on the right problem. The team leader should

prepare anddistribute an agendaprior to eachmeeting.Assignments to individualmembers or

subgroups must be clearly identified. Early in the process, the team leader should outline the

approach, methods, and techniques to be used in addressing the problem. Team dynamics

deals with interactions among members that promote creative thinking and is vital to the

success of the project. The team leader plays an important role in creating this climate for

creativity. He or she must remove barriers to idea generation and must encourage differing

points of view and ideas. All teammembers should be encouraged to contribute their ideas or

to build on others.

Regular feedback on the results and actions taken at meetings is important. It keeps the

team on track, helps eliminate the personal bias of members, if any, and promotes group

effort. Such reviews should ensure that all members have been assigned specific tasks; this

should be documented in the minutes. Progress should be reviewed systematically, the

objective being to come up with a set of action plans. This review is based on data collected

from the process, which is analyzed through basic quality improvement tools (some of

which are discussed in Chapters 3 and 5). Based on the results of the analysis, action plans

can be proposed. In this way, team recommendations will be based not on intuition but on

careful analysis.

1-7 CUSTOMER NEEDS AND MARKET SHARE

For the manufacturing or service sector, satisfying the customers—both internal and

external—is fundamental to growth and improving market share. An important aspect of

the quality-of-design phase deals with identification of customer needs and wants. These

customer needsmaybegrouped into the three broad categories of critical to quality, critical to

delivery, and critical to cost. Not all needs are of equal importance to the customer.Moreover,

some are expressed while others are taken for granted.

Kano Model

Noriaki Kano, a Japanese consultant, developed a model relating design characteristics to

customer satisfaction (Cohen1995).Customer needs or expectations canbedivided into three

prioritized categories: basic needs (dissatisfiers); performance needs (satisfiers); and excite

ment needs (delighters). Basic needs are those that are taken for granted by the customer.

Meeting these needsmaynot steeply increase customer satisfaction, but notmeeting themwill

definitely cause dissatisfaction. For example, in a city public library, it is taken for granted that

current editions of popular magazines will be available. Not having them will lead to

dissatisfied consumers.

Performance needs are those that the consumer expects. Thus, the better these are met, the

more satisfied the customer. Typically, customer satisfaction increases as a linear function of

the degree to which such needs are met. Ease of checking out a book or video at a city library

couldbeone suchneed.Excitement needs, alsoknownasdelighters, are those that surprise the

customer unexpectedly. The consumer does not necessarily expect these and hence may not

express them. So, when they are met, it increases customer satisfaction in an exponential

manner. For example, if the city library offered free consultation on tax-form preparation,

customers might be delighted beyond bounds.
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FIGURE 1-3 Kano model.

Figure 1-3 shows the Kano model, relating the degree of meeting customer needs

and customer satisfaction. Note the three curves associated with basic, performance, and

excitement needs and their relative impact on increasing customer satisfaction. Basic and

excitement needs are usually not identifiable from customer surveys. Satisfying basic needs

mayprevent customer loss but not necessarily promote growth. Survey data are typically used

to address performance needs and the degree to which improvement in these needs is

necessary in order to grow market share linearly to a certain extent. Excitement needs, not

generally expressed by consumers in surveys, demand a major source of attention for

organizations seeking market share growth. These needs, if incorporated in the design phase,

will distinguish the company from its competitors.

1-8 BENEFITSOFQUALITYCONTROLANDTHETOTALQUALITYSYSTEM

The goal of most companies is to conduct business in such amanner that an acceptable rate of

return is obtained by the shareholders. What must be considered in this setting is the short-

term goal versus the long-term goal. If the goal is to show a certain rate of return this coming

year, thismay not be an appropriate strategy because the benefits of quality controlmay not be

realized immediately. However, from a long-term perspective, a quality control system may

lead to a rate of return that is not only better but also sustainable.

One of the drawbacks of the manner in which many U.S. companies operate is that the

output ofmanagers ismeasured in short time frames. It is difficult for amanager to show a 5%

increase in the rate of return, say, in the quarter after implementing a quality system. Top

management may then doubt the benefits of quality control.

The advantages of a quality control system, however, becomeobvious in the long run. First

and foremost is the improvement in the quality of products and services. Production improves

because awell-defined structure for achieving production goals is present. Second, the system

is continually evaluated andmodified tomeet the changingneedsof the customer.Therefore, a

mechanism exists for rapid modification of product or process design, manufacture, and
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service to meet customer requirements so that the company remains competitive. Third, a

quality control system improves productivity,which is a goal of every organization. It reduces

the production of scrap and rework, thereby increasing the number of usable products. Fourth,

such a system reduces costs in the long run. The notion that improved productivity and cost

reduction do not go hand in hand is a myth. On the contrary, this is precisely what a quality

control system does achieve. With the production of few nonconforming items, total costs

decrease, whichmay lead to a reduced selling price and thus increased competitiveness. Fifth,

with improved productivity, the lead time for producing parts and subassemblies is reduced,

which results in improveddelivery dates.One again, quality controlkeeps customers satisfied.

Meeting or exceeding their needs on a timely basis helps sustain a good relationship. Last, but

not least, a quality control systemmaintains an “improvement” environment where everyone

strives for improved quality and productivity. There is no end to this process—there is always

room for improvement. A company that adopts this philosophy and uses a quality control

system to help meet this objective is one that will stay competitive.

Total Quality System

Quality is everyone’s responsibility. This means that comprehensive plans should be

developed to show the precise responsibilities of the various units, procedures should be

defined to check their conformance to the plans, and remedial measures should be suggested

in the event of discrepancies between performance and standard. The quality assurance

function, as defined earlier, monitors the system.

The systems approach to quality integrates the various functions and responsibilities of

the various units and provides a mechanism to ensure that organizational goals are being met

through the coordination of the goals of the individual units. The ISO, in conjunction with

ANSI and ASQ, has developed standards ANSI/ISO/ASQ 9000–9004 (ASQ 2004) that

describe quality systems.

In this book we focus on the analytical tools and techniques within the context of a total

quality system. An overview of the chapter contents in the book follows. A foundation, along

with appropriate terminology, is presented in this chapter. In Chapter 2 we introduce some

quality philosophies developed by pioneers in the field. Further, similarities and differences

between quality in themanufacturing and service sectors are delineated in this chapter. Quality

management practices and their associated standards, developed by various organizations

(ISO/ANSI/ASQ), which define acceptable norms, are the focus of Chapter 3, where the six

sigma metric and methodology are discussed. Chapter 4 covers the fundamentals of statistical

concepts and techniques used in quality control. In Chapter 5 we present some statistical

techniques for quality analysis and improvement. The idea of process control through control

charts, which is one of the primary quality control tools, is covered in Chapters 6–9. The

fundamental principles of control charts are introduced in Chapter 6. Chapter 7 focuses on

control charts for variables, while those for attributes are covered in Chapter 8. Statistical

methods for determining whether a process is capable of producing items that conform to a

standard are described in Chapter 9. These methods involve process capability analysis. The

topics of acceptance sampling plans for attributes and variables are given in Chapter 10.

Statistical methods dealing with life testing and reliability are covered in Chapter 11; these

techniques concern the performance of a product over a period of time. Concepts of survival

analysis are also introduced. Designing experiments for use in systematically analyzing and

guidingprocessparameter settings is covered inChapter 12. Some fundamental conceptsof the

Taguchi method of off-line quality control are also presented in Chapter 12. Since more than
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70% of the gross national product comes from the service sector, techniques for monitoring

quality that have been used primarily in themanufacturing sector are alsowarranted here. Such

service-sector applications are integrated in the various chapters. Processmodeling techniques

using regression analysis are presented in Chapter 13. Finally, computers play a fundamental

role in quality control, and their use will expand even more in the years to come. The use of

computer software (Minitab) for a variety of statistical techniques in quality control and

improvement is integrated throughout.

1-9 QUALITY AND RELIABILITY

Reliability refers to the ability of a product to function effectively over a certain periodof time

under certain conditions. Reliability is related to the concept of quality of performance. Since

the consumer has the ultimate say on the acceptability of a product or service, the better the

performance over a given time frame, the higher the reliability and the greater the degree of

customer satisfaction. Achieving desirable standards of reliability requires careful analysis in

the product design phase. Analysis of data obtained on a timely basis during product

performance keeps the design and production parameters updated so that the product may

continue to perform in an acceptable manner. Reliability is built in through quality of design.

The product is often overdesigned so that itmore thanmeets the performance requirements

over a specified time frame. For example, consider the quality of a highway system where

roads are expected to last a minimum time period under certain conditions of use. Conditions

of use may include the rate at which the road system is used, the weight of vehicles, and such

atmospheric conditions as the proportion of days that the temperature exceeds a certain value.

Suppose that the performance specifications require the road system to last at least 20 years. In

the design phase, to account for the variation in the uncontrollable parameters, the roadsmight

be designed to last 25 years. This performance level may be achieved through properly

selected materials and the thickness of the concrete and tar layers.

1-10 QUALITY IMPROVEMENT

Efforts to reduce both the variability of a process and the production of nonconforming items

should be ongoing because quality improvement is a never-ending process. Whereas process

control deals with identification and elimination of special causes (those for which an

identifiable reason can be determined) that force a system to go out of control (e.g., tool

wear, operator fatigue, poor rawmaterials), quality improvement relates to the detection and

elimination of common causes. Common causes are inherent to the system and are always

present. Their impact on the output may be uniform relative to that of special causes. An

example of a common cause is the variability in a characteristic (say, a diameter) caused by the

inherent capability of the particular equipment used (say, a milling machine). This means that

all other factors held constant, the milling machine is unable to produce parts with exactly the

same diameter. To reduce the inherent variability of that machine, an alternative might be to

install a better or more sophisticated machine. Special causes are controllable mainly by the

operator, but common causes need the attention of management. Therefore, quality improve

ment can take place only through the joint effort of the operator and management, with the

emphasisprimarilyon the latter. For instance, a decision to replace themillingmachinemust be

made bymanagement. Another example could be the inherent variation in the time to process

purchase orders. Once special causes have been eliminated, ways inwhich the average time or
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variability couldbe reducedcouldbe throughchanges in theprocedure/process,which requires

management support. Eliminating or reducing the impact of some of the common causes

results in improved process capability, as measured by less variation of the output.

Most quality control experts agree that common causes account for at least 90% of the

quality problems in an organization. The late W. Edwards Deming, the noted authority on

quality, strongly advocated this belief. He concluded thatmanagement alone is responsible for

common-cause problems and, hence, only management can define and implement remedial

actions for these problems. The operator has no control on nonconforming product or service

in a majority of the instances. Therefore, if a company is interested in eliminating the root

causes of such problems, management must initiate the problem-solving actions.

Quality improvement shouldbe the objective of all companies and individuals. It improves

the rate of return or profitability by increased productivity and by cost reduction. It is

consistent with the philosophy that a company should continually seek to expand its

competitive edge. It supports the principle that no deviation from a standard is acceptable,

which is akin to the principle of the loss function developed in the Taguchimethods (Taguchi

1986; Taguchi and Wu 1979). So even if the product is within the specification limits, an

ongoing effort should be made to reduce its variability around the target value.

Let’s say that the specifications for the weight of a package of sugar are 2.00± 0.02 kg. If

the output from the process reveals that all packages weigh between 1.98 and 2.02 kg, the

process is capable and all items will be acceptable. However, not all of the packages weigh

exactly 2.00 kg, the target value; that is, there is some variability in the weights of the

packages. TheTaguchi philosophy states that any deviation from the target value of 2.00 kg is

unacceptable with the loss being proportional to the deviation. Quality improvement is a

logical result of this philosophy.

Quality function deployment techniques, which incorporate the needs and priorities of a

customer in designing a product or service, are demonstrated in Chapter 3. Somemethods for

quality improvement are discussed in Chapter 5. These include such graphical techniques as

Pareto analysis, histograms, and cause-and-effect or fishbone diagrams. Additional techni

ques discussed in Chapter 9 deal with process capability analysis. Quality improvement

through design may also be achieved through experimental design techniques and the

Taguchi method; these are discussed in Chapter 12.

1-11 PRODUCT AND SERVICE COSTING

In costing a product or service, the broad categories of direct and indirect costs come into

play.Direct costs, such as direct labor and materials, are a function of the number of units of

themanufactured product or the number of customers serviced.On the contrary, indirect costs

do not changewith each unit produced or each customer served, such asmachine setup for the

same product, depreciation of building, property taxes, and so on. Accounting methods that

use a system that allocates indirect costs adequately to the particular product or service are

highly desirable. This is true especially when multiple products are produced or types of

services are performed. Indirect costs should be distributed to products or services based on

cause-and-effect relations or actual use.

Traditional accounting methods can lead to misleading product/service costs where

indirect costs are allocated based on direct labor or direct material. However, the actual use

of the resource is not necessarily a function of the direct labor or direct material cost. In such

cases, a better estimate of product costing is arrived at by using activities that measure the
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degree of use of the particular resource. This is known as activity-based costing. The implicit

assumption in traditional financial/cost accounting methods is that indirect costs are a

relatively small proportion of the unit cost. In the new century, as product/service options,

product complexity and volume, and use of common resources for a variety of services

continue to grow, the method of allocation of indirect costs becomes important, since use of

indirect resources is not necessarily similar for all types of product/service.

Activity-Based Costing

Activities are tasks performed by a specialized group or department, say the purchasing unit

in an organization, also known as an activity or cost center. The types of transactions that

generate costs are identified as cost drivers. For instance, the number of purchase orders

processed is a cost driver.Whether the purchase order is for one product item or 50, it uses the

same amount of the purchasing department resource. Thus, allocation of the indirect costs

associated with use of the purchasing department should incorporate the number of purchase

orders, not the number of direct labor hours or direct material costs in making the product, as

this represents a better picture of the resource use by the product/service.

Cost drivers are typically categorized into four groups. Unit-level costs comprise those

activities that are associated with each product/service unit. Direct labor and material,

machining, and assembly costs are examples. Batch-level costs are based on activities that

are performed once for each lot or batch of products and are not influenced by the number of

units in the batch. A machine setup for an operation for a batch, and invoicing for a batch are

examples.Hence, thenumberofbatcheswill influence theallocationofcosts.Thenext level of

cost driver is theproduct/service-level cost, which is based on the type of product/service. In

engineering design, if two products are beingmade, the resource spent on each product design

will be an example of such a cost. Finally, there is the production/service-sustaining cost

level, which incorporates activities that use all other resources necessary to maintain

operations.Buildingdepreciation, insurance, andproperty taxesareexamples in this category.

These donot dependon the number of product/service units, batches, or product/service lines.

To determine the product/service unit cost, the following guidelines are used in activity-

based costing.The direct costs are the unit-level costs that can be assigned to a product/service

unit. Once the batch-level costs are identified, based on the number of batches used, the

allocation to a product/service unit is computed by dividing by the number of units in a

particular batch. Similarly, product/service-level costs, once identified, based on the number

of types of products/services, can be spread over all product/service units of a certain type to

include toward computation of the unit cost. Finally, the production/service-sustaining costs,

which cannot be linked directly to units, batches, or product/service lines, can be allocated

in a sequential manner. First, they are assigned to product/service lines, then to batches, and

eventually to product/service units. Another approach for this cost category is to allocate

directly to units based on direct labor hours.

Thus, the essence of activity-based costing is based on the proper identification of cost

drivers, nonfinancial measures such as the number of purchase orders processed or the

number of types of product made. Although the number of cost drivers used might better

identify product/service unit costs, the drawback lies in the cost of obtaining information.

Further, some assumptions include that the unit batch cost is not dependent on the batch size

or the type of product/service. In actuality, it could be that purchase order processing times,

and thereby costs, vary based on the nature of the product/service. The benefits of activity-

based costing are in decisionmaking rather than decision control. It leads to better pricing and

product/servicemix decisions, especially in situations inmultiproduct/service organizations.
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TABLE 1-1 Production Volume and Direct Costs per Batch of Microchips

Microchip A

A1 A2 Microchip B

Number of batches produced 500 800 1200

Cost/batch

Direct labor ($) 500 600 800

Direct material ($) 2500 3200 3800

Processing ($) 1500 2000 3000

TABLE 1-2 Overhead Cost of Plant

Category Cost ($ millions)

Setup and testing $2.20

Product-line costs

Microchip A 5.50

Microchip B 9.30

Other plant costs 4.50

Total overhead costs $21.50

With product/service volumes that vary greatly between product/service types, it provides a

better representation of the use of common resources in the organization.

Example 1-1 Two types of microchips (A and B) are being manufactured, with microchip

B being slightly more complex. There are two sizes of microchip A, A1 and A2. For each

type and each size, microchips are manufactured in batch sizes of 100,000. Table 1-1 shows

the production volume and direct costs/batch, while Table 1-2 displays the overhead costs

for the past year. Using the traditional costing method (unit-based costing) of allocating

overhead rate based on direct labor costs, calculate the cost per batch of each type of

microchip. Calculate the cost per batch using the activity-based costingmethod and compare

with the figures calculated previously.

Solution The unit-based allocation scheme is demonstrated first. The total direct

labor cost is used, based on which the overhead rate is determined by using the ratio of the

total overhead cost to the total direct labor cost. This common overhead rate is then

applied to each microchip type and size to determine the overhead cost assignment.

Subsequently, a unit cost is calculated. Table 1-3 shows the computation of the common

overhead rate. Costs per batch of each microchip type and size are shown in Table 1-4

using the computed overhead rate in Table 1-3.

Next, the activity-based cost allocation scheme is used. The unit cost for each of the three

activity-based cost drivers is calculated as follows:

• Batch-related costs: Setup and testing: $2.20 million÷ 2500 batches= $880 per batch

• Product-line-related costs: Microchip A: $5.50 million÷ 1300= $4231 per batch

Microchip B: $9.30 million ÷ 1200= $7750 per batch

• Production-sustaining costs: Overhead rate per direct labor dollar= $4.50 million

÷ $1.69 million= 266.27%
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TABLE 1-3 Overhead Rate Using Unit-Based Allocation

Microchip

A1 A2 B Total

Number of batches produced 500 800 1200

Direct labor cost per batch ($) 500 600 800

Total direct labor cost ($ millions) 0.25 0.48 0.96 1.69

Total overhead ($ millions) 21.50

Overhead rate (%) 1272.19

TABLE 1-4 Cost per Batch Using Unit-Based Allocation

Microchip

Cost Component A1 A2 B

Direct labor $500 $600 $800

Direct material 2,500 3,200 3,800

Processing 1,500 2,000 3,000

Overhead (1272.19% of direct labor) 6,361 7,633 10,178

Total cost per batch $10,861 $13,433 $17,778

Cost per microchip $0.1086 $0.1343 $0.1778

TABLE 1-5 Cost per Batch Using Activity-Based Allocation

Microchip

Cost Component A1 A2 B

Direct labor $500 $600 $800

Direct material 2,500 3,200 3,800

Processing 1,500 2,000 3,000

Overhead

Batch-related 880 880 880

Product-line related 4,231 4,231 7,750

Production-sustaining (266.27% of direct labor) 1,331 1,598 2,130

Total cost per batch $10,942 $12,509 $18,360

Cost per microchip $0.1094 $0.1251 $0.1836

An assumption made in batch-related costs, in this example, is that setup and testing costs

are quite similar for both types of microchips. Hence, the total setup and testing cost is

averaged out over the total batches of both types ofmicrochips.Using these computed values,

Table 1-5 shows the costs per batch for each type and size of microchip using the activity-

based allocation method.

From Tables 1-4 and 1-5, differences are observed between the two methods of costing

in the cost per batch and the corresponding cost per microchip for each type and size of
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microchip. Some conclusions that can be drawn are as follows. The unit-based (traditional)

costing method tends to overcost the high-volume items within a product type. Also, since

more complexproducts requiremoreproduct-line costs, the activity-basedcostingmethodwill

make proportional allocations.However, the unit-based costingmethod, usingdirect labor as a

measure of allocating overhead costs, will undercost more complex products.

1-12 QUALITY COSTS

The value of a quality system is reflected in its ability to satisfy the customer. In this context,

quality costs reflect the achievement or nonachievement of meeting product or service

requirements, as determined from the perspective of the customer. These requirements may

include design specifications of a product, operating instructions, government regulations,

timely delivery, marketing procedures, and servicing commitments, among others.

The various components of quality costs are designated based on product/service

conformance or nonconformance. The achievement of requirements, identified by product

or service conformance, consists of a cost component, identified as prevention costs, while

nonconformance consists of the cost components of appraisal and failure costs (Campanella

1999). To summarize, quality costs may be interpreted as the difference between the actual

cost and the reduced cost if products and services were all conforming. The four major

categories of quality costs are discussed here.

Prevention Costs

Prevention costs are incurred in planning, implementing, andmaintaining a quality system to

prevent poor quality in products and services. They include salaries and developmental costs

for product design, process and equipment design, process control techniques (through such

means as control charts), information systems design, and all other costs associated with

making the product right the first time. Also, costs associated with education and training are

included in this category. Other such costs include those associated with defect cause and

removal, process changes, and the cost of a quality audit. Prevention costs increase with the

introduction of a quality system and, initially, may be a significant proportion of the total

quality costs. However, the rate of increase slows with time. Even though prevention costs

increase, they are more than justified by reductions in total quality costs due to reductions in

internal and external failure costs.

Appraisal Costs

Appraisal costs are those associated with measuring, evaluating, or auditing products, com

ponents, purchased materials, or services to determine their degree of conformance to the

specified standards. Such costs include dealing with the inspection and testing of incoming

materials as well as product inspection and testing at various phases of manufacturing and at

final acceptance. Other costs in this category include the cost of calibrating and maintaining

measuring instruments and equipment and the cost of materials and products consumed in a

destructive test or devalued by reliability tests. Appraisal costs typically occur during or after

production but before the product is released to the customer. Hence, they are associated

with managing the outcome, whereas prevention costs are associated with managing the
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intent or goal. Appraisal costs normally decline with time as more nonconformities are

prevented from occurring.

Internal Failure Costs

Internal failure costs are incurred when products, components, materials, and services fail to

meet quality requirements prior to the transfer of ownership to the customer. These costs

would disappear if there were no nonconformities in the product or service. Internal failure

costs include scrap and rework costs for the materials, labor, and overhead associated with

production. The cost of correcting nonconforming units, as in rework, can include such

additionalmanufacturingoperations as regrinding the outside diameter of anoversized part. If

the outside diameter were undersized, it would not be feasible to use it in thefinished product,

and the part would become scrap. The costs involved in determining the cause of failure or in

reinspecting or retesting reworked products are other examples from this category. The cost

of lost production time due to nonconformitiesmust also be considered (e.g., if poor quality of

rawmaterials requires retooling of equipment). Furthermore, downgrading costs, the revenue

lost because a flawed product has to be sold at a lower price, constitutes another component.

As a total quality system is implemented and becomes effective with time, internal failure

costs will decline. Less scrap and rework will result as problems are prevented.

External Failure Costs

External failure costs are incurred when a product does not perform satisfactorily after

ownership is transferred to the customer or services offered are nonconforming. If no

nonconforming units were produced, this cost would vanish. Such costs include those

due to customer complaints, which include the costs of investigation and adjustments, and

those associated with receipt, handling, repair, and replacement of nonconforming products.

Warranty charges (failure of a product within the warranty time) and product liability costs

(costs or awards as an outcome of product liability litigation) also fall under this category. A

reduction in external failure costs occurs when a quality control system is implemented

successfully.

Hidden Failure Costs

The measurable components of failure costs include those associated with scrap, rework,

or warranty, which are easily tracked by accounting systems. A significant segment of the

failure costs are “hidden.” These include management and engineering time associated

with cause identification and determination of remedial actions associated with failures.

Line downtime, the necessity to carry increased inventory, the decrease in available

capacity, and orders lost due to poor quality are examples of costs not easily tracked by

accounting systems. Hence, what is typically reported as failure costs is but a minute

portion of the true failure costs.

Quality Costs Data Requirements

Quality costs should be monitored carefully. Because indirect costs are as important as

such direct costs as raw material and labor, well-defined accounting procedures should be
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FIGURE 1-4 Quality costs data requirements at different management levels.

set up to determine realistic quality cost estimates. Consider the case where quality cost data

cross departmental lines. This occurs, for example,when a quality control supervisor in a staff

position identifies the reason for scrap or rework, and a machine operator conducts an extra

operation to rework those items. Similarly, should rework or scrap inspire a change in the

product design, the redesign time is assigned to quality costs.

Figure 1-4 shows the data requirements at various management levels. Data are collected

for each product line or project and distributed to each level of management. The needs are

somewhat different at each level. Topmanagement may prefer a summary of the total quality

costs, broken down into each of the four categories, at the division or plant level. On the other

hand, linemanagement or supervisorsmaywant a summary of the direct costs, which include

labor and material costs, as it relates to their area.

This means that if a change is made in product or process design, it is possible for one or

more quality cost categories to be affected. The time spent by the design engineer would be

allocated, costwise, to prevention cost. On the other hand, if the design calls for new

inspection equipment, that would be allocated to appraisal cost. Thus, a costwise breakdown

into the four categories of prevention, appraisal, internal failure, and external failure is

incorporated into the accounting system for the variety of functions performed by manage

ment and operators. Information from cost systems must be used to identify root causes

associated with failures. Only when remedial actions are taken to prevent these from

occurring will the true benefits of a cost system be reaped.
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Process Cost Approach

In a conventional approach, the normal production costs associated with running a process

(e.g., direct material, labor, and overhead costs) or providing a service (salaries and wages

of personnel, shipment or delivery costs) may not be included in the quality costs of

conformance (i.e., prevention). Costs of nonconformance typically include internal and

external failure costs. It is possible that greater cost-saving opportunitiesmight lie in reducing

the cost of conformance. In this regard, the process cost approach could be helpful by

eliminating non-value-added activities or combining process steps, to reduce the cost of

conformance. Such an approach may be effective where quality improvement efforts have

reachedmaturation. It has the advantage of tackling costs associatedwith efficiency aswell as

quality and may reduce the “hidden” quality costs discussed previously.

Example 1-2 A company manufacturing a chemical compound has identified the

following cost components (per kilogram): direct labor, $2.00; material, $5.00; energy,

$0.50; overhead, 30% of direct labor and material. The process is operating at a yield rate of

96%. A quality improvement team, through analysis, has been able to increase yield to

97%. Find the cost per kilogram of product before and after this improvement. On further

study, the team analyzed the process and was able to eliminate several non-value-added

steps. Direct labor and material costs were reduced by 25%. Calculate the cost per kilogram

of product after these process changes are made. By what percentage have total costs been

reduced? What is the percentage increase in capacity?

Solution The conformance costs include the process costs, comprising direct labor,

material, energy, and overhead costs. Overhead costs are $2.10/kg, leading to total confor

mance costs of $9.60/kg. The total cost (conformance and nonconformance) is $10/kg (9.60/

0.96), implying a nonconformance cost of $0.40/kg. By improving yield to 97%, the total

cost/kg is $9.90. Thus, the nonconformance cost has been reduced to $0.30/kg. On

elimination of non-value-added steps in the process, direct labor and material costs are

$5.25/kg. With overhead costs of $1.58 (5.25× 0.3), the process costs are $7.33/kg.

Since the yield rate is now 97%, the total cost of the product is $7.56/kg, implying a

nonconformance cost of $0.23/kg. Total costs have been reduced by 24.4% [(10.00� 7.56)/

10.00]. Relative level in capacity= 0.97/0.96= 1.010, indicating a 1% increase in capacity.

The reduction in total costs, by analyzing the process, has made a major impact.

Example 1-3 In a doctor’s office with an office administrator and a nurse, the average

waiting time for patients prior to being seen by the physician is 15 minutes. The average

examination time by the physician, per patient, is 10 minutes. Currently, the office

administrator schedules patients every 15 minutes for a 6-hour period. When salary and

benefits are converted to an hourly rate, for a nurse it is $40/hour, while for an office

administrator it is $20/hour. The practice, which treats Medicare/Medicaid patients, receives

an average reimbursement of $400 per patient visit. Excluding the physician’s salary and

other overhead costs associatedwith equipment, discuss the current profitability of operations

of the office. Assume that the office staff work 8 hours/day. Effective process improvement

measures were taken by incorporating electronic medical records and check-in via the

Internet. Such steps reduced average waiting time per patient to 10 minutes. If the office

administrator now schedules patients every 10 minutes, what is the profitability measure?

Assume that the physician will see all scheduled patients for the day.
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Solution Prior to the improvement in operations, the average number of patients

scheduled per day is 24, leading to an average daily reimbursement of $9600. This leads

to a profitability measure of $9120/day. Upon improvement of the process, the average

number of patients scheduled per day is 36, leading to an average daily reimbursement of

$14,400/day. The profitability measure now is $13,920/day. In comparing the twomeasures,

this is an increase of 52.6%. Analysis of the various steps that a patient undergoes in a visit to

the doctor’s office, in order to reduce waiting time, is extremely beneficial. The “hidden

benefit” not discussed is the intangible component of patient satisfaction. It is quite known

that patient satisfaction improves as waiting time is reduced.

1-13 MEASURING QUALITY COSTS

Themagnitude of quality costs is important tomanagement because such indices as return on

investment are calculated from it.However, for comparing quality costs over time,magnitude

may not be the measure to use because conditions often change from one quarter to the next.

The number of units produced may change, which affects the direct costs of labor and

materials, so the total cost in dollars may not be comparable. To alleviate this situation, a

measurement base that accounts for labor hours, manufacturing costs, sales dollars, or units

produced could be used to produce an index. These ideas are discussed here.

1. Labor-based index. Onecommonlyused index is thequality costsper direct-laborhour.

The information required to compute this index is readily available, since the accounting

department collectsdirect-labordata.This index shouldbeused for short periodsbecause

over extendedperiods the impact of automationondirect-labor hoursmaybe significant.

Another index lists quality costs per direct-labor dollar, thus eliminating the effect of

inflation. This index may be most useful for line and middle management.

2. Cost-based index. This index is based on calculating the quality costs per dollar of

manufacturing costs. Direct-labor, material, and overhead costs make up manufactur

ing costs, and the relevant information is readily available from accounting. This index

is more stable than the labor base index because it is not significantly affected by price

fluctuations or changes in the level of automation. For middle management, this might

be an index of importance.

3. Sales-based index. For top management, quality costs per sales dollar may be an

attractive index. It is not a good measure for short-term analysis, but for strategic

decisions, top management focuses on long-term outlook. Sales lag behind production

and are subject to seasonal variations (e.g., increased sales of toys during Christmas).

These variations have an impact in the short run. However, they smooth out over longer

periods of time. Furthermore, changes in selling price also affect this index.

4. Unit-based index. This index calculates the quality costs per unit of production. If the

output of different production lines is similar, this index is valid. Otherwise, if a

company produces a variety of products, the product lines would have to be weighted

and a standardized product measure computed. For an organization producing

refrigerators, washers, dryers, and electric ranges, for example, it may be difficult

to calculate the weights based on a standard product. For example, if 1 electric range is

the standard unit, is a refrigerator 1.5 standard units of a product and a washer 0.9

standard unit? The other indexes should be used in such cases.
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TABLE 1-6 Quality Cost Expenditures

Cost Categories Amount ($)

1. Review and update of design 200,000

2. Planning for quality through quality improvement teams 50,000

3. Operator training 20,000

4. Maintenance of ISO certification 100,000

5. Vendor selection 20,000

6. Incoming raw material inspection 30,000

7. Calibration of test equipment 10,000

8. In-house product testing 40,000

9. Scrap costs of nonconforming product 50,000

10. Failure within warranty period 100,000

11. Manufacturing costs 70,000,000

12. Sales 100,000,000

For all of these indexes, a change in the denominator causes the value of the index to

change, even if the quality costs do not change. If the cost of direct labor decreases, which

may happen because of improvement in productivity, the labor-based index increases. Such

increases should be interpreted cautiously because they can be misconstrued as increased

quality costs.

Example 1-4 A medical industry manufacturer of blood filtration products, used in

dialysis, has to meet rigid standards in the field. Product design, precision manufacturing

equipment, and raw material/component quality from suppliers are all important. Product

failure at the customer level is quite expensive and could cost $25,000 for each occurrence.

Yearly expenditures for the past year are shown in Table 1-6. Analyze the various quality

cost components. What proportion are they of total quality costs? Find the total quality cost

as a proportion of manufacturing costs and sales and comment. Should senior management

stress less on design issues?

Solution In Table 1-6, items 1–5 comprise prevention costs, items 6–8 constitute ap

praisal costs, item 9 indicates internal failure costs, while item 10 is a measure of external

failure costs. Table 1-7 shows the proportion of each of the total quality costs. It is observed

that prevention costs account for a large proportion (62.9%) of the total quality costs.

What is not displayed is the fact that, due to preventive measures taken to reduce

nonconformance, internal and external failure costs are contained. Total quality costs are

TABLE 1-7 Analysis of Quality Costs

Cost of Categories Amount ($) Percentage of Total

Prevention costs 390,000 62.90

Appraisal costs 80,000 12.90

Internal failure costs 50,000 8.06

External failure costs 100,000 16.13

Total quality costs to manufacturing 8.86%

Total quality costs to sales 5.17%
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8.86% of manufacturing costs, while they are 5.17% of sales, which is quite reasonable. In

many organizations, quality costs are about 20% of sales (Carr 1992; Porter and Rayner

1992). If company sales continue to rise, based on the level of quality delivered to the

customer as well as that of competitors, this margin should improve even further. Currently,

design issues comprise more than 51% of prevention costs. While this may seem dispropor

tionate, it is certainly worthwhile. The major benefit stems from producing a conforming

product that meets or exceeds customer expectations.

Impact of Quality Improvement on Quality Costs

The traditional notion of determining the optimal level of quality based on minimizing total

quality costs is based on a static concept. It also does not incorporate the impact of quality

improvement, an ideology that is an integral fabric of organizations, on the various

quality cost functions. In fact, improving the level of quality of conformance and decreasing

quality costs are not conflicting objectives. Rather, striving for improvements in both is

complementary in nature and hence can be achieved.

Minimization of total quality costs to determine the optimal operational level of quality

using a traditional static concept is shown in Figure 1-5. In this case, prevention costs increase

at an exponential rate with an improvement in the level of quality. Appraisal costs, however,

may not increase rapidly with the level of quality. The combined prevention and appraisal

cost function is dominated by the prevention costs, leading to the shape of the function in

Figure 1-5. On the contrary, as the level of quality improves, a decline in the internal and

external failure costs takes place, demonstrated by the nonlinear decay function. The total

quality cost function, the sumof the prevention and appraisal costs and the internal failure and

external failure costs, is also shown in Figure 1-5. The minimization of the total quality cost

function leads to an optimal quality level (q0).

We now discuss the more appropriate dynamic concept of analyzing quality costs and the

manner in which the analysis is affected by the continuous quality improvement philosophy.

First,with continuous improvement, there is not only a reduction in the unit cost of the product

or service but also a change in the shape of the prevention and appraisal cost function.Usually,

the rate of increase of this functionwith the level of quality will be smaller than in the original

FIGURE 1-5 Quality costs versus level of quality.



30 INTRODUCTION TO QUALITY CONTROL AND THE TOTAL QUALITY SYSTEM

FIGURE 1-6 Dynamic concept of the impact of quality improvement.

situation. Ignoring, for the present, the other impacts of quality improvement, Figure 1-6

shows the shifted prevention and appraisal cost function. Note that the optimum level of

quality desired improves (from q1 to q2). Rationalizing along these lines, the target level

of quality to strive for, in the long run, should be total conformance.

Improvements in technology and advances in knowledgewill initially affect the prevention

and appraisal cost function, shifting it to the right with a reduction in slope. Although such

advancements start out in incremental steps (i.e., the Kaizen concept of continuous improve

ment), after the achievement of a certain quality level, managementmust focus on technologi

cal breakthroughs to further improve quality. Suchmajor innovationsmay lead to a reduction

in the rate of change in the level of the prevention and appraisal cost function and consequently

a change in the slopeof the prevention and appraisal cost function. The shape of the prevention

and appraisal cost function changes from concave to convex after a certain level of quality

(inflection point). Due to such a change, the shape of the total quality cost function will also

change andwill show a decreasing trendwith the level of quality. Figure 1-7 demonstrates this

impact. The target level of quality is 100% conformance.

Let us now discuss some of the other effects of continuous quality improvement that occur

in a dynamic situation. Improvement in the performance of a product or service leads to

improved customer satisfaction. As a result, market share improves. In a static situation, this

increase in market share is not incorporated. Increased market share results in better overall

company performance and return to stakeholders, necessitating a change to improved quality

levels. An indirect impact of improved customer satisfaction is the ability of themanufacturer

or service provider to charge a higher unit price, which leads to further improvement in

profitability. In a static situation, the provider does not have the ability to increase unit price

through quality improvement. To summarize, if we denote profitability as being proportional

to the product of the market share and the difference between unit price and unit cost, quality

improvement affects all three components on a dynamic basis. It increases market share,

decreases unit cost, andmayalso lead to increases in unit prices, thereby affectingprofitability

from three angles.
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FIGURE 1-7 Target level of 100% conformance.

The focus of organizations should be on reduction of failure costs, internal and external.

External failure is damaging. It leads to customer dissatisfaction, brand switching, and

market share reduction. Although such opportunity costs are difficult to measure, they are

significant. With an improvement in the level of quality, all other factors being constant,

total failure costs should decrease. However, external failure costs are also influenced by

the relative position of the organization relative to its competitors’ offering. Thus, if a

company’s product lags significantly behind that of the benchmark or leader, the customer

is likely not to be satisfied with the product, leading to increased external failure costs.

Assuming that external failure costs are the more dominant of the two failure costs, Figure

1-7 also shows the total failure cost curve for the benchmark company in the industry.

Whereas the prevention and appraisal cost function is influenced by actions and policies

adopted by the company, the failure cost function is affected as well by the company and its

competitors and by customer preferences. This demonstrates that managing external failure

costs is much more encompassing. Even if the company maintains, internally, the same

level of quality, external failure costs may go up, given the competitive environment of

business. Further, customer preferences are dynamic in nature. It is not sufficient to improve

only the manufacture of a chosen product. Keeping up with the needs and expectations of

the customer is imperative.

1-14 MANAGEMENT OF QUALITY

Depending on the nature of the business (i.e., manufacturing, assembly, or service; range of

product or service offerings; and degree of outsourcing), the management function of quality

may employ appropriatemodels. Regardless,meeting and exceeding customer needsmust be

the central theme in all these models.

The first model describes the concept of supply chain management. Here, companies

link to form partnerships with external organizations in order to leverage their strategic

positioning as well as to improve operational efficiency. Consider Figure 1-8, which

demonstrates a manufacturing or assembly situation conducted by the original equipment

manufacturer (OEM). Based on the core competencies of the OEM, the OEM selects

suppliers that can address their non–core competencies. Components or subassemblies
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FIGURE 1-8 Supply chain configuration.

could be obtained from suppliers which are not necessarily unique to a given OEM. The

same supplier may serve multiple OEMs. Similarly, an OEM may market its products

through one or more distributors, who also may not necessarily be unique to an OEM.

The customer buys the products from the distributors. Thus, we have a situation in which

supply chains rather than OEMs compete with each other. Quality and cost associated

with the product are influenced by that of the suppliers, OEMs, and distributors

considered collectively.

A second model describes the situation where the same suppliers, labeled in a tiered

fashion that follows the process of assembly, feed all the OEMs. In this case, the OEMs are

usually limited in number. Consider the automobile industry, where there are only a

handful of OEMs: for example, Ford, General Motors, DaimlerChrysler, Toyota, Honda,

and Hyundai. Since the same types of components are needed for each OEM, a tier

1 supplier producing a thermostatic control system to regulate engine temperature could

conceivably supply all the OEMs. Similarly, at the tier 2 level, the components to produce

the thermostatic control system could bemanufactured by dedicated suppliers that focus on

making only certain parts. Hence, parts produced by suppliers A and B in tier 2 are used to

make a component or subassembly in tier 1. Information on individual parts and/or

subassemblies could be monitored through a central “infomediary.” The OEMs would

draw parts and components using such information. As before, the customer buys from the

distributors. Figure 1-9 shows such a tiered supply chain structure.

In considering the OEM as the organizational unit that attempts to maximize the

performance of the associated supply chain, which involves its suppliers, distributors,

customer representatives, and employees, an enterprisewide concept could be incorporated.

Data would be collected from the various facets of the organization in order to develop and

monitor measures of quality and costs. Figure 1-10 shows the information needs for an

enterprisewide system. The quality of the product and/or service will be influenced by all of

the contributing units, making management’s task quite encompassing.
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FIGURE 1-9 Tiered supply chain.

FIGURE 1-10 Enterprisewide information needs.
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1-15 QUALITY AND PRODUCTIVITY

A misconception that has existed among businesses is the notion that quality decreases

productivity. On the contrary, the relationship between the two is positive: Quality

improves productivity. Making a product right the first time lowers total costs and improves

productivity. More time is available to produce defect-free output because items do not have

to be reworked and extra items to replace scrap do not have to be produced. In fact, doing it

right the first time increases the available capacity of the entire production line. As waste is

reduced, valuable resources—people, equipment, material, time, and effort—can be utilized

for added production of defect-free goods or services. The competitive position of the

company is enhanced in the long run, with a concomitant improvement in profits.

Effect on Cost

As discussed previously, quality costs can be grouped into the categories of prevention,

appraisal, internal failure, andexternal failure. Improvedproductivitymayaffect eachof these

costs differently.

1. Prevention and appraisal costs. With initial improvements in productivity, it is

possible that prevention and appraisal costs will increase. As adequate process control

procedures are installed, they contribute to prevention and appraisal costs. Further

more, process improvement procedures may also increase costs in these two catego

ries. These are thus called the costs of conformance to quality requirements.With time,

a reduction in appraisal costs is usually observed. As process quality improves, it leads

to efficient and simplified operations. This may yield further improvements in

productivity.

2. Internal and external failure costs. Amajor impact of improved quality is a reduction

in internal and external failure costs. In the long run, decreasing costs in these two

categories usually offset the increase in prevention and appraisal costs. The total cost of

quality thus decreases. Moreover, as less scrap and rework is produced, more time is

available for productive output. The company’s profitability increases. As external

failures are reduced, customer satisfaction improves. Not only does this emphasis on

quality reduce the tangible costs in this category (such as product warranty costs and

liability suits), it also significantly affects intangible costs of customer dissatisfaction.

Figure 1-11 shows how improved quality leads to reduced costs, improved

productivity, increased customer satisfaction, and eventually increased profits through

improved competitive positioning.

As noted previously, management must focus on long-term profits rather than short-term

gain. A reason cited frequently for not adopting a total quality system is management’s

emphasis on short-term profits. As is well known, short-term profits can be enhanced by

postponing much-needed investment in process improvement equipment and methods,

by reducing research and development, and/or by delaying preventive maintenance. These

actions eventually hurt competitiveness and profitability.

Effect on Market

An improvement in quality can lead to increased market shares, improved competitive

position, and increased profitability.
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FIGURE 1-11 Impact of quality on competitive position.

1. Market share. With a reduction in external failure costs and improved performance of

a product in its functional phase, a company is in a position to raise the satisfaction

level of its customers, many of whom return to buy the product again. Satisfied

customers spread the word about good quality, which leads to additional customers.

Market share goes up as the quality level goes up.

2. Competitive position. All organizations want to stay competitive and to improve their

market position, but simply improving quality or productivity may not be sufficient

since competitors are doing the same. Organizations must monitor their relative

position within the industry as well as the perception of customers. Efforts to improve

quality are crucial in attaining these goals. Through process control and improvement

and efficient resource utilization (reduced production of scrap and rework), a firm can

minimize its costs. So, even if the selling price remains fixed, an improved price/cost

ratio is achieved. Alternatively, as quality improves, the firm may be able to charge a

higher price for its product, although customer satisfaction and expectations ultimately

determine price. In any event, an improved competitive position paves the way for

increased profitability.

Example 1-5 Three independent operations are performed sequentially in the manufacture

of a product. The first-pass yields (proportion conforming) for each operation are given

by p1= 0.90, p2= 0.95, and p3= 0.80, respectively, as shown in Figure 1-12. The unit

production costs for each operation are u1= $5, u2= $10, and u3= $15, respectively.
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FIGURE 1-12 Operations sequence in manufacturing.

(a) What is the unit cost per conforming product?

Solution The first-pass yield (proportion conforming) at the completion of all

three operations= (0.90)(0.95)(0.80)= 0.684. The total production cost of all three opera

tions= $30. Thus, if 1000 parts are manufactured at a cost of $30 each, only 684 of them are

conforming. Thus, the unit cost per conforming product= $30/0.684= $43.86. This is about

a 46% increase over the unit production costs. As the level of quality is improved in the

operations, the unit cost per conforming product may be reduced, its limiting value being

$30, at which point the conformance rate for each operation is at 100%.

(b) Suppose, through quality improvement efforts, the first-pass yield for each operation

is improved to the following levels: p1= 0.94, p2= 0.96, p3= 0.88. Relative to

part (a), determine how much improvement in capacity has taken place.

Solution The first-pass yield at completion of all three operations now= (0.94)

(0.96)(0.88)= 0.794. Relative level in capacity= 0.794/0.684= 1.161, compared to

the previous operation level, indicating an increase in available production capacity of

16.1%.

(c) Management is contemplating a 100% inspection process after either operation 1

or 2. Assume that the inspection process is completely reliable [i.e., all units are

identified correctly (conforming or not)]. Unit inspection costs after operations

1 and 2 are $0.10 and $0.20, respectively. Nonconforming parts are not forwarded to

subsequent operations. Find the unit cost per conforming product for each plan for

the improved process.

Solution

Plan 1: Inspection only following operation 1 In this plan, all units following

operation 1 will undergo inspection. However, only the conforming parts will

be forwarded to operation 2. Suppose that 1000 parts are input to operation 1. The

total production and inspection costs for all the operations are= (5+ 0.10)(1000)+ (0.94)

(1000)(10+ 15)= $28,600. The number of conforming product units= (1000)(0.94)(0.96)

(0.88)= 794.112. Hence, the unit cost per conforming product= 28,600/794.112= $36.02.

Plan 2: Inspection only following operation 2 Here, all units following

operation 1 will be forwarded to operation 2. After inspection on completion of operation

2, only the conforming units will be sent to operation 3. So the total production and

inspection costs for all operations will be (1000)(5)+ (1000)(10+ 0.20)+ (0.94)(0.96)

(1000)(15)= $28,736. This leads to a unit cost per conforming product= $28,736/

794.112= $36.19. Management should recommend plan 1 if unit cost per conforming

product is used as the selection criterion.
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Example 1-6 For a fast-food restaurant, a measure of quality is the time to be served after

placing an order. Customer expectation is service within 3 minutes. Overhead costs are

estimated at $80/hour, excluding wages of servers and cooks. The restaurant currently

employs five servers at an hourly rate of $15 and two cooks at $20/hour. The manager is

interested in evaluating the operations during the 10:00 A.M.–2:00 P.M. time period since peak

business volume takes place during this interval. The average waiting time currently is

5 minutes. For every minute of reduction in waiting time below the expected norm,

demand increases by 25 customers per hour. On the contrary, for every minute above the

expected waiting time, demand decreases by 20 per hour. The average customer order is for

$15. What is the opportunity cost of lost revenue currently? In studying the manner in which

customers queue up and place orders, the quality improvement team was able to reduce

the waiting time to 4 minutes. What is the increase toward the profit margin? The manager

estimates that an additional cook and server will need to be hired during the peak hours in

order to serve more customers efficiently. Such hiring will further reduce the waiting time by

2 minutes. Should the manager make these additional hires? For subsequent improvement,

what avenues should the manager explore?

Solution With the current average waiting time of 5 minutes, the restaurant is losing

potential customers. The opportunity cost of lost revenue per hour for the peak period under

study= 20× 15� (80+ 40+ 75)= 105 for everyminute ofwaiting time above 3minutes. So,

the current opportunity cost of lost revenue per hour= 2× 105= 210.With themore efficient

service system where the average waiting time is 4 minutes, the increase toward the profit

margin, per hour, is 105. By hiring an additional cook and server, the waiting time will be, on

average, 2 minutes, leading to an increase in demand of 45 customers per hour relative to the

previously improved process. The added contribution toward the profit margin per hour will

now be= 45× 15� (80+ 60+ 90)= 445, prompting the manager to make the additional

hires. A study of the kitchen capacity, queue formation, and efficiency of the servers could be

further studied to determine possible means of improvement.

1-16 TOTAL QUALITY ENVIRONMENTAL MANAGEMENT

In recent years we have witnessed the emergence of many national and regional standards

in the environmental management field. Some companies, of course, have long felt a social

responsibility to operate andmaintain safe and adequate environmental conditions regardless

of whether external standards required it. Xerox Corporation is an example of a large

corporation that takes its social obligations toward the environment seriously. The company

hasundertaken amajor effort to reducepollution,waste, andenergy consumption.Thequality

culture is reflected in Xerox’s protection of the environment; its motto is to reuse, remanu

facture, and recycle. Company goals are aimed at creating waste-free products in waste-free

factories using a “Design for the Environment” program. To support its environmental

management program, Xerox uses only recyclable and recycled thermoplastics and metals.

With the concern for protection of the environment that is mandated in regional and

national standards, standards need to be developed in environmental management tools and

systems. The British Standards Institute’s BSI 7750 standard on environmental management

is one such example; the European Union’s (EU) eco-label and Eco-Management and

Auditing Scheme (EMAS) are other examples. Both of these rely on consensus standards for
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their operational effectiveness. Similarly, in the United States, technical environmental

standards under the sponsorship of the American Society for Testing and Materials (now

ASTM International) have been published that address the testing andmonitoring associated

with emission and effluent pollution controls.

The International Organization for Standardization (ISO), based in Geneva, Switzerland,

has long taken the lead in providing quality management standards. Its ISO 9000 standards

have become a benchmark for quality management practices. U.S. companies have adopted

ISO 9000 standards and have found this particularly beneficial in doing business with or

trading in the European Union. Technical Committee (TC) 207 of the ISO has developed

standards in the field of environmental management tools and systems; their document, ISO

14000: An International Environmental Management Standard, deals with developing

management systems for day-to-day operations that have an impact on the environment

(Marcus andWillig 1997; Parry 2000;Welch 1998). Developed in 1996, ISO 14000 is based

on a voluntary approach and has three major requirements: create an environmental

management system (EMS); show compliance with environmental statutes and regulations

of countries in which the organization conducts business; and exhibit commitment to

continuous improvement in environmental protection through utilization of its workforce

(Clements 1996; Corbett and Kirsch 2009; Tiber and Feldman 1996). The latest version of

the family of standards, updated in 2015, assists organizations in minimizing the negative

impact on air, water, or land with a view to improvement of the environmental performance

rather than the management of the system itself (ISO 2015). The standards are also an integral

part of theEuropeanUnion’s EMAS. ISO14000 consists of six standards. Three of these are in

the category of organizational evaluation, focusing on environmental and business manage

ment systems: the Environmental Management System (ISO 14001), Environmental Perfor

mance Evaluation (ISO 14031), and Environmental Auditing (ISO 14010) standards. The

other three explore the product development process and consist of Life Cycle Assessment

(ISO 14040), Environmental Labeling (ISO 14020), and Product Standards (ISO 14060).

Environmental management began as a regulation-based and compliance-driven system. It

has subsequently evolved into a voluntary environmental stewardship process whereby

companies have undertaken a continuous improvement philosophy to set goals that go beyond

theprotection levelsrequiredbyregulations.TheISO14000standardspromote thisphilosophy

with the objective of developing uniform environmental management standards that do not

create unnecessary trade barriers. These standards are therefore not product standards. Also,

they do not specify performance or pollutant/effluent levels. Specifically excluded from the

standards are test methods for pollutants and setting limit values for pollutants or effluents.

Environmental management systems and environmental auditing span a variety of issues,

including top management commitment to continuous improvement, compliance and

pollution prevention, creating and implementing environmental policies, setting appropriate

targets and achieving them, integrating environmental considerations in operating proce

dures, training employees on their environmental obligations, and conducting audits of the

environmental management system.

One of the major corporations taking a lead in adoption of environmental management

systems is the Ford Motor Company. Not only are all its plants around the world certified in

ISO 14001, they also have achieved significant improvements in air pollution, utilization

of energy resources, recycling, waste disposal, and water treatment. Major recycling efforts

have kept solid waste out of landfills. Ford has promoted expansion of environmental

consciousness by providing monetary incentives to suppliers who assist in their waste

reduction effort.
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General Motors reduced disposed costs by several million dollars annually through the

adoption of a reusable container program with its suppliers. Commonwealth Edison, an

electric utility company, achieved several environmental benefits mounting to millions of

dollars by implementing an improved materials management process. One area dealt with

waste disposal and solvent contamination. The company identified new solvents based on

factors such as purchasing costs, shelf life, ease of storage, and disposal costs. The end

result was a replacement of over 100 solvent products with nonhazardous materials and a

reduction of hazardous solvent waste by about 90% over a two-year period.

Green Supply Chain

In the context of a simple supply chain, let us consider the following sequential entities:

supplier, OEM, distributor, retailer, and finally the customer.

Some activities that promote an environment-friendly or green manufacturing by the

OEM and supplier are as follows. The OEM could administer training programs for the

supplier that promote green practices such as selection of nonhazardous material, efficient

energy consumption, use of renewable energy sources, and reuse of waste (Sarkis 2006).

Similar concepts may be adopted by the OEM. Additional ideas involve disposal of

production waste, conversion of waste to byproducts, environmental impact of clean-up,

and recycling.

Table 1-8 shows a few elements of a green supply chain utilizing forward and reverse

logistics. In forward logistics, the movement of goods and information from the supplier to

the OEM, to the distributor, to the retailer, and on to the customer is encountered. Under

reverse logistics, the converse takes place. Sometimes, of course, both processes happen

through a feedback mechanism, such as between the supplier and the OEM, to arrive at

mutually agreeable decisions, before the next process step, say, flow of goods and

information from the OEM to the distributor takes place. An efficient materials manage

ment system must consider the time and cost associated with information and flow of goods

for the entire supply chain rather than just one entity. Considerable savings are usually

achieved when optimization of the entire system is considered. As an example, consider the

cost of disposal of waste in an eco-friendly manner. When the entire process, starting with

product design, raw material usage, conversion of waste to by-products, and cost of waste

disposal that meet environmental standards, is taken onto account, it is possible for design

and raw material costs to increase due to an improved product that extends product life and

a raw material that is safe to dispose. However, a reduction in the disposal costs of scrap,

product returns from failure and on completion of useful life, and chemical treatment of

waste may lead to a reduced total cost annually.

Several benefits will accrue from the adoption of environmental management system

standards. First and foremost is the worldwide focus on environmental management that

the standards will help to achieve. This promotes a change in the corporate culture. At the

commercial level, ISO 14000 will have an impact on creating uniformity in national rules

and regulations, labels, and methods. They will minimize trade barriers and promote a

policy that is consistent. The standard will not only help in maintaining regulatory

compliance but also help create a structure for moving beyond compliance. Management

commitment and the creation of a system that reflects the goal to maintain a self-imposed

higher standard will pave the way for continuous improvement in environmental

management.
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TABLE 1-8 Green Supply Chain Activities

Entity Forward Logistics Reverse Logistics

Supplier Supplier training on green practices Component/raw material disposal in

Reduce product obsolescence eco-friendly manner

Use reusable packaging Recycling

Use nonhazardous raw material

Use transportation methods that are

environmental friendly

OEM Promote efficient purchasing practices Product/component eco-disposal

for the whole system Component return to suppliers

Consolidate storing to reduce space Recycling

requirements Eco-friendly transportation

Use green material-handling methods Product take-back programs to

Use green packaging methods such as minimize environmental impact

reusable containers

Use green transportation methods

Distributor Use warehouse space efficiently Product return to OEM

Develop improved materials Eco-friendly transportation

management system to reduce

inventory carrying costs

Use point-of-sale information to

determine amount and delivery date

Use green transportation methods

Retailer Optimize inventory ordering and Product return to OEM or eco-friendly

carrying costs through adequate disposal

information systems Reusable packaging

Advocate green marketing methods Eco-friendly transportation

Identify green features, if any, associated

with the product

Customer Green product options Product return to retailer/OEM for

Eco-friendly product servicing failure within warranty

Product take-back programs on

completion of useful life to reduce

environmental impact

Reusable packaging

Eco-friendly transportation

SUMMARY

In this chapter we examine the detailed framework on which the concept of the total quality

system is based. We introduce some of the basic terminology and provide an overview of

the design, conformance, and implementation phases of the quality concept. We trace the

evolution of quality control and present specifics on the benefits of quality control, who is

responsible for it, and how it is to be adopted. The importance of the various types of needs of

the customer is discussedwith emphasis on those that focus on increasingmarket share. Such

concepts apply to themanufacturing and service sectors. In costing products and services, the

concept of activity-based costing is demonstrated. The subject of quality costs is explored

thoroughly and the trade-offs that take place among the cost categories upon successful

implementation of a total quality system are presented. A critical consideration in the entire
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scheme is management of the quality function. With the quality of the end product or service

being influenced by entities such as outside suppliers, monitoring of neither the quality

function nor of informational needs is restricted to within the organization. An important

outcome of improvement in quality is an increase in productivity, capacity, andmarket share,

along with a decrease in costs. All of this leads to improved profitability.

KEY TERMS

acceptance sampling plans

attributes

cause-and-effect diagram

causes

common or chance

special or assignable

costing

activity-based

costs
batch-level

product/service-level

production/service-sustaining

process

customer

needs

satisfaction

defect

design for manufacturability

fishbone diagram

green supply chain

inspection

Ishikawa diagram

Kano model
management of quality

market share

nonconforming unit

nonconformity

off-line quality control

product design

productivity

quality

quality of conformance

EXERCISES

Discussion Questions

quality of design

quality of performance

responsibility for quality

quality assurance

quality characteristic

quality circles

quality control

quality cost measurements

cost-based index

labor-based index

sales-based index

unit-based index

quality costs

appraisal costs

external failure costs

hidden failure costs

prevention costs

internal failure costs

quality improvement

reliability

specification
specification limits

standard

statistical process control

online statistical process control

supply chain management

systems approach

total quality environmental management

total quality system

variables

zero-defects program

1-1 Consider the following organizations. Howwould you define quality in each context?

Specify attributes/variables that may measure quality. How do you integrate these
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measures? Discuss the ease or difficulties associated with obtaining values for the

various measures.

(a) Call center for a company that sells computers

(b) Emergency services (i.e., ambulances) for a city or municipality

(c) Company making semiconductor chips

(d) Hospital

(e) Company that delivers mail/packages on a rapid basis

(f) Department store

(g) Bank

(h) Hydroelectric power plant

(i) Insurance company

(j) Internet service provider

1-2 The senior management in an urban bank is committed to improving its services.

Discuss the specifics of quality of design, conformance, and performance in this

context. Elaborate on possible basic needs, performance needs, and excitement needs

of the customer.

1-3 A travel agency is attempting to enter a market where several competitors currently

exist.What are the various customer needs that they should address?Howwill quality

be measured? As the company strives to improve its market share, discuss the impact

on the various categories of quality costs.

1-4 Consider the hospitality industry. Describe special causes and common causes in this

setting and discuss the role of quality control and quality improvement.

1-5 An OEM in the automobile industry is considering an improvement in its order-

processing system with its tier 1 suppliers. Discuss appropriate measures of quality.

What are some special and some common causes in this environment?

1-6 An intermodal logistics company uses trucks, trains, and ships to distribute goods to

various locations. What might be the various quality costs in each of the categories of

prevention, appraisal, internal failure, and external failure?

1-7 A quality improvement program has been instituted in an organization to reduce total

quality costs. Discuss the impact of such a program on prevention, appraisal, and

failure costs.

1-8 Classify each of the following into the cost categories of prevention, appraisal,

internal failure, and external failure:

(a) Vendor selection

(b) Administrative salaries

(c) Downgraded product

(d) Setup for inspection

(e) Supplier control

(f) External certification

(g) Gage calibration

(h) Process audit

1-9 Discuss the indices for measuring quality costs. Give examples where each might

be used.
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1-10 For a regional hospital in ametropolitan area, what are some of the internal failure and

external failure costs? How might they be reduced?

1-11 Explain why it is possible for external failure costs to go up even if the first-pass

quality level of a product made by a company remains the same.

1-12 Discuss the impact of technological breakthrough on the prevention and appraisal

cost and failure cost functions.

1-13 As natural resources become scarce, discuss the role of ISO 14000 in promoting good

environmental management practices.

1-14 Discuss the processes through which supply chain quality may be monitored.

Problems

1-15 An assemble-to-order hardware company has two types of central processing units

(CPUs), C1 and C2, and two types of display monitors, M1 and M2. Unit C2 is

slightly more complex then C1, as is M2 compared to M1. The annual production

volume and direct costs are shown in Table 1-9. Overhead costs for this past year are

shown in Table 1-10. Assume that setup and testing costs are similar for both types

of CPUs and monitors.

TABLE 1-9

CPU Monitor

Annual volume

Unit costs

Direct labor ($)

Direct material ($)

Assembly ($)

C1

10,000

80

60

40

C2

15,000

140

100

60

M1

18,000

120

80

60

M2

20,000

200

120

100

TABLE 1-10

Category Cost ($ millions)

Setup and testing 1.1

Product-line cost

CPU C1 0.5

CPU C2 1.5

Monitor M1 0.8

Monitor M2 2.5

Other company costs 0.6

(a) Calculate the cost per unit of each product using the unit-based costing method

by allocating overhead based on direct-labor costs.

(b) Calculate the cost per unit of each product using the activity-based costingmethod.

(c) Discuss the unit costs calculated using these two methods.
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1-16 For the hardware company in Exercise 1-15, suppose that setup and testing costs are

different for CPUs and monitors. Annual costs for setup and testing are $0.4 million

and $0.7 million for CPUs and monitors, respectively. However, between two types

of CPUs these costs are basically similar, as is also the case for monitors.

(a) Calculate the cost per unit of each product using the activity-based costingmethod.

(b) Discuss these unit costs in relation to those in Exercise 1-15.

1-17 Consider the hardware company in Exercise 1-15. The company is contemplating

outsourcing of its complex monitorM2. Assume that all other information remains as

given in Exercise 1-15.

(a) What is the cost per unit of each product using activity-based costing assuming

that M2 is not produced?

(b) A prospective supplier of monitorM2 has offered a unit price of $480. Should the

company outsource the monitor M2 to this supplier? Discuss.

1-18 A pharmaceutical company has obtained the following cost information (per 1000

tablets) based on the production of a drug in the past year: material, $150; direct labor,

$100; energy, $50; overhead, 40% of direct labor and material. Presently, the process

yield rate is 94%.

(a) Find the cost per tablet of acceptable product.

(b) A team evaluating the entire process has suggested improvements that led to

increasing the yield rate to 96%.What is the cost per tablet of conforming product

and the percent increase in capacity?

(c) Process engineers have come up with an improved sequence of operations. Labor

costs were reduced by 15% and energy costs by 20% from the original values.

Find the cost per tablet of conforming product now, and calculate the percentage

reduction in cost.

1-19 The following data (in $/m3) were obtained from a company that makes insulation for

commercial buildings:direct labor,20;directmaterials,30; indirect laborandmaterials,

30% of direct labor; fixed expenses, 25; administrative costs, 25; selling costs, 10.

(a) Assuming a 100% first-pass yield, what should the selling price (per m3) be such

that a 10% profit margin, over the cost of goods sold, will be obtained?

(b) Suppose that the first-pass yield is 94%. If the selling price is kept the same as

calculated in part (a), what is the profit margin?

(c) Through process improvements, first-pass yield has been improved to 98%.

However, the capital expenditures necessary for such improvements is $150,000.

If the selling price is kept the same as in part (a), what is the profit margin, ignoring

additional capital expenditures?

(d) For the improved process in part (c), assuming that monthly demand is 5000 m3,

how long would it take for the company to break even on its added capital

expenditures?

(e) Suppose that the company is able to sell product that does not meet first-pass

quality criteria at a reduced price of $120/m3. For the improved process in part (d),

what is the break-even time now to recover added capital expenditures?

1-20 In the production of a part for a printer, four sequential operations are involved. Unit

processing costs for the operations are $10, $6, $15, and $20, respectively. The first-

pass yields for each operation are 0.95, 0.90, 0.95, and 0.85, respectively. Unit

inspection costs after each operation are $0.50, $2.00, $3.00, and $5.00, respectively.
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(a) If no inspection is performed, what is the unit cost for an acceptable part?

(b) Assume that an inspection process is able to identify all parts correctly. Suppose

that inspection is conducted only after the first and second operations.

Nonconforming parts are not forwarded to the next operation. What is the unit

cost per acceptable part?

(c) Suppose that inspection is conducted only after the third operation. Nonconform

ing parts are not forwarded to the next operation. What is the unit cost per

acceptable part?

(d) Based on the unit costs computed in parts (b) and (c), discuss where, in general,

inspections should be conducted.

1-21 Suppose that the prevention and appraisal cost functions are given by Cp= 50q2 and

Ca= 10q, respectively, where q represents the degree of quality level (0< q< 1). The

cost of reworking a unit is $5, and the cost of a customer obtaining a nonconforming

product is $85. Assume that these cost functions are linear in 1� q. What is the

desirable operational level of quality for this static situation? Discuss the appropri

ateness of the cost functions.

1-22 Suppose that the prevention cost function is as given in Exercise 1-21. However, the

unit appraisal cost is $2, with the cost function being linear in 1� q, implying a

decrease in appraisal costs as quality improves. Further, the rework and external failure

cost functions are given by Cr= 5(1� q)/q and Ce= 85(1� q)/q, respectively. Con

struct the total cost function as a function of q and graph it for levels of q in the range

0.80–0.98. What is the desirable operational level of quality?

1-23 Consider Exercise 1-22. Suppose that market share is strongly influenced by the level

of quality, with the revenue function given by 90q2. What is the net profit function?

What is the minimum desirable quality level to break even?

1-24 An urban health care facility is interested in providing quality care at an affordable

price to all patients. On average, the facility serves 500 patients monthly, with the

average net contribution to profit being $400 per patient. Recently, a quality

improvement team studied the various processes that led to an improvement in a

monthly cost savings of $40,000.

(a) Ignoring other costs, what is the net contribution to profit per patient, assuming

the same patient volume?

(b) Despite these improvements, the opening of a new facility across town dimin

ished market share by 10%. How do you account for this toward profitability?

What should the facility now do?

1-25 TheCenter forMedicareandMedicaidServices (CMS) reimburseshealthcare facilities

at a fixed rate for patients of a certain diagnosis-related group (DRG). The facilitymust

also demonstrate an acceptable level of performance at the aggregate level. For a

selected DRG, CMS reimburses the facility $3000, with the expected length of stay

being three days. The facility’s records for the past month shows it treated 80 patients,

who each spent two days, 50 patients who each spent three days, and 60 patients who

each spent four days. For each day of patient stay up to the accepted norm, the facility

incurs a cost of$600,while the cost goes up to$1500perday, beyond thenorm.Discuss

the profitability situation of the facility per patient.What is the lost opportunity cost by

failing to treat patients within three days? What should it do to improve?
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2
SOME� PHILOSOPHIES� AND
THEIR� IMPACT� ON� QUALITY

2-1 Introduction and chapter objectives

2-2 Service industries and their characteristics

2-3 Model for service quality

2-4 W. Edwards Deming’ s philosophy

2-5 Philip B. Crosby’ s philosophy

2-6 Joseph M. Juran’ s philosopy

2-7 The three philosophies compared

Summary

2-1� INTRO�DUC�TION� AND� CHAPT�ER� OBJE�CTIVE�S

Several people have made significant contributions in the field of quality control. In this

chapter we look at the philosophies of three people: W. Edwards Deming, Philip B. Crosby,

and Joseph M. Juran. Pioneers in the field of quality control, they are largely responsible for

the global adoption and integration of quality assurance and control in industry.

Management commitment is key to a successful program in quality. This often requires a

change in corporate culture. The idea of an ongoing quality control and improvement program

is now widely accepted. One of our objectives is to discuss some unique quality characteristics

in the service industry. A second objective is to study the various philosophies on quality. In

this chapter we examine Deming’s philosophy in depth. Deming’s� 14� points� for� manage

ment� are fundamental to the implementation of any quality program. These points, which

constitute a “road map,” should be understood thoroughly by all who undertake the

implementation of such programs. We also discuss Crosby’s and Juran’s philosophies and

compare the three. The goal is the same in all three philosophies: creating and adopting a

world-class quality business culture. Although the paths they describe are slightly different,

companies should look closely at each approach before embarking on a quality program.

2-2� SERV�ICE� INDU�STRIES� AND� THE�IR� CHARA�CTER�ISTICS

Today, service industries dominate our economy. The service sector accounts for more

than 80% of jobs, and the number continues to grow. Quality improvement looms large in

Fundamentals of Quality Control and Improvement, Fourth Edition. Amitava Mitra
 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com\go\mitra\QualityControl4e
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the ongoing success of this sector of the economy. However, major differences exist in the

quality characteristics ofmanufacturing and service (Fitzsimmons and Fitzsimmons 1994;

Patton 2005; Zeithaml 2000). Accordingly, both the measurement process and manage

ment’s focus differ. In service industries, not only must the product meet the functional

requirements of the customer, but also employee behavior must meet high standards. The

total service concept is a combination of technical and human behavioral aspects, and the

latter are much more difficult to quantify, measure, and control.

Let’s consider the airline industry. A quantifiable goal is to transport people between two

cities in a desirable time. Achieving this is dependent on aircraft design that enables certain

speeds to be attained to cover the distancewithin the required time and on proper scheduling of

flights. Data on these factors are clearly quantifiable. However, customer satisfaction is often

influenced by factors that are not so easy to quantify. For instance, the manner in which

stewardesses and ticket agents treat customers is very important. Courteous and friendly, and

warm and caring are not so obviously quantified. Thus, the manner in which service is

performed is an important concern thatmight not be considered inmanufacturing industries.Of

course,we should realize that evenmanufacturing industries have todealwith service functions

(e.g., payroll and accounting, customer relations, product service, personnel, purchasing,

marketing). The importance of the service industry should not, therefore, be underestimated.

In this section we discuss quality characteristics unique to service industries.

Fundamental differences between manufacturing and service are noted. The customer is, of

course, the focal point of quality control and improvement, and customer feedback is

essential. We find service industries in all facets of our society. Functions performed by

service industries include education, banking, governmental services (such as defense,

municipal services, and welfare), health care, insurance, marketing, personal services (such

as hotels and motels), restaurants, traveling and tours, public utilities (including electricity,

gas, and telephoneservice), and transportation (airlines, railroads, andbuses).As shown in the

preceding example from the airline industry, service industries provide both a tangible

product and an intangible component that affects customer satisfaction.

Two parties are involved in providing a service. The one that assists or provides the service is

the vendor, or company, and the party receiving the service is the vendee, or customer. Certain

service functions are found in both themanufacturing and service sectors. In themanufacturing

sector, theseare staff functionsandarepreformedbystaffpersonnel, rather thanby linepersonnel.

Staff personnel provide expertise to the operatingdepartments and to customers to enable them to

get the most value out of a product. Customer services and warranties are examples of this. In

addition, clerical and administrative operations such as accounting, purchasing, payroll, and

personnel are service functions that play a supportive role in a manufacturing organization.

Research and development activities are also viewed as service functions, because their goal is to

devise better product or process designs that will facilitate line operations.

A unique service industry is that of health care. For a health care facility, there exists a

variety of customers whose needs are quite distinct from each other. Patients are the primary

customers, whose needs span a safe, effective, and efficient method of treatment (McGlynn

et al. 2003). Physicians, who perform services in a health care facility, are secondary

customers who desire the availability of an adequate supporting staff, which includes nurses

and laboratory technicians, as well as adequate facilities such as an examination room,

operating room, and supporting equipment. Unique to the health care industry is a set of

payers that includes federal and state governments, insurance companies, and health

maintenance organizations (HMOs) (Rosenthal et al. 2004). Payment standards are often

set by these entities. Employees of the health care facility are also customers who desire an
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adequate compensation and an enriching work environment. Finally, the community and

families and friends of patients are customers in the broader sense.

Web-based customer services are experiencing expanded coverage. Business organiza

tions maintain quality websites that address many of the frequently asked questions by

customers. Ease of use, aesthetic design, processing speed, and security are some of the

important attributes in this context. In health care, conceptual scales have been developed to

assess perceived quality of electronic (e) health services (Hadwich et al. 2010; Isaac et al.

2010).

Differences in the Manufacturing and Service Sectors

Basic differences in the manufacturing and service sectors are noted in Table 2-1. The

manufacturing sector makes products that are tangible, whereas services have an associated

intangible component: A caring attitude with a smile from servers leads to customer

satisfaction. In manufacturing, in periods when product demand exceeds supply, back orders

can eventually right the imbalance.However, services cannot usuallybebackordered; there is

an associated time constraint. If a service is not provided within the necessary time frame, it

cannot be used at a later time. An example of this is the empty seats in a mass transportation

system from 10:00 to 11:00 A.M. These empty seats cannot be saved for use during the 5:00 to

6:00 P.M. rush hour.

Another distinguishing feature concerns the relationship of the provider and customer. In

the health care industry, the doctor or nurse, the provider, interacts with the patient, the

customer, to provide service. Responses from the patient influence how a service is delivered.

In themanufacturing industries, the producer ormanufacturing company alone influences the

process throughwhichaproduct ismade.Thecustomer affects theproduct in the sense that the

product is designed to meet customer requirements, but once a satisfactory product has been

achieved, the customer does not influence the product quality during production. Manu

factured products can be resold; the same is not true of services.

Customers usually have a direct impact on creating formal product specifications in a

manufacturing environment. Quality characteristics that influence customer satisfaction are

identified and are incorporated into the product at the designphase. In some service industries,

TABLE 2-1 Differences in the Manufacturing and Service Sectors

Manufacturing Sector Service Sector

Product is tangible. Service consists of tangible and intangible

Back orders are possible.

Producer or company is the only party

involved in the making of the product.

Product can be resold.

components.

Services cannot be stored; if not used, they are lost.

Producer and consumer are both involved in delivery

of a service.

Services cannot be resold.

Customer usually provides formal

specifications for the product.

Customer acceptance of the product

is easily quantifiable.

Ownership of a product changes hands

at a specific point in time.

Formal specifications need not be provided

by the consumer. In fact, in monopolies involving

public utilities (e.g., electricity, gas, telephone),

federal and state laws dictate the requirements.

Customer satisfaction is difficult to quantify because

a behavioral component is involved associated

with the delivery of the service.

Rendering a service takes place over an interval

of time.
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however, the customer does not providedirect input on the quality characteristics for services.

Public utilities such as electricity, gas, and telephone are regulated by federal and state laws;

thus, the services they provide and the prices they charge are mandated by governing bodies

such as public service commissions. The customer’s involvement is indirect: that is, they elect

the public officials whomake the regulations and they go before governmental committees to

make their desires known, which may or may not influence the regulations.

The behavioral aspect associated with the delivery of services also differs for the

manufacturing and service sectors. Inmanufacturing companies, the degree towhich a product

is acceptedcanbequantified: say, in termsof theproportionofunacceptable product. In service

industries, the degree of customer satisfaction is not as easily quantified because of the human

factors involved with delivery of a service. The behavioral traits of both the provider and the

customer influence service delivery. Customer dissatisfaction can be the result of many

intangible factors. On the other hand, in amanufacturing company, if a product is not accepted

because a characteristic falls outside certain specifications, the reason for customer dissatis

faction can readily be found and remedial measures taken.

Service Quality Characteristics

In this subsection we consider features of quality characteristics in the service sector. The

quality characteristics are grouped into four categories (see Table 2-2). Although exceptions

to these groups exist, the categories generally summarize factors common to service functions

and industries.

TABLE 2-2 Service Quality Characteristics and Their Measures

Service Quality Characteristic Measures of Service Quality

Human factors and behavioral Number of customer complaints based on behavioral factors

characteristics (or lack thereof) of persons involved in the service process

Number of complimentary responses based on human traits

in delivery of service

Timeliness characteristics Waiting time in a bank prior to transaction

Time to process a transaction

Waiting time to see a physician

Time to check in at an airport

Waiting time before receiving baggage at an airport

Time to hear from an insurance company regarding a payment

Service nonconformity Number of errors per 1000 transactions in banks,

characteristics insurance companies, and payroll departments

Number of billing errors per 1000 accounts by utility companies

Proportion of income tax returns prepared by an agency

that have errors

Facility-related Number of complaints due to:

characteristics An uncomfortable bed in a hotel room

Unavailability of a swimming pool in a hotel

Insufficient legroom in an aircraft

Inadequate temperature control in a convention meeting room

Shabby appearance of a receptionist in a hotel or bank

Lack of certain indoor activities (such as table tennis) in

a recreation facility

Lack of adequate parking for visitors of patients in a hospital
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The quality of a service can be broken down into two categories: effectiveness and

efficiency.Effectiveness deals withmeeting the desirable service attributes that are expected

by the customer. For example, the décor and available facilities in a hospital room, the quality

and quantity of food served in a restaurant, and the types of checking and savings accounts

available in a bank are related to service effectiveness.Efficiency, on the other hand, concerns

the time required for the service to be rendered.

Human Factors and Behavioral Characteristics Service quality is influenced by the

attitude and behavior of the provider (Lefevre 1989; Normann 1991). Since providers and

customers are part of the product (the service), their behavior affects the quality of the service.

Human factors thus include intensity, eagerness to help, thoughtfulness, complacency,

courtesy, and so on. Some of these traits can be developed through adequate training; some

are inherent in the person. Proper screening of employees and appropriate job assignment are

ways to achieve desirable quality characteristics. A primary source of customer complaints is

discourteous behavior.

On the other hand, the attitude of the customer is largely beyond the control of the service

provider. For instance, a customer’smoodwhen purchasing a service can influence perceived

quality; the quality may be good but it is not perceived as such because the customer is angry

about something totally unrelated to the service or the provider. However, companies can

influence customers’ expectations through advertisement and reputation. Customers’mind-

sets are often a function of what they expect to receive. Thus, the company affects the

behavioral patterns of its customers bymolding their expectations. If a bank advertises that in

addition to providing its regular services it now provides financial management services,

customer expectations are raised. Customers will no longer be satisfied if questions related to

financial management are not answered adequately. On the other hand, if the bank does not

claim to provide financial management services, the customer will not expect such questions

to be answered and will thus not be disappointed. Unfortunately, measurement of attitudes

and behavioral characteristics is not as simple and well defined as for tangible criteria.

Timeliness Characteristics A service that is not used in a given span of time cannot

be stored for later use. A hospital with empty beds during certain days of a month cannot

save them for use in the following month. Thus, the timeliness with which a service is

performed is critical to customer satisfaction.How longdid the customer have towait before

being served in a restaurant?How long did the customer have towait in line to cash a check?

Characteristics related to timeliness are categorizedby the service phasewithwhich they are

associated. Categories might include the time to order the service, the waiting time before

the service is performed, the time to serve, and the post-service time. These characteristics

are much more amenable to measurement than are behavioral characteristics.

Service Nonconformity Characteristics Nonconformity characteristics deal with deviation

from target performance levels; a nonconformity is a deviation from the ideal level. Examples of

such characteristics include thenumber oferrors bybankemployees inprocessing100vouchers,

the number of errors by a data-entry operator per 1000 keystrokes, the number of billing errors

per 100 accounts by a utility company, the number of complaints per 100guests in a hotel, and so

on. The target performance level for these examples is zero nonconformities. The goal of the

service organization is to achieve the target level, thus meeting customer expectations, and then

to exceed it through quality improvement measures. Quality characteristics in this category are

well defined and are more readily measured than behavioral characteristics.
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Facility-Related Characteristics The physical characteristics of the facilities associated

with a service and its delivery can affect customer satisfaction. The décor of a restaurant, the

waiting area in a physician’s office, and the availability of such amenities as a swimming pool

or spa in a hotel are examples of quality characteristics of physical facilities that are involved

in providing a service. The appearances of a waiter or waitress, a bank teller, or an insurance

agent are attributes of employees performing a service. These characteristics are not as clearly

defined and measurable as service nonconformity characteristics. They are, however, more

quantifiable than behavioral characteristics.

Measuring Service Quality

In terms of ease of quantification andmeasurement, the categories identified in Table 2-2 can

be ranked in the following order: service nonconformity, timeliness, facility-related, and

human behavioral factors. Since the success of many service functions is determined

predominantly by the interaction between the provider and the customer, measurement and

evaluation of service quality are difficult because they are subjective. Defining the measure

ment unit itself is problematic.

People are not as predictable as equipment and facilities. The water temperature in a

swimming pool can be stabilized by an adequate heating and recycling system, but the

behavior of a check-in attendant is not always under the control of the company.Many factors

influence employee behavior: family life, unforeseen personal events, andmental outlook, to

name a few.Not only can these cause large performance variations but they are largely outside

the influence of the company, and they cannot be predicted.

To counteract these performance variations in human behavior, procedures that generate

representative statistics of performance can be devised. Randomly choosing samples of

performance from the time interval under consideration is one way to eliminate bias. In

situations where we know that behavioral patterns vary greatly based on the time period

(e.g., if error rates are high in thefirst and eighth hours of an 8-hourworkday),we can select a

sampling plan that adequately reflects this. In this example, a stratified sampling plan for

two strata is designed, one for the early morning and late afternoon periods and one for the

remainder of the day. If 20 samples are selected daily and a proportional sampling scheme is

used, 5 samples (which comprise 25% of the total daily samples) would be randomly

selected from the first stratum: that is, earlymorning (8 to 9 A.M.) and late afternoon (4 to 5 P.M.).

The assumption is that based on an 8-hour day the time interval covered by this stratum

is 2 hours, or 25% of the total daily hours worked. The remaining 15 samples will be

randomly selected from the second stratum, which represents the remaining time period.

Another difficulty is that significant differences exist between individuals. Thus, even

though the scheme of stratified sampling is used to select appropriate samples that reflect a

person’s performance, it is not obvious whether this same scheme can be applied collectively

to a group of persons. People vary in their peak performance periods: Some work best in the

early morning, and others work best at night. If such differences can be identified, the

sampling plan can be designed to reflect them.

Techniques for Evaluating Service Quality

As with manufacturing, achieving an appropriate design of a service system precedes any

activities on control and improvement. However, in the service sector, ergonomic, anthropo

metric, and behavioral characteristics are important, as are the physical characteristics of
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the service systems and timeliness with which the service is provided. Understanding

variability in service quality characteristics is important to the control and improvement of

service quality. Certain sources of variability are similar to those encountered in the

manufacturing sector, such as variation due to equipment, process, and environmental factors.

Additionally, because of the extensive involvement of people, person-to-person variation or

project-to-project variation can be significant in service functions. The motivation level of the

individual affects quality of service. Thus, the quality ofwork performed by auditorsmay vary

from one person to another. As in manufacturing, changing tasks may lead to performance

variability in service functions because some people are more adept at doing certain things. A

data-entry operator for a utility companymaymake fewer errorswhen reading awell-designed

short form that shows power consumption. The same operator when entering personnel data

from a more complex form is liable to make more errors.

Sampling techniques in service operations include the following:

1. 100% sampling. When the cost of external errors or nonconformities is high, this

sampling scheme is useful. The cost of sampling and inspection is high, but it is still

cost-effective compared to having a nonconformity found by the customer. For

example, errors in transactions that are worth more than $100,000 can cause customer

dissatisfaction to a degree that seriously affects profitability.

2. Convenience sampling. Here samples are chosen by the ease of drawing them and are

influenced by the subjectivity of the person performing the sampling. For example, one

person will choose the thinnest files in inspecting insurance claims, and another will

choose the ones on the top of the pile. In another example, if questionnaires are mailed

to a group of people known to be satisfied and responsive, the inferences drawn from

the study will certainly be distorted.

3. Judgment sampling. These samples are chosen based on expert opinion. This can also

create a bias. Caution should be exercised in drawing statistical inferences from these

samples even though summary measures can be computed. Let’s say that to review the

purchase order error rate, an expert recommends selecting vendors who have dealt with

the company for over two years. The expert feels that because the vendors are familiar

with the procedures involved in preparing purchase orders, the error rate may be low.

Thus, the recommendationof the expertmay be to drawa sample once aweek from these

categorized vendors. The bias may stem from not sampling from all vendors.

4. Probability sampling. This technique has a statistical basis and is preferable formost

situations. In random sampling, each item has an equal chance of being selected. This

can be accomplished using random number tables. Sampling of vouchers for auditing,

where 20 vouchers are to be selected from a population of 500, is one example. An

example of stratified random sampling, where large differences are expected between

groups in the population, could be tax-return audits of the Internal Revenue Service. If

the IRS first stratifies the returns based on the adjusted gross income and then chooses

tax returns as simple random samples from each group, all income categories will be

represented in the audit.

2-3 MODEL FOR SERVICE QUALITY

The special features of service functions and service industries help to define the role of

management. To see how this works, we use the service quality model shown in Figure 2-1.
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FIGURE 2-1 Model for service quality.

The key concept is this: Customer satisfaction is a function of the perceived quality of service,

which is a measure of how actual quality compares to expected quality (Normann 1991).

Internal and external factors affect customer perceptions of quality. External factors, which

are not directly under the control of a service organization (shown by the dashed box in

Figure 2-1, include the social values and lifestyles of customers andknowledge of the services

offered by the competitors. The image presented by the company also influences customer

perceptions. Companies use various techniques for monitoring customer perceptions; this

falls under the category of imagemanagement. Typical methods are annual company reports

and quarterly marketing sales reports. A customer who reads about a high sales volume will

perceive the company to be competent; that is, the companymust be doing something right to

have such a high sales volume.

Figure 2-2 shows external and internal factors that influence customer perceptions. Client

management is important for improving the service and for meeting the changing needs of

customers. Keeping abreast of customer needs through interviews, polls, and surveys and

making changes in the facilities and services provided to meet these needs will facilitate

retaining and expanding the customer base. Another important concept is creating a corporate
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FIGURE 2-2 Factors that influence customer perception.

culture that motivates employees. Motivated employees create favorable customer attitudes.

This is a synergistic cycle: Satisfied customers cause employees to be further motivated.

In service industries, image management is central to retaining and attracting new

customers. The corporate culture, the products and services delivered, and the market share

affect a company’s reputation significantly. The company must advertise only what it can

deliver. Building up expectations and failing to meet them create dissatisfied customers and

result in a decreased market share.

Creating a positive environment within the company often motivates employees and

influences service delivery. In keeping with the philosophies of quality assurance and

management, channels of open communication in a friendly atmosphere promote desirable

employee behavior. It is difficult for employees to maintain a degree of warmth with the

customer in service delivery if the same degree of congeniality does not exist between

employees and management.

Service delivery is also influenced by customer participation, and customer participation is

affected by customer expectations. A customerwho does not expect to receive a free gift when

buying a certain amount ofmerchandisewill behave differently than onewho does.Moreover,

an employee’s attitude may influence a customer’s attitude, which in turn may have an effect

on the employee’s motivation, thereby closing the loop and continuing the cycle. Physical

facilities and themanner inwhich they keep pace with the needs of the customer affect service

functions and the efficiency and effectiveness of service delivery. A hospital with the latest

technology in cancer diagnosis and treatment will attract patients who require such a service.

The service provided has two components: the core service and the peripheral services.

The benefits received are both tangible and intangible. For a transportation company

providing bus services between cities, the core service is the transport of customers between

cities. The peripheral services are the comfort and safety of the bus stations, rest room and

meal services, and transfer to and from main junctions in the city. Sometimes, peripheral
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services influence the customer to select one companyover its competitors. A careful analysis

of the entire range of services provided by the company is essential to maintaining and

increasing market share.

Service quality is a function of several factors: timeliness of the service, the manner in

which it is performed, the adequacy of the service (both core and peripheral services), and the

price of service. Some service companies use a broad-based systems concept and provide

several ancillary services. For example, an automobile dealer may also provide financing,

insurance, maintenance contracts, and gasoline. A commitment to the customer in the post-

sale period is helpful in retaining customers. Evidence of good service spreads through word

of mouth. Customers are often a company’s most important advertisers. As customer

expectations change, so must the delivery of service.

2-4 W. EDWARDS DEMING’S PHILOSOPHY

Deming’s philosophy emphasizes the role of management. Of the problems that industry

faces,Deming said that over 85%canbe solvedonlybymanagement.These involve changing

the system of operation and are not influenced by the workers. In Deming’s world, workers’

responsibility lies in communicating to management the information they possess regarding

the system, for bothmustwork in harmony.Deming’s idealmanagement style is holistic: The

organization is viewed as an integrated entity. The idea is to plan for the long run andprovide a

course of action for the short run. Too many U.S. companies in the past (and in the present)

have focused on short-term gains.

Deming believed in the adoption of a total quality program and emphasized the

never-ending nature of quality control in the quality improvement process. Such a program

achieves the desired goals of improved quality, customer satisfaction, higher productivity, and

lower total costs in the long run. He demonstrated that an improvement in quality inevitably

leads to increased capacity and greater productivity. As experience demonstrates, these

desirable changes occur over an extended period of time. Thus, Deming’s approach is not a

“quickfix” but rather a plan of action to achieve long-termgoals.He stressed the need forfirms

to develop a corporate culture where short-term goals such as quarterly profits are abandoned.

Deming’s approach demands nothing less than a cultural transformation—it must become

awayof life. Theprinciplesmaybe adapted and refinedbasedon the experienceof a particular

organization, but they still call for total commitment.At the heart of this philosophy is the need

formanagement andworkers to speak a common language.This is the languageof statistics—

statistical process control. The real benefits of quality programs will accrue only when

everyone involved understands their statistical underpinning. Therefore, Deming’s funda

mental ideas require an understanding and use of statistical tools and a change inmanagement

attitude. His 14 points, which we will look at shortly, identify a framework for action. This

framework must be installed for the quality program to be successful. Management must

commit to these points in thought, word, and deed if the program is to work.

Deming advocated certain key components that are essential for the journey toward

continuous improvement. The following four components comprise the basis for what

Deming called the system of profound knowledge:

1. Knowledge of the system and the theory of optimization. Management needs to

understand that optimization of the total system is the objective, not necessarily

the optimization of individual subsystems. In fact, optimizing subsystems can lead to a
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suboptimal total system. The total system consists of all constituents: customers,

employees, suppliers, shareholders, the community, and the environment. A company’s

long-term objective is to create a win–win situation for all its constituents.

2. Knowledge of the theory of variation. All processes exhibit variability, the causes of

which are of two types: special causes and common causes. Special causes of variation

are external to the system. It is the responsibility of operating personnel and engineering

to eliminate such causes. Common causes, on the other hand, are due to the inherent

design and structure of the system. They define the system. It is the responsibility of

management to reduce common causes. A system that exists in an environment of

commoncauses only is said to be stable and in control. Once a system is considered to be

in control, its capability can be assessed and predictions on its output made.

3. Exposure to the theoryof knowledge. Information, by itself, is not knowledge.Knowledge

is evidenced by the ability to make predictions. Such predictions are based on an

underlying theory. The underlying theory is supported or invalidated when the outcome

observed is compared to the value predicted. Thus, experience and intuition are not of

value to management unless they can be interpreted and explained in the context of a

theory. This is one reason why Deming stressed a data analysis–oriented approach to

problem solving where data are collected to ascertain results. The results then suggest

what remedial actions should be taken.

4. Knowledge of psychology. Managing people well requires a knowledge of psychology

because it helps us understand the behavior and interactions of people and the interactions

of people with their work environment. Also required is a knowledge of what motivates

people. People are motivated by a combination of intrinsic and extrinsic factors. Job

satisfactionand themotivation to excel are intrinsic.Reward and recognition are extrinsic.

Management needs to create the right mix of these factors to motivate employees.

Extended Process

The extended process envisioned by Deming expands the traditional organizational

boundaries to include suppliers, customers, investors, employees, the community, and

the environment. Figure 2-3 shows an extended process. An organization consists of

people, machines, materials, methods, and money. The extended process adds a key

entity—the customer.An organization is in business to satisfy the consumer. This should be

its primary goal. Goals such as providing the investors with an acceptable rate of return are

secondary. Achieving the primary goal—customer satisfaction—automatically causes

secondary goals to be realized. This primary goal is especially relevant to a service

organization; here the customer ismore obviously central to the success of the organization.

Aprime example is the health care industry,where, in addition to the primary customers, the

patients, are physicians, nurses, employees, the federal government, health-maintenance

organizations, and insurance companies.

The community in which an organization operates is also part of this extended process.

This community includes consumers, employees, and anyone else who is influenced by the

operations of the company, directly or indirectly. An accepting and supportive community

makes it easier for the company to achieve a total quality program. Community support

ensures that there is one less obstacle in the resistance to the changes proposed by Deming.

Vendors are another component of the extended process. Because the quality of raw

materials, parts, and components influences the quality of the product, effortsmust bemade to
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FIGURE 2-3 Extended process in Deming’s philosophy.

ensure that vendors supply quality products. In Deming’s approach, a long-term relationship

between the vendor and the organization is encouraged, to their mutual benefit.

Deming’s 14 Points for Management

The focus of Deming’s philosophy (Deming, 1982,1986) is management. Since a major

proportion of problems can be solved by management, Deming noted that management

cannot “pass the buck.”Only aminority of problems can be attributed to suppliers orworkers,

so in Deming’s view, what must change is the fundamental style of management and the

corporate culture (Fellers 1992; Gitlow and Gitlow 1987).

In Deming’s ideal organization, workers, management, vendors, and investors are a team.

However, without management commitment, the adoption and implementation of a total

quality system will not succeed. It is management that creates the culture of workers’

“ownership” and their investment in the improvement process. Managers create the corpo

rate culture that enables workers to feel comfortable enough to recommend changes.

Management develops long-term relationships with vendors. And, finally, it is managers

who convince investors of the long-term benefits of a quality improvement program. A

corporate culture of trust can only be accomplished with the blessings of management.

Deming’s Point 1 Createandpublish to all employees a statement of theaimsandpurposes

of the company or other organization. The management must demonstrate constantly their

commitment to this statement.
*

�Deming’s 14 points (January 1990 revision) are reprinted from Out of the Crisis, by W. Edwards Deming, published by

MIT Center for Advanced Engineering Study, Cambridge, MA. Copyright 1986 by The W. Edwards Deming Institute.
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This principle stresses the need to create the long-term strategic plans that will steer

a company in the right direction. Mission statements should be developed and expre

ssed clearly so that not only everyone in the organization understands them but

also vendors, investors, and the community at large. Mission statements address such issues

as the continued improvement of quality and productivity, competitive position, stable

employment, and reasonable return for the investors. It is not the intent of such statements to

spell out the finances required; however, the means to achieve the goals should exist. To

develop strategic plans, management must encourage input from all levels. If the process

through which the plan is developed is set up properly, companywide agreement with, and

commitment to, the strategic plan will be a natural outcome.

Product Improvement Cycle Committing to a specific rate of return on investment should

not be a strategic goal. In this philosophy, the customers—not the investors—are the driving

force in the creation of strategic goals. The old approach of designing, producing, and

marketing a product to customers without determining their needs is no longer valid. Instead,

the new approach is a four-step cycle that is customer-driven. Figure 2-4 shows this cycle,

which includes designing a customer needs-based product, making and testing it, selling it,

determining its in-service performance with market research, and using this information to

start the cycle again. This approach integrates the phases of quality of design, conformance,

and performance (discussed in Chapter 1).

Determining customer needs in clearly understood terms is central to improving product

quality. For instance, noting that a customer prefers a better refrigerator that is less noisy and

can produce ice quickly is not sufficient. What noise level (stated in decibels) is acceptable?

How fast (in minutes) does the customer expect the ice to be produced? Only when specific

attributes are quantified can the product be made better.

Constancy andConsistency of Purpose Foresight is critical.Managementmustmaintain a

constancy of purpose. This implies setting a course (e.g., all departments within the

FIGURE 2-4 Product improvement cycle.
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organization will pursue a common objective of quality improvement) and keeping to it.

Too often, a focus on short-term results such asweekly production reports or quarterly profits

deters management from concentrating on the overall direction of the company. Actions

that create a profit now may have a negative impact on profits 10 years from now.

Management must be innovative. They must allocate resources for long-term planning,

including consumer research andemployee training and education, that addressnot onlywork

performance but also the new philosophies. They must ensure that there are resources

available to cover thenewcosts of determiningqualityof performance and for newmethodsof

production or changes in equipment. The priorities are research and education and a constant

improvement in the product or service.

In addition to constancy of purpose, there should be a consistency of purpose. Thismeans

that the company should not digress from long-term objectives. For example, are all units

of the company working toward the company goal to improve quality synergistically? Or are

theyworking for a departmental subgoal,whichmay be to increase production?Management

should also accept the fact that variability exists and will continue to exist in any operation.

What theymust try todo is determineways inwhich this variation canbe reduced.And this is a

never-ending process. As Deming put it, “Doing your best is not good enough. You have to

know what to do. Then do your best.”

Deming’s Point 2 Learn the new philosophy, top management and everybody.

The new attitudemust be adopted by everyone. Quality consciousnessmust be everything

to everyone. Previously acceptable levels of defects should be abandoned; the idea that

improvement is a never-ending process must be embraced wholeheartedly.

Human beings are resistant to change. Managers who have been successful under the old

system where certain levels of defects were acceptable may find it difficult to accept the

new philosophy. Overcoming this resistance is a formidable task, and it is one that only

management can accomplish. The idea is not only to reduce defects continually but also to

address the needs of the customer.

Declaring any level of defect to be acceptable promotes the belief that defects are

acceptable. Say a contract specifies that a defective rate of 4 units in 1000 is acceptable;

this ensures that 0.4%will be defective. This philosophymust be abandoned and a no-defects

philosophy adopted in its place.

Deming’s Point 3 Understand the purpose of inspection, for improvement of processes

and reduction of cost.

Quality has to bedesigned into the product; it cannot be inspected into it. Creating a “design

for manufacturability” is imperative because producing the desired level of quality must be

feasible. Inspectionmerely separates the acceptable from the unacceptable. It does not address

therootcauseof theproblem: that is,what iscausingtheproductionofnonconformitiesandhow

to eliminate them. The emphasis is on defect prevention, not on defect detection.

The production of unacceptable items does not come without cost. Certain items may

be reworked, but others will be scrapped. Both are expensive. The product’s unit price

increases, and the organization’s competitiveness decreases. Market share and available

capacity are inevitably affected.

Drawbacks of Mass Inspection Mass inspection does not prevent defects. In fact, depend

ing on mass inspection to ensure quality guarantees that defects will continue. Even 100%

inspection will not eliminate all the defectives if more than one person is responsible for

inspection. When several points of inspection are involved, it is only human to assume that
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others will find what you have missed. This is inherent in the mass inspection system.

Inspector fatigue is another factor in 100% inspection. Thus, defects can only be prevented by

changing the process.

Deming’s Recommendation If inspection must be performed, Deming advocated a plan

that minimizes the total cost of incoming materials and thus the final product. His plan is an

inspect-all-or-none rule. Its basis is statistical evidence of quality, and it is applied to a stable

process. This is the kp rule (see Chapter 10). In situations where inspection is automated and

does not require human intervention, 100% inspection may be used to sort nonconforming

items for rework or disposition. Analysis of defects may indicate the root cause in the

process—which leads to identification of remedial actions.

Deming’s Point 4 End the practice of awarding business on the basis of price tag alone.

Many companies, as well as state and federal governments, award contracts to the lowest

bidder as long as they satisfy certain specifications. This practice should cease. Companies

should also review the bidders’ approaches to quality control. What quality assurance

procedures do the bidders use? What methods do they use to improve quality? What is the

attitude of management toward quality? Answers to these questions should be used, along

with price, to select a vendor, because low bids do not always guarantee quality.

Unless the quality aspect is considered, the effective price per unit that a company pays its

vendors may be understated and, in some cases, unknown. Knowing the fraction of

nonconforming products and the stability of the process provides better estimates of the

price per unit.

Suppose that three vendors, A, B, and C, submit bids of $15, $16, and $17 per unit,

respectively. If we award the contract on the basis of price alone, vendor A will get the job.

Now let’s consider the existing quality levels of the vendors.

VendorBhas just started using statistical process control techniques andhas a rather stable

defect rate of 8%. Vendor B is constantly working on methods of process improvement. The

effective price we would pay vendor B is $16/(1–0.08)= $17.39 per unit (assuming that

defectives cannot be returned for credit).

Vendor C has been using total quality management for some time and has a defect rate of

2%. Therefore, the effective price we would pay vendor C is $17/(1–0.02)= $17.35 per unit.

Vendor A has no formal documentation on the stability of its process. It does not use

statistical procedures to determinewhenaprocess is out of control. Theoutgoingproduct goes

through sampling inspection to determine which ones should be shipped to the company. In

this case, vendor A has no information onwhether the process is stable, what its capability is,

or how to improve the process. The effective price wewould pay vendor A for the acceptable

items is unknown. Thus, using price as the only basis for selection controls neither quality nor

cost.

A flagrant example where the lowest-bidder approach works to the detriment of quality

involves urban municipal transit authorities. These agencies are forced to select the lowest

bidder to comply with the policy set by the Urban Transit Authority of the United States. The

poor state of affairs caused by complying with this policy is visible in many areas around the

country.

Principles of Vendor Selection Management must change the process through which

vendor selection is conducted. The gap between vendor and buyermust be closed; theymust

work as a team to choose methods and materials that improve customer satisfaction.
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In selecting a vendor, the total cost (which includes the purchase cost plus the cost to put the

material into production) should be taken into account. A company adhering to Deming’s

philosophy buys not only a vendor’s products but also its process. Purchasing agents play an

important role in the extended process. Knowing whether a product satisfies certain specifica

tions isnot enough.Theymustunderstand thepreciseproblemsencounteredwith thepurchased

material as it moves through the extended process of manufacture, assembly, and eventual

shipment to the consumer. The buyers must be familiar with statistical methods so as to assess

the quality of the vendor’s plant. They must be able to determine the degree of customer

satisfactionwith theproducts, tellwhat features arenot liked, and conveyall related information

to the vendor. Such information enables the vendor to improve its product.

Another important principle involves reducing the number of suppliers. The goal is tomove

toward single-supplier items. Companies in the United States have had multiple vendors for

several reasons, including a fear of price increases, a vendor’s inability to meet projected

increases in demand, and a vendor’s lack of timeliness in meeting delivery schedules.

There are several disadvantages to this policy. First, it promotes a feeling of mistrust

between buyer and vendor and thereby creates a short-term, price-dependent relationship

between them. Furthermore, vendors have no motivation to change their process to meet the

buyer’s specifications. Price, not quality, is the driving factor because another vendor may be

selected if their price is lower. A long-term commitment cannot exist in such a situation.

Other disadvantages involve cost. Increased paperwork leads to increased order preparation

costs. Travel costs of the vendor to purchaser sites increase. Volume discounts do not kick in

because order sizes are smaller when there is more than one vendor. Setup costs go up because

thebuyer’sprocesschangeswhen the incomingsupplierchanges.Machine settingsmayhave to

be adjusted along with tooling. In continuous process industries, such as chemical companies

producing sulfuric acid, differences in raw materials may require changes in the composition

mix.Multiple setupperiodsmean idleproductionand therefore reducedcapacity.Also, training

the people who work with vendors costs more with multiple vendors.

Onemajor disadvantage is the increased variability in incoming quality, even if individual

vendors’ processes are stable. Figure 2-5 explains this concept. Suppose that we purchase

from three vendors, A, B, and C, each quite stable and having a small dispersion as far as the

quality characteristic of interest is concerned (say, density of a red color pigment in producing

a dye). However, the combined incoming product of three good suppliers may turn out to be

mediocre. This happens because of the inter-vendor variability.

FIGURE 2-5 Mediocre incoming quality due to multiple vendors.
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Manybenefits are gainedbymoving to single-vendor items. Thedisadvantagesmentioned

in the preceding paragraphs can be eliminated when a long-term relationship with a quality-

conscious vendor is developed. A long-term vendor can afford to change its process to meet

the needs of the buyer because the vendor does not fear losing the contract. Such a relationship

also permits open contract negotiations, which can also reduce costs.

Deming’s Point 5 Improve constantly and forever the system of production and service.

In Deming’s philosophy, companies move from defect detection to defect prevention

and continue with process improvement to meet and exceed customer requirements on a

never-ending basis. Defect prevention and process improvement are carried out by the use of

statistical methods. Statistical training is therefore a necessity for everyone and should be

implemented on a gradual basis.

Deming Cycle The continuous cycle of process improvement is based on a scientific

method originally called the Shewhart cycle after its originator, Walter A. Shewhart. He also

developed control charts. In the 1950s, the Japanese renamed it theDeming cycle. It consists

of four basic stages: plan, do, check, and act (the PDCAcycle). TheDeming cycle is shown in

Figure 2-6.

Plan Stage In this stage (depicted in Figure 2-7), opportunities for improvement are

recognized and defined operationally. A framework is developed that addresses the effect

of controllable process variables on process performance. Since customer satisfaction is

the focal point, the degree of difference between customer needs satisfaction (as obtained

through market survey and consumer research) and process performance (obtained as

feedback information) is analyzed.Thegoal is to reduce this difference. Possible relationships

between the variables in the process and their effect on outcome are hypothesized.

Suppose a company that makes paint finds that one major concern for customers is drying

time; the preferred time is 1minute. Feedback from theprocess says that the actual drying time

FIGURE 2-6 Deming cycle.
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FIGURE 2-7 Plan stage of Deming's cycle.

is 1.5 minutes. Hence, the opportunity for improvement, in operational terms, is to reduce the

drying time by 0.5 minute.

The next task is to determine how to reduce drying time by 0.5 minute. The paint

components, process parameter settings, and interaction between them are examined to

determine their precise effect on drying time. Quality of design and quality of conformance

studies are undertaken. Company chemists hypothesize that reducing a certain ingredient by

5% in the initial mixing process will reduce the drying time by 0.5 minute. This hypothesis is

then investigated in the following stages.

Do Stage The theory and course of action developed in the plan stage are put into action

in the do stage. Trial runs are conducted in a laboratory or prototype setting. Feedback is

obtained from the customer and from the process.At this stage, our paint companywill test the

proposed plan on a small scale. It reduces the ingredient by 5% and obtains the product.

Check Stage Now the results are analyzed. Is the difference between customer needs and

process performance reduced by the proposed action? Are there potential drawbacks relating

to other quality characteristics that are important to the customer? Statistical methods will

be used to find these answers. As our paint company attempts to reduce drying time by

0.5 minute, samples are taken from the modified output. The mean drying time and the

variability associated with it are determined; the analysis yields a mean drying time of

1.3 minutes with a standard deviation of 0.2 minute. Prior to the modification, the mean

was 1.5 minutes with a standard deviation of 0.3 minute. The results thus show a positive

improvement in the product.

Act Stage In the act stage, a decision is made regarding implementation. If the results of the

analysis conducted in the check stage are positive, the plan proposed is adopted.Customer and

process feedbackwill again be obtained after full-scale implementation. Such informationwill

provide a truemeasure of theplan’s success. If the results of the check stage shownosignificant

improvement, alternative plans must be developed, and the cycle continues.

In our paint example, the proposed change in paint mix reduced the drying time, and the

decision to change themix is then implemented on a full scale. Samples produced by this new
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process are now taken. Is the mean drying time still 1.3 minutes with a standard deviation of

0.2 minute, as in the check stage? Or has full-scale implementation caused these statistics to

change? If so,what are they?What can be done to further reduce themean drying time and the

standard deviation of the drying time?

Customers’ needs are not constant. They change with time, competition, societal outlook,

and other factors. In the paint example, do customers still desire a drying time of 1minute? Do

they have other needs higher in priority than the drying time? Therefore, the proposed plan is

checked continuously to seewhether it is keeping abreast of these needs.Doing somay require

further changes; that is, the cycle continues, beginning once again with the plan stage.

Variability Reduction and Loss Function Deming’s philosophy calls for abandoning the

idea that everything is fine if specifications are met. The idea behind this outmoded attitude is

that there is no loss associated with producing items that are off-target but within specifica

tions. Of course, just the opposite is true, which is the reason for striving for continual process

improvement. Reducing process variability is an ongoing objective that minimizes loss.

Following the course set byDeming, in 1960,Genichi Taguchi of Japan formalized certain

loss functions. He based his approach on the belief that economic loss accrues with any

deviation from the target value.Achieving the target valuewins high praise from the customer

and yields no loss. Small deviations yield small losses. However, with larger deviations from

the target, the losses increase in a nonlinear (say, a quadratic) relationship.

Figure 2-8 demonstrates the new loss function along with the old viewpoint. The new loss

function ties into the idea that companies must strive for continual variability reduction; only

then will losses be reduced. Any deviation from the customer target will not yield the fullest

possible customer satisfaction. Losses may arise because of such problems as lost oppor

tunities, warranty costs, customer complaint costs, and other tangible and intangible costs.

There is even a loss associated with customers not praising the product even though they are

not unhappy with it. It is important to get people to praise the product or service because this

affects public perception of the product and hence of the company.

FIGURE 2-8 Comparison of old and new measures of the loss function.



66 SOME PHILOSOPHIES AND THEIR IMPACT ON QUALITY

Deming’s Point 6 Institute training.

Employee training is integral to proper individual performance in the extended process

setting. If employees function in accordance with the goals of the company, an improvement

in quality and productivity results. This in turn reduces costs and increases profits.

Employees are the fundamental asset of every company. When employees are hired, they

should be carefully instructed in the company’s goals in clear-cut operational terms. Merely

stating that the company supports a total quality program is not sufficient. Instead, employees

must knowandbuy into the company’s long-termgoals.Understanding these goals is essential

to performing adequately. Employees’ individual goals may not always be compatible with

those of the company. For example, an employee’s desire to produce 50 items per daymay not

be consistent with the company’s goal of defect-free production. Instruction enables the

employee to understand what his or her responsibilities are for meeting customers’ needs.

Training must be presented in unambiguous operational terms. Employees must know

exactly what is to be done and its importance in the entire process. Even the employee who

performs only one operation of the many that a product goes through must understand the

needs of the customer and the role of the supplier in the extended process. Statistical concepts

and techniques play a central role in the Deming program. Consequently, employees must be

trained in several statistical tools; these include flow diagrams, histograms, control charts,

cause-and-effect diagrams, Pareto diagrams, scatter diagrams, anddesignof experiments.We

examine these tools in detail later.

Deming’s Point 7 Teach and institute leadership.

Supervisors serve as vital links between management and workers and have the difficult

job of maintaining communication channels. Thus, they must understand both the problems

of workers and top management’s goals. Communicating management’s commitment to

quality improvement to the workers is a key function of supervisors. To be effective leaders,

the supervisorsmust not thinkpunitivelybutmust think in termsofhelpingworkersdoabetter

job. Shifting to this positive attitude creates an atmosphere of self-respect and pride for all

concerned.

Supervisors need to be trained in statistical methods; they are positioned to provide crucial

leadership and instruction in these areas. By creating a supportive atmosphere, employee

morale is improved and the achievement of the overall goal of quality improvement is

facilitated. Supervisors are in the best position to identify common causes inherent in the

system, causes forwhich theworkers should not be blamed. It ismanagement’s responsibility

tominimize the effects of commoncauses. Special causes, such aspoor quality of an incoming

raw material, improper tooling, and poor operational definitions, should be eliminated first.

Identification of these special causes can be accomplished through the use of control charts,

which are discussed in later chapters. Supervisors often end up managing things (e.g.,

equipment) and not people. Such an approach overlooks the fundamental asset of an

organization—people.

Deming’s Point 8 Drive out fear. Create trust. Create a climate for innovation.

Functioning in an environment of fear is counterproductive, because employee actions are

dictated by behavior patterns that will please supervisors rather than meet the long-term goals

of the organization. The economic loss associated with fear in organizations is immense.

Employees are hesitant to ask questions about their job, the methods involved in production,

the process conditions and influence of process parameters, the operational definition of what

is acceptable, and other such important issues. The wrong signal is givenwhen a supervisor or

manager gives the impression that asking these questions is a waste of time.
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Afear-filledorganizationiswasteful.Consideranemployeewhoproducesaquotaof50parts

per day—without regard to whether they are all acceptable—just to satisfy the immediate

supervisor.Manyof these partswill have to be scrapped, leading towasted resources and a less

thanoptimaluseofcapacity.Fearcancausephysicalorphysiologicaldisorders,andpoormorale

and productivity can only follow. A lack of job security is one of the main causes of fear.

Creating an environment of trust is a key task of management. Only when this trust

embraces the entire extended process—when workers, vendors, investors, and the commu

nity are included—can an organization strive for true innovation. As management starts to

implement the 14 points, removing or reducing fear is one of the first tasks to tackle, because

an environment of fear starts at the top. The philosophy of managing by fear is totally

unacceptable; it destroys trust, and it fails to removebarriers that exist betweendifferent levels

of the organization.

Deming’s Point 9 Optimize toward the aims and purposes of the company the efforts of

teams, groups, staff areas.

Organizational barriers (Figure 2-9) impede the flow of information. Internal barriers

within organizations include barriers between organizational levels (e.g., between the

supervisor and workers) and between departments (perhaps between engineering and

production, or between product design and marketing). The presence of such barriers

impedes theflowof information, prevents each entity in the extendedprocess fromperceiving

organizational goals, and fosters the pursuit of individual or departmental goals that are not

necessarily consistent with the organizational goals.

FIGURE 2-9 Typical locations of organizational barriers (dashed lines).
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External barriers include those between the vendors and the company, the company and

the customer, the company and the community, and the company and its investors. The very

survival of the company may be in question if it does not incorporate the sentiments of the

community inwhich it exists. The relationships of the company to its customers, the vendors,

and community must be harmonious.

Poor communication is often a culprit in barrier creation. Perhaps top management fails

to model open and effective communication. A fear-ridden atmosphere builds barriers.

Another reason that barriers exist is the lack of cross-functional teams. Interdisciplinary teams

promote communication between departments and functional areas. They also result in

innovative solutions to problems. Employees must feel that they are part of the same team

trying to achieve the overall mission of the company.

Breaking down barriers takes time; it requires changing attitudes. However, they can and

do change when everyone involved is convinced of the advantages of doing so and of the

importance of a team effort in achieving change. At the Ford Motor Company, for instance,

this concept is found at every level of their design approval process. This process incorporates

input from all related units, such as design, sales and marketing, advance product planning,

vehicle engineering, body and assembly purchasing, body and assembly manufacturing,

product planning, and others. Management emphasizes open lines of communication at all

levels and among different departments. The reward system used to facilitate this process is

based on teamwork rather than on an individual person’s production.

Deming’s Point 10 Eliminate exhortations for the workforce.

Numerical goals such as a10%improvement inproductivity set arbitrarily bymanagement

have a demoralizing effect. Rather than serving tomotivate, such standards have the opposite

effect on morale and productivity.

Consider, for example, an insurance company processing claims. The company tracks

the average time to process a claim (in days) on a weekly basis, a plot of which is shown in

Figure 2-10. The figure shows that this average hovers around 6 days. Suppose that

management now sets a goal of 4 days for claims processing time. What are the implications

of this? First, what is the rationale behind the goal of 4 days for claims processing time.

Second, hasmanagement specifiedways to achieve the goal? If the answers to these questions

are unsatisfactory, employees can only experience frustration when this goal is presented.

FIGURE 2-10 Arbitrarily established numerical goals.
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If the process is stable, the employees have no means of achieving the goal unless

management changes the process or the product. Management has to come upwith a feasible

course of action so that the desiredgoal canbe achieved. Failing to do sowill lowermorale and

productivity. Hence, goals should be set by management in a participative style, and

procedures for accomplishment should be given.

Deming’s Point 11 (a) Eliminate numerical quotas for production. Instead, learn and

institute methods for improvement. (b) Eliminate M.B.O. [management by objectives].

Instead, learn the capabilities of processes, and how to improve them.

Work standards are typically established by someone other than those who perform the

particular job in question. They are based on quantity without regard to quality. According to

Deming, setting such work standards guarantees inefficiency and increases costs. The

numerical quota defined by a work standard may derail implementing the Deming improve

ment cycle because people naturally strive to meet the quota rather than to produce acceptable

goods. As such, numerical quotas actually promote the production of nonconforming items.

Another drawback of work standards is that they give no information about the procedure

that might be used to meet the quota. Is the numerical value a feasible one? Usually, when

determining work standards, an allowance is made for the production of nonconforming

items, but this often simply ensures that a certain proportion of defectives will be produced.

The company thusmoves farther from the desirable goal of continuous improvement. Quotas

provide no game plan for implementing a quality system.

A third drawback of the quota system is that it fails to distinguish between special causes

and common causes when improvements in the process are sought. Consequently, workers

may be penalized for not meeting the quota when it is really not their fault. As discussed

previously, common causes can be eliminated only by management. Thus, improvements in

process output cannot occur unless a conscientious effort ismadebymanagement. If thequota

is set too high, very few workers will meet the objectives. This will lead to the production of

more defective units by workers, because they will try to meet the numerical goal without

regard for quality. Furthermore, workers will experience a loss of pride in their work, and

worker morale and motivation will drop significantly.

Work standards are typically established through union negotiation and have nothing to do

with the capability of the process. Changes in process capability are not pursued, so the

standards do not reflect the potential of the current system. Workers who surpass a standard

that has been set too high may be producing several defectives, and they may know it. They

realize that they are being rewarded for producing nonconforming items—which is totally

against Deming’s philosophy.On the other hand, if quotas are set too low, productivitywill be

reduced.Aworkermaymeet the quotawith ease, but once the quota is achieved, he or shemay

have nomotivation to exceed it; if management finds out that several people’s outputmeets or

exceeds the quota, the quota will probably be increased. This imposes an additional burden on

the employee to meet the new quota, without the aid of improved methods or procedures.

Thework standard system is nevermore than a short-term solution, if it is that.On the other

hand, using control charts to analyze and monitor processes over time offers proper focus on

long-term goals. Statistical methods are preferable over arbitrary work standards, because

they help an organization stay competitive.

Deming’s Point 12 Remove barriers that rob people of pride of workmanship.

A total quality system can exist only when all employees synergistically produce output

that conforms to the goals of the company. Quality is achieved in all components of the
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extended process when the employees are satisfied andmotivated, when they understand their

role in the context of the organization’s goals, and when they take pride in their work. It is

management’s duty to eliminate barriers that prevent these conditions fromoccurring.A direct

effect of pride in workmanship is increased motivation and a greater ability for employees to

see themselves as part of the same team—a team that makes good things happen.

Factors That Cause a Loss of Pride Several factors diminish worker pride. First, manage

ment may not treat employees with dignity. Perhaps they are insensitive to workers’ problems

(personal, work, or community). Happy employees are productive, and vice versa. Happy

employees don’t need continuous monitoring to determine whether their output is acceptable.

Second, management may not be communicating the company’s mission to all levels.

How can employees help achieve the company’s mission if they do not understand what the

mission is?

Third, management may assign blame to employees for failing to meet company goals

when the real fault lies with management. If problems in product output are caused by the

system (such as poor-quality raw materials, inadequate methods, or inappropriate equip

ment), employees are not at fault and should not be penalized (even though the best employee

might be able to produce a quality product under these circumstances). Assigning blame

demoralizes employees and affects quality. As Deming noted, the problem is usually the

system, not the people.

Focusing on short-term goals compounds these problems. Consider daily production

reports. Different departments dutifully generate pertinent data, but the focus is wrong and

they know it: Top management is “micromanaging” and not attending to long-term goals.

Constant pressure to increase quantity on a daily basis does not promote the notion of quality.

How many times have we heard of a department manager having to explain why production

dropped today by, say, 50 units, compared to yesterday? Such a drop may not even be

statistically significant. Inferences should be based on sound statistical principles.

Performance Classification Systems Inadequate performance evaluation systems rob

employees of their pride in workmanship. Many industries categorize their employees as

excellent, good, average, fair, or unacceptable, and they base pay raises on these catego

rizations. These systems fail because there are often no clear-cut differences between

categories, which leads inevitably to inconsistencies in performance evaluation. A

person may be identified as “good” by one manager and “average” by another. That is

not acceptable.

A major drawback is that management does not have a statistical basis for saying that

there are significant differences between the output of someone in the “good” category

and someone in the “average” category. For instance, if a difference in output between

two workers were statistically insignificant (i.e., due to chance), it would be unfair to

place the two workers in different categories. Figure 2-11 shows such a classification

system composed of five categories. The categories numbered 1–5 (unacceptable through

excellent) have variabilities that are not due to a fundamental difference in the output of

the individuals. In fact, the employees may not even have a chance to improve their output

because of system deficiencies. Thus, two employees may be rated by their supervisors as

3 (average) and 4 (good), respectively, with the employee rated as 4 considered superior

in performance to the other. However, both of these employees may be part of the same

distribution, implying that there is no statistically significant difference between them.

With this particular system, whatever aggregate measure of evaluation is being used to
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FIGURE 2-11 Improper classification system where categories are part of the same system.

lump employees into categories, there are no statistically significant differences between

the values for categories 1, 2, 3, 4, or 5. The only two groups that may be considered part

of another system, whose output therefore varies significantly from those in categories

1–5, are categories 0 and 6. Those placed in group 0 may be classified as performing

poorly (so low that they are considered part of a different system). Similarly, those placed

in group 6 may be classified as performing exceptionally well.

Note that the discussion above is based on the assumption that the numerical measure of

performance being used to categorize individuals into groups is normally distributed as in

Figure 2-11. Only those significant deviations from the mean (say, three or more standard

deviations on either side) may be considered extraordinary, that is, not belonging to the same

system that produces ratings of 1–5. Under these circumstances, category 0 (whose cutoff

point is three standard deviations below themean) and category 6 (whose cutoff point is three

standard deviations above the mean) would be considered different from categories 1–5

because they are probably from a different distribution.

Thus, statistically speaking, the only categories should be the three groups corresponding

to the original categories 0, 1–5, and 6. In Deming’s approach, teamwork is considered

extremely important. Consideration should be given to this point when conducting perfor

mance appraisal. The procedure should be designed so that promoting teamwork is a

necessary criterion for placing someone in the highest category. Such team members should

be rewarded through merit raises. For those placed in categories 1–5, monies set aside for

investment in the system should be distributed evenly.

Deming’s Point 13 Encourage education and self-improvement for everyone.

Deming’s philosophy is based on continuous, long-term process improvement. To meet

this goal, the organization’s most important resource, its people, have to be motivated and
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adequately trained. This is the only way that the company can survive in today’s highly

competitive global business environment.Managementmust commit resources for education

and retraining. This represents a sizable investment in both time and money. However, an

educatedworkforce, with a focus on future needs, can safeguard improvements in quality and

productivity and help a company maintain a competitive position.

Point 6, discussed previously, deals with training that enables new employees to do well.

Point 13, on the other hand, addresses the need for ongoing and continual education and

self-improvement for the entire organization. A workforce that is continually undergoing

education and retraining will be able to keep up with cutting-edge technology. Today’s

workplace is changing constantly, and knowing that they are adapting to it gives employees

a sense of security.A company that invests in its employees’growth andwell-beingwill have a

highlymotivatedworkforce—awin–win situation for everyone. Education is an investment in

the future.

Advantages of Education and Retraining Investments in the workforce, such as educating

and retraining employees at all levels, serve a multifold purpose. First, employees (who

believe that a company willing to incur such expenditures for their benefit must be interested

in their well-being) are likely to be highly motivated employees. Such a belief fosters the

desire to excel at work.

Second, as employees grow with the company and their job responsibilities change,

retraining provides a mechanism to ensure adequate performance in their new jobs. Such

progressive action by the company makes it easier to adapt to the changing needs of the

consumer.

Education should always include instruction on Deming’s 14 points. Also, education and

retraining apply to people in nonmanufacturing or service areas as well. Thus, employees in

accounting, purchasing, marketing, sales, or maintenance as well as those in banks, retail

stores, federal and state government offices, health care, hospitality, information technology,

or the transportation sector need this instruction to participate in the never-ending process of

improvement. Industry should work with academia to aid in this process of education and

retraining.

Deming’s Point 14 Take action to accomplish the transformation.

Point 14 involves accepting the Deming philosophy and committing to seeing its imple

mentation in the extended process. A structure must be created and maintained for the

dissemination of the concepts associated with the first 13 points. Responsibility for creating

this structure lieswith topmanagement. Besides being totally committed to the idea of quality,

managementmust bevisionary andknowledgeable as to its potential impacts, and theymust be

in it for the long run.For the implementation to succeed,peoplemustbe trained in statistics at all

levels of the organization. A quality company requires statistical assistance at every level.

Deming’s Deadly Diseases

Deming’s 14points formanagement provide a roadmap for continuous quality improvement.

In implementing these points, certain practices of management, which Deming labels as

deadly diseases or sins,must be eliminated.Most ofDeming’s deadly diseases involve a lack

of understanding of variation. Others address management’s failure to understand who (they

and only they) can correct common causes in the system. The five deadly diseases, which

Deming’s 14 points seek to stamp out, are as follows:



W. EDWARDS DEMING’S PHILOSOPHY 73

Management by Visible Figures Only This deadly disease is also known as “management

by the numbers.” Visible figures are such items as monthly production, amount shipped,

inventoryonhand, andquarterly profit. Emphasizing short-termvisiblefigures doesn’t always

present an accurate picture of thefinancial state of an organization.Visiblefigures can easily

bemanipulated to showattractive quarterly profitswhen, in fact, the company’s competitive

position is in jeopardy.Howmanymanagerswoulddeny that it is easy toshowalargeamount

of production shippedat the endof themonthand tohide thenumbersofdefectives returned?

Cuttingbackresearch, training,andeducationbudgets isamazingly temptingwhenquarterly

profits are disappointing. Although these actions will show desirable short-term profits, they

can seriously sabotage a company’s long-term goals of remaining competitive and of

improving constantly and forever. As Deming often stated, “he who runs his company on

visible figures alone will in time have neither company nor figures.”

Properly selected statistical data, unbiased and as objective as possible, is the quality

assessment tool of the quality company.Some examples include data on customer satisfaction;

employee satisfaction with and perception of the company; and employee morale and

motivation. Often, however, the most pertinent data are unknown or difficult to measure.

How does a companymeasure loss ofmarket share due to customer dissatisfaction?How does

a companymeasure loss of goodwill because of theunmet needsof its customerswhodecide to

switch? How does it measure the damage caused by an unmotivated workforce? How does it

measure the losses that accrue whenmanagement fails to create an atmosphere of innovation?

These losses are difficult, if not impossible, tomeasure;wecouldcall them the invisiblefigures.

They are invisible and real, and they must be addressed in the transformation process.

Some of Deming’s 14 points for management seek to eliminate the deadly “visible figures

only” disease. Consider point 5, which deals with constant, never-ending cycles of improve

ment. This suggests that a system should first be brought to a state of statistical control by

eliminating the special or assignable causes. Subsequently, cross-disciplinary teams could be

used to address the common causes. Although variability will always be present in any

system, it is important that common causes not be treated as special causes. Point 8 stresses

eliminating fear and creating a climate of trust and innovation. Implementing this point

promotes teamwork because teams obviously cannot function in fear-driven organizations.

Then and only then can workers drop the “every person for himself or herself” attitude and

work for the common good of the company. Once unrealistic numerical goals, which cannot

be accomplished under the existing system, are eliminated, employee fear dissolves, and

effective quality improvement teams can get to work.

Lack of Constancy of Purpose This disease prevents organizations from making a

transformation to the long-term approach. Top management must rid itself of myopia.

Management cannot mouth a long-term vision but enforce a short-term approach to

operational decisions. The slogan of the legendary founder of Wal-Mart, Sam Walton,

applies here: “Management must walk their talk.”Only then will employees be persuaded to

pursue the quality work ethic.

Constancy of purpose ensures survival. A healthy company, doing everything it can to stay

in for the long haul, provides a sense of security to its employees. No company can guarantee

lifetime employment; however, when employees see that the company has a long-term vision

that it lives by, and they see daily demonstrations of this vision, they also see stability.

Mission statements playan important role here.Unless themission statement is propagated

through all levels of the company and understood and adapted by all, it is a useless document.
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But when employees understand a company’smission statement and know that management

and other employees believe in it and use it, it becomes the embodiment of the corporate

quality culture. The wording key: The emphasis must be on the process and not on the end

result. For example, a mission statement that talks about maximizing profits and return on

investment does little to guide employees. Profits and such are an end result, not the means.

Themission statement is themeans, the vision, the roadmapwrit large.Managing the process

will automatically take care of the end result. Mission statements must be simple and provide

vision and direction to everyone.

Effective mission statements are formulated only after considerable input from all

constituencies, but top management has the ultimate say. Mission statements are usually

nonquantitative. Here is an excerpt from General Electric Company’s mission: “Progress is

our most important product.”

The mission is implemented bottom-up. New recruits should be hired to further the

mission, and current employees must demonstrate their support for the mission. The wise

company also makes its customers aware of its mission.

PerformanceAppraisal by theNumbers In such systems, the focus is on the short termand

on the outcome rather than on the process. One tremendous disadvantage of these systems is

that theypromote rivalry and internal competition.Employees are forced togoupagainst each

other, and about 50% must be ranked as below average, whether or not their work is

satisfactory. In our society, being ranked below average is a strongmessage, strong enough to

cause depression andbitterness. It demoralizes anddevastates.Whatever spirit of cooperation

that may have existed among employees previously begins to erode.

The company must endeavor to stay competitive, even as it completes the transformation

process. Such is the message of points 1 and 5. Numerical performance appraisals make this

difficult because they encourage counterproductive behavior among employees. Rivalry

within weakens the battle on rivalry without: that is, rivalry in the marketplace. For the

company to stay in business, prosper, and create jobs, a concerted effort must be made by

everyone to work as a team. Individual-centered performance, whose sole objective is to

demonstrate one employee’s superiority over another, sabotages this effort. Numerical

performance appraisal thus has a detrimental effect on teamwork.

Synergism—effective teamwork—is attained only when employees share the common

goal of improving companywide performance. It is possible for individual employees to

dispatch their duties “by the book” yet fail to improve the competitive position of the

company. Point 9 focuses on breaking down organizational barriers and promoting team

work. Cross-functional teams, which focus on the process, are a means of continuous

improvement.Obviously, successfully implementing such teams is difficult when employees

are evaluated on individual performance.

Short-Term Orientation Many companies choose less-than-optimal solutions because

they focus on near-term goals and objectives. Decisions dictated by quarterly dividends or

short-term profits can diminish a company’s chances of long-term survival. This is in direct

contradiction to points 1 and 2.

A reason often given for adopting a short-term approach is the need to satisfy shareholders.

Companies are fearful of hostile takeovers and believe that demonstrating short-term profits

can discourage this activity. Top-down pressure to create short-term profits causes many

undesirable actions:Monthly or quarterly productionmay bemanipulated, training programs

maybe cut, andother investments on employeesmaybe curtailed.Although such actionsmay
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defer costs and show increased short-term profits, they can have a devastating effect on a

company’s long-term survival. Moreover, the real impact of such schemes is not always

tangible. The connection between a disheartened workforce and cutting back on quality

control doesn’t always manifest itself in the visible numbers.

Long-term partnerships can have a sizable impact on cost savings. IBM used to contract

with about 200 carriers to move parts to different locations around the country. Thousands of

invoices had to be processed annually, and stability among carriers was nonexistent as they

struggled to stay in business despite fluctuating orders. By reducing the number of carriers

over 10-fold, IBMachieved significant savings in order-processing costs.Although the initial

goalmayhavebeen to reduce invoicingheadaches, in reality, relationshipswith a fewselected

vendors have positively affected IBM’s competitive position. The concept of the extended

process becomes a reality, as the vendor’s technical problems are also that of the company’s,

and vice versa.

Linking executive salaries with annual bottom-line profit figures also promotes a

short-term focus. In many companies, shareholders approve this policy, and when this

prevails, senior managers sometimes postpone much-needed expenditures to demonstrate

short-term gains. Solutions to this problem include basing compensation and bonus packages

on five-year moving averages of corporate earnings.

Mobility of Management Amajor cause of organizational instability is the short tenure of

management.When the average tenure of a midlevel manager is four to five years, continuity

is difficult, if not impossible. Getting acquainted with and accustomed to a quality culture

requires major paradigm shifts, and this takes time. Frequent changes in management

sabotage constancy of purpose. An atmosphere of trust is difficult to maintain when the

“ground shifts”with each new change in management. To reduce mobility, top management

can promote from within, institute job enrichment programs, and practice job rotation.

Companies must demonstrate tomanagers concern for their advancement. Recall that point

13 deals with providing education and self-improvement for everyone. By investing in

management training and seminars that develop skills for expanded responsibilities, the

company also gains loyalty from its managers. Attention to salaries relative to industry norms

is important. When managers sense that the company is doing all it can to maintain salaries at

competitive levels, theyareoftenmotivated to stay.Managersknowthat there arepriorities, and

they will stay if they are convinced that commitment to employees is the top one.

2-5 PHILIP B. CROSBY’S PHILOSOPHY

Philip B. Crosby founded Philip Crosby Associates in 1979. Prior to that, he was a corporate

vice president for ITT, where he was responsible for worldwide quality operations. Crosby

had a particularly wide-ranging understanding of the various operations in industry because

he started as a line supervisor and worked his way up. Such firsthand experience provided

himwithakeenawareness ofwhat quality is,what theobstacles toquality are, andwhat canbe

done toovercome them.Crosbyhad trainedandconsultedwithmanypeople inmanufacturing

and service industries, andhadwrittenmanybooks (Crosby 1979,1984,19892004) onquality

management.

The Crosby approach begins with an evaluation of the existing quality system. His quality

management grid (Crosby 1979) identifies and pinpoints operations that have potential for

improvement. Table 2-3 is an example of a quality management maturity grid. The grid is



76 SOME PHILOSOPHIES AND THEIR IMPACT ON QUALITY

divided into five stages of maturity, and six measurement categories aid in the evaluation

process.

Four Absolutes of Quality Management

To demonstrate the meaning of quality, Crosby (1979) identified four absolutes of quality

management.

1. Definition of quality. Quality means conformance to requirements.

2. System for achievement of quality. The rational approach is prevention of defects.

3. Performance standard. The only performance standard is zero defects.

4. Measurement. The performance measurement is the cost of quality. In fact, Crosby

emphasized the costs of “unquality,” such as scrap, rework, service, inventory,

inspection, and tests.

14-Step Plan for Quality Improvement

Crosby’s 14-step plan is discussed briefly here to help businesses implement a quality

improvement program.* The reader who is interested in a detailed examination of these

steps should consult the suggested references.

1. Management commitment. For quality improvement to take place, commitment must

start at the top. The emphasis on defect prevention has to be communicated, and a

quality policy that states the individual performance requirements needed to match

customer requirements must be developed.

2. Quality improvement team. Representatives from each department or division form

the quality improvement team. These individuals serve as spokespersons for each

group they represent. They are responsible for ensuring that suggested operations are

brought to action. This team brings all the necessary tools together.

3. Qualitymeasurement.Measurement is necessary to determine the status of quality for

each activity. It identifies the areas where corrective action is needed and where

quality improvement efforts should be directed. The results of measurement, which

are placed in highly visible charts, establish the foundation for the quality improve

ment program. These principles apply to service operations as well, such as counting

the number of billing or payroll errors in the finance department, the number of

drafting errors in engineering, the number of contract or order description errors in

marketing, and the number of orders shipped late.

4. Cost of quality evaluation. The cost of quality (or rather unquality) indicates where

corrective action and quality improvement will result in savings for the company.

A study to determine these costs should be conducted through the comptroller’s

office, with the categories that comprise quality costs defined precisely. This study

establishes a measure of management’s performance.

5. Quality awareness. The results of the cost of nonquality should be shared with all

employees, including service and administrative people. Getting everybody involved

with quality facilitates a quality attitude.

�Adapted with permission from P. B. Crosby, Quality Is Free, McGraw-Hill, New York, 1979.
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6. Corrective action. Open communication and active discussion of problems create

feasible solutions. Furthermore, such discussion also exposes other problems not

identified previously and thus determines procedures to eliminate them. Attempts to

resolveproblemsshouldbemadeas theyarise.For thoseproblemswithout immediately

identifiable remedies, discussion is postponed to subsequent meetings. The entire

process creates a stimulating environment of problem identification and correction.

7. Ad hoc committee for the zero-defects program. The concept of zero defectsmust be

communicated clearly to all employees; everyone must understand that the achieve

ment of such a goal is the company’s objective. This committee gives credibility to

the quality program and demonstrates the commitment of top management.

8. Supervisor training. All levels of management must bemade aware of the steps of the

quality improvement program. Also, they must be trained so they can explain the

program to employees. This ensures propagation of the quality concepts from the

chief executive officers to the hourly worker.

9. Zero-defects day. The philosophy of zero defects should be established companywide

and should originate on one day. This ensures a uniform understanding of the concept

for everyone. Management has the responsibility of explaining the program to the

employees, and they should describe the day as signifying a “new attitude.”Manage

ment must foster this type of quality culture in the organization.

10. Goal setting. Employees, in conjunction with their supervisors, should set specific

measurable goals. These could be 30-, 60-, or 90-day goals. This process creates a

favorable attitude for people ultimately to achieve their own goals.

11. Error-cause removal. The employees are asked to identify reasons that prevent them

frommeeting thezero-defects goal—not tomake suggestionsbut to list theproblems. It

is the task of the appropriate functional group to comeupwith procedures for removing

theseproblems.Reportingproblemsshouldbedonequickly.Anenvironmentofmutual

trust is necessary so that both groups work together to eliminate the problems.

12. Recognition. Award programs should be based on recognition rather thanmoney and

should identify those employees who have either met or exceeded their goals or have

excelled in otherways. Such programswill encourage the participation of everyone in

the quality program.

13. Quality councils. Chairpersons, team leaders, and professionals associated with the

quality program should meet on a regular basis to keep everyone up to date on

progress. These meetings create new ideas for further improvement of quality.

14. Do it over again. The entire process of quality improvement is continuous. It repeats

again and again as the quality philosophy becomes ingrained.

2-6 JOSEPH M. JURAN’S PHILOSOPHY

Joseph M. Juran founded the Juran Institute, which offers consulting and management

training in quality. Juran worked as an engineer, labor arbitrator, and corporate director in the

private sector and as a government administrator and a university professor in the public

sector. He authored many books on the subjects of quality planning, control, management,

and improvement (Juran 1986, 1988a,b, 1989; Juran and Gryna 1993).

Like Deming, Juran visited Japan in the early 1950s to conduct training courses in quality

management. He eventually repeated these seminars in over 40 countries on all continents. In

the 1980s, Juran met the explosive demand for his services with offerings through the Juran
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Institute. His books and videotapes have been translated into many languages, and he trained

thousands ofmanagers and specialists. Juran believed thatmanagement has to adopt a unified

approach toquality.Quality is defined as “fitness for use.”The focus here is on the needs of the

customer.

Certain nonuniformities deter the development of a unified process.One is the existence of

multiple functions—such as marketing, product design and development, manufacture, and

procurement—where each function believes itself to be unique and special. Second, the

presence of hierarchical levels in the organizational structure creates groups of people who

have different responsibilities. These groups vary in their background andmay have different

levels of exposure to the concepts of qualitymanagement.Third, a variety of product lines that

differ in their markets and production processes can cause a lack of unity.

Juran proposed a universal way of thinking about quality, which he called the quality

trilogy: quality planning, quality control, and quality improvement. This concept fits all

functions, levels of management, and product lines.

Quality Trilogy Process

The quality trilogy process starts with quality planning at various levels of the organization,

each ofwhich has a distinct goal.At the uppermanagement level, planning is termed strategic

qualitymanagement. Broad quality goals are established.A structured approach is selected in

which management chooses a plan of action and allocates resources to achieve the goals.

Planning at the middle management level is termed operational quality management.

Departmental goals consistent with the strategic goals are established. At the workforce

level, planning involves a clear assignment to eachworker.Eachworker ismade awareof how

his or her individual goal contributes to departmental goals.

After the planning phase, quality control takes over. Here, the goal is to run the process

effectively such that the plans are enacted. If there are deficiencies in the planning process, the

process may operate at a high level of chronic waste. Quality control will try to prevent the

waste from gettingworse. If unusual symptoms are detected sporadically, quality control will

attempt to identify the cause behind this abnormal variation. Upon identifying the cause,

remedial action will be taken to bring the process back to control.

The next phase of the trilogy process is quality improvement, which deals with the

continuous improvement of the product and the process. This phase is also called the quality

breakthrough sequence. Such improvements usually require action on the part of upper and

middle management, who deal with such actions as creating a new design, changingmethods

or procedures of manufacturing, and investing in new equipment.

Table 2-4 shows an outline of the various steps involved in the quality planning, quality

control, and quality improvement phases. Readers should consult the listed references for an

elaborate treatment of the details of each phase.

Quality Planning

1. Establish quality goals. Goals, as established by the organization, are desired out

comes to be accomplished in a specified time period. The time periodmay be short term

or long term.

2. Identify customers. Juran has a concept similar to Deming’s extended process.

Juran’s includes vendors and customers. He stresses the importance of identifying

the customer, who could be internal or external. In cases where the output from one

department flows to another, the customer is considered internal.
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TABLE 2-4 Universal Process for Managing Quality

Quality Planning Quality Control Quality Improvement

Establish quality goals Choose control subjects Prove the need

Identify customers Choose units of measure Identify projects

Discover customer needs Set goals Organize project teams

Develop product features Create a sensor Diagnose the causes

Develop process features Measure actual performance Provide remedies, prove that

the remedies are effective

Establish process controls, Interpret the difference Deal with resistance to change

transfer to operations

Take action on the difference Control to hold the gains

Source: Adapted from J. M. Juran and F. M. Gryna, Quality Planning and Analysis, 3rd ed., McGraw-Hill,

New York, 1993. Reproduced with permission of The McGraw-Hill Companies.

3. Discover customer needs. Long-term survival of the company is contingent upon

meeting or exceeding the needs of the customer. Conducting analysis and research,

surveying clients and nonclients, and keeping abreast of the dynamic customer needs

are a few examples of activities in this category.

4. Develop product features. With customer satisfaction as the utmost objective, the

product or service should be designed to meet the customer requirements. As customer

needs change, the product should be redesigned to conform to these changes.

5. Develop process features. While a product is designed based on a knowledge of

customer needs, this step deals with the manufacturing process of that product.

Methods must be developed, and adequate equipment must be available to make the

product match its design specifications. For service organizations, effective and

efficient processes that meet or exceed customer requirements are critical.

6. Establish process controls, transfer to operations. For manufacturing operations,

bounds should be established on process variables for individual operations that assist

in making an acceptable product. Similarly, in the service setting, norms on operations

such as time to complete a transaction must be adopted.

Quality Control

1. Choose control subjects. Product characteristics that are to be controlled in order to

make the product conform to the design requirements should be chosen. For instance, a

wheel’s control characteristics may be the hub diameter and the outside diameter.

Selection is done by prioritizing the important characteristics that influence the

operation or appearance of the product and hence impact the customer.

2. Choose units of measure. Based on the quality characteristics that have been selected

for control, appropriate units of measure should be chosen. For example, if the hub

diameter is being controlled, the unit of measurement might be millimeters.

3. Set goals.Operational goals arecreated such that theproduct or servicemeetsor exceeds

customer requirements. For instance, a standard of performance for the hub diameter

could be 20± 0.2mm. A hubwith a diameter in this range would be compatible in final

assembly and would also contribute to making a product that will satisfy the customer.
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4. Create a sensor. To collect information on the identified quality characteristics,

automated equipment or individuals, who serve as auditors or inspectors, are inte

grated into the system. Databases that automatically trackmeasurements on the quality

characterstic (diameter of hub or processing time of purchase order) could also serve as

sensors.

5. Measure actual performance. This phase of quality control is concerned with the

measurement of the actual process output. Measurements are taken on the previously

selected control subjects (or quality characteristics). Such measurements will provide

information on the operational level of the process.

6. Interpret the difference. This involves comparing the performance of the process with

the established goals. If the process is stable and capable, then any differences between

the actual and the standard may not be significant.

7. Take action on the difference. In the event that a discrepancy is foundbetween the actual

output of the process and the established goal, remedial action needs to be taken. It is

usually management’s responsibility to suggest a remedial course of action.

Quality Improvement

1. Prove the need. Juran’s breakthrough sequence tackles the chronic problems that exist

because of a change in the current process; this task requires management involve

ment. First, however, management has to be convinced of the need for this improve

ment. Problems such as rework and scrap could be converted to dollar figures to draw

management’s attention. It would also help to look at problems as cost savings

opportunities.

2. Identify projects. Because of the limited availability of resources, not all problems can

be addressed simultaneously. Therefore, problems should be prioritized. A Pareto

analysis is often used to identify vital problems. Juran’s quality improvement process

works on a project-by-project basis. A problem area is identified as a project, and a

concerted effort is made to eliminate the problem.

3. Organize project teams. The organizational structure must be clearly established so

projects can be run smoothly. Authority and responsibility are assigned at all levels of

management to facilitate this. Top management deals with strategic responsibilities,

and lower management deals with the operational aspects of the actions. Furthermore,

the structure should establish precise responsibilities for the following levels: guidance

of overall improvement program, guidance for each individual project, and diagnosis

and analysis for each project.

4. Diagnose the causes. This is often the most difficult step in the whole process. It

involves data gathering and analysis to determine the cause of a problem. The

symptoms surrounding the defects are studied, and the investigator then hypothesizes

causes for the symptoms. Finally, an analysis is conducted to establish the validity of

the hypotheses. Juran defined a diagnostic arm as a person or group of persons

brought together to determine the causes of the problem. The organization needs to

enlist the right people and to ensure that the required tools and resources are available.

This is accomplished through a steering arm.

5. Provide remedies, prove that the remedies are effective. Here, remedial actions are

developed to alleviate the chronic problems. Remedies may deal with problems that are
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controllable by management or those that are controllable by operations. Changes in

methodsorequipment shouldbeconsideredbymanagementandmayrequire substantial

financial investment.Frequently,thereturnoninvestment isanalyzed.This isalsothereal

test of the effectiveness of the remedies proposed. Can the suggested actions be

implemented, and do they have the beneficial effect that has been hypothesized?

6. Deal with resistance to change. The breakthrough process requires overcoming

resistance to change. Changes may be technological or social in nature. The proposed

procedure may require new equipment, and operators may have to be trained.

Management commitment is vital to the effective implementation of the changes. By

the same token, social changes, which deal with human habits, beliefs, and traditions,

require patience, understanding, and the participation of everyone involved.

7. Control to hold the gains.Once the remedial actions have been implemented and gains

have been realized, there must be a control system to sustain this new level of

achievement. In other words, if the proportion of nonconforming items has been

reduced to 2%, we must make sure that the process does not revert to the former

nonconformance rate. A control mechanism is necessary, for example, audits may be

performed in certain departments. Such control provides a basis for further process

improvement as the whole cycle is repeated.

2-7 THE THREE PHILOSOPHIES COMPARED

We have now briefly examined the quality philosophies of three experts: Deming, Crosby,

and Juran. All three philosophies have the goal of developing an integrated total quality

systemwith a continual drive for improvement. Although there are many similarities in these

approaches, some differences do exist. A good discussion of these three philosophies may be

found in an article by Lowe and Mazzeo (1986).

Definition of Quality

Let’s consider how each expert defines quality. Deming’s definition deals with a predictable

uniformity of the product.His emphasis on the use of statistical process control charts is reflected

in this definition. Deming’s concern about the quality of the product is reflected in the quality of

the process, which is the focal point of his philosophy. Thus, his definition of quality does not

emphasize the customer as much as do Crosby’s and Juran’s. Crosby defines quality as

conformance to requirements. Here, requirements are based on customer needs. Crosby’s

performance standard of zero defects implies that the set requirements should bemet every time.

Juran’s definition of quality—fitness of a product for its intended use—seems to incorporate the

customer the most. His definition explicitly relates to meeting the needs of the customer.

Management Commitment

All three philosophies stress the importance of top management commitment. Deming’s first

and second points (creating a constancy of purpose toward improvement and adopting the

new philosophy) define the tasks of management. In fact, his 14 points are all aimed at

management, implying that management’s undivided attention is necessary to create a total

quality system. Point 1 in Crosby’s 14-step process deals withmanagement commitment. He

stresses the importance of management communicating its understanding and commitment.
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Crosby’s philosophy is focused on the creation of a “quality culture,”which can be attained

through management commitment. Juran’s quality planning, control, and improvement

process seeks management support at all levels. He believes in quality improvement on a

project basis. The project approach gets managers involved and assigns responsibilities to

each. Thus, in all three philosophies, the support of top management is crucial.

Strategic Approach to a Quality System

Deming’s strategy for topmanagement involves their pursuing thefirst 13 points and creating

a structure to promote the 13 points in a never-ending cycle of improvement (i.e., point 14).

Crosby’s approach to quality improvement is sequenced.His second step calls for the creation

of quality improvement teams. Under Juran’s philosophy, a quality council guides the

quality improvement process. Furthermore, his quality breakthrough sequence involves the

creation of problem-solving steering arms and diagnostic arms. The steering arm establishes

the direction of the problem-solving effort and organizes priorities and resources. The

diagnostic arm analyzes problems and tracks down their causes.

Measurement of Quality

All three philosophies view quality as ameasurable entity, although in varying degrees. Often,

top management has to be convinced of the effects of good quality in dollars and cents. Once

they see it as a cost-reducing measure, offering the potential for a profit increase, it becomes

easier to obtain their support. A fundamental aim of the quality strategy is to reduce and

eliminate scrap and rework,whichwill reduce the cost of quality. Ameasurable framework for

doing so is necessary.The total cost of qualitymaybedivided into subcategories of prevention,

appraisal, internal failure, and external failure. One of the difficulties faced in this setting is the

determination of the cost of nonquality, such as customer nonsatisfaction. Notice that it is

difficult to come up with dollar values for such concerns as customer dissatisfaction, which is

one of Deming’s concerns in deriving a dollar value for the total cost of quality. Crosby

believes that quality is free; it is “unquality” that costs.

Never-Ending Process of Improvement

These philosophies share a belief in the never-ending process of improvement. Deming’s 14

steps repeat over and over again to improve quality continuously. Deming’s PDCA cycle

(plan–do–check–act) sustains this never-ending process, as does Juran’s breakthrough

sequence. Crosby also recommends continuing the cycle of quality planning, control, and

improvement.

Education and Training

Fundamental to quality improvement is the availability of an adequate supply of people who

are educated in the philosophy and technical aspects of quality.Deming specifically referred to

this in his sixth point, which talks about training all employees, and in his thirteenth point,

which describes the need for retraining to keep pace with the changing needs of the customer.

Deming’s focus is on education in statistical techniques. Education is certainly oneofCrosby’s

concerns as well; his eighth step deals with quality education. However, he emphasizes

developing a quality culture within the organization so that the right climate exists. Juran’s

steps do not explicitly call for education and training. However, theymay be implicit, because

people must be knowledgeable to diagnose defects and determine remedies.
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Eliminating the Causes of Problems

InDeming’s approach, special causes refer to problems that arise because something unusual

has occurred, and commoncauses refer to problems that are inherent to the system.Examples

of special causes are problems due to poor quality from an unqualified vendor or use of an

improper tool. With common causes, the system itself is the problem. Examples of common

causes are inherentmachine variability orworker capability. These problems are controllable

only bymanagement. BothDeming and Juran have claimed that about 85%of problems have

commoncauses.Hence, only actionon thepart ofmanagement can eliminate them; that is, it is

up to management to provide the necessary authority and tools to the workers so that the

common causes can be removed.

At the heart of Deming’s philosophy are the statistical techniques that identify special

causes and common causes—especially statistical process control and control charts.

Variations outside the control limits are attributed to special causes. These variations are

worker-controllable, and the workers are responsible for eliminating these causes. On the

other hand, variations within the control limits are viewed as the result of common causes.

These variations require management action.

Juran’s approach is similar to Deming’s. In his view, special causes create sporadic

problems, and common causes create chronic problems. Juran provides detailed guidelines

for identifying sporadic problems. For example, he categorizes operator error as being

inadvertent, willful, or due to inadequate training or improper technique. He also specifies

how the performance standard of zero defects that Crosby promotes can be achieved. Crosby,

of course, suggests a course of action for error cause removal in his eleventh step, whereby

employees identify reasons for nonconformance.

Goal Setting

Deming was careful to point out that arbitrarily established numerical goals should be

avoided. He asserted that such goals impede, rather than hasten, the implementation of a total

quality system.Short-termgoals basedmainlyonproductivity levelswithout regard toquality

are unacceptable. By emphasizing the never-ending quality improvement process, Deming

saw no need for short-term goals. On the other hand, both Crosby and Juran call for setting

goals. Crosby’s tenth point deals with goal setting; employees (with guidance from their

supervisors) are asked to setmeasurable goals for even short-termperiods such as 30, 60, or 90

days. Juran recommends an annual quality improvement program with specified goals. He

believes that such goals helpmeasure the success of the quality projects undertaken in a given

year. The goals should be set according to the requirements of the customer. Juran’s approach

resembles the framework of management by objectives, where performance is measured by

achievement of stipulated numerical goals.

Structural Plan

Deming’s 14-point plan emphasizes using statistical tools at all levels. Essentially a bottom-

up approach, the process is first brought into a state of statistical control (using control charts)

and then improved. Eliminating special causes to bring a process under control takes place

at the lower levels of the organizational structure.As these causes are removed and the process

assumes a state of statistical control, further improvements require the attention of upper-level

management.
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Crosby, on the other hand, takes a top-down approach. He suggests changing the

management culture as one of the first steps in his plan. Once the new culture is ingrained,

a plan for managing the transition is created.

Finally, Juran emphasizes quality improvement through a project-by-project approach.

His concept is most applicable to middle management.

Because each company has its own culture, companies should look at all three approaches

and select the one (or combination) that is most suited to its own setting.

SUMMARY

In this chapter we discuss the quality philosophies of Deming, Crosby, and Juran, with

emphasis onDeming’s 14 points formanagement.Many companies are adopting theDeming

approach to quality and productivity. The quality philosophies of Crosby and Juran provide

the reader with a broad framework of the various approaches that exist for management. All

three approaches have the same goal, with slightly different paths.

Whereas Deming’s approach emphasizes the importance of using statistical techniques as

a basis for quality control and improvement, Crosby’s focuses on creating a new corporate

culture that deals with the attitude of all employees toward quality. Juran advocates quality

improvement through problem-solving techniques on a project-by-project basis. He empha

sizes the need to correctly diagnose the causes of a problembased on the symptoms observed.

Once these causes have been identified, Juran focuses on finding remedies. Upon under

standing all three philosophies, management should select one or a combination to best fit

their own environment. These philosophies of quality have had a global impact.

The chapter introduces quality characteristics associated with the service industry, a

dominant segment of the economy. While distinguishing the differences between the

manufacturing and service sectors, the chapter presents key traits that are important to

customer satisfaction in service organizations. A model for service quality is discussed.

Customer satisfaction in a service environment is influenced by the levels of expected and

actual quality, as perceived by the customer. Hence, factors that influence such perceptions

are presented.

KEY TERMS

chronic problems efficiency

common causes extended process

consistency of purpose Juran’s philosophy

constancy of purpose leadership

corporate culture loss function

Crosby’s 14-step plan for quality organizational barriers

improvement performance classification

Crosby’s philosophy process capability

customer satisfaction product improvement cycle

Deming cycle productivity

Deming’s deadly diseases quality

Deming’s 14 points for management quality breakthrough sequence

diagnostic arm quality culture

effectiveness quality improvement
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quality management maturity grid service nonconformity

quality trilogy special causes

sampling sporadic problems

convenience sampling steering arm

judgment sampling system of profound knowledge

100% sampling total quality system

probability sampling training

random sampling vendor selection

service functions work standards

service industries zero defects

EXERCISES

2-1 Who is the customer in health care? Describe some of the customer’s needs.

2-2 Discuss some service nonconformity and behavioral characteristics in the following

areas:

(a) Health care

(b) Call center

(c) Internal Revenue Service

(d) Airline industry

2-3 Refer to Exercise 2-2. For each situation, discuss the ease or difficulty of measuring

service quality. What are some remedial measures?

2-4 Refer to Exercise 2-2. For each situation, explain what factors influence customer

perception of quality and how they are to be managed.

2-5 The following companies are interested inconductingamarket surveyof their products/

services. Explain the possible sampling techniques that they might choose.

(a) High-end automobiles

(b) Cooking range

(c) Cell phones

(d) Boutique clothes

(e) City municipal services

(f) State revenue department

(g) Home insurance company

(h) Patients in a health care facility

(i) Physicians in a health care facility

2-6 Explain the notion of the extended process and its significance. Discuss this in the

context of the following organizations:

(a) Hardware vendor (such as for computers and printers)

(b) Hospital

(c) Software company

(d) Entertainment industry

2-7 What are the reasons for mass inspection not being a feasible alternative for quality

improvement?
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2-8 Describe some characteristics for selecting vendors in the following organizations and

the selection process to be followed:

(a) Supermarket

(b) Physician’s office

(c) Fast-food restaurant

2-9 Explain the organizational barriers that prevent a company from adopting the quality

philosophy. Describe some specific action plans to remove such barriers.

2-10 Discuss the organizational structure in a typical health care facility. What barriers

might this create and what are some remedial measures?

2-11 What are the drawbacks of some traditional performance appraisal systems and how

may they be modified?

2-12 What is the difference between quality control and quality improvement? Discuss the

role of management in each of these settings.

2-13 Discuss the five deadly diseases in the context of Deming’s philosophy of manage

ment. What remedial actions would you take?

2-14 Explain the drawbacks of a bottom-line management approach.

2-15 Discuss the dilemma management faces when they sacrifice short-term profits for

long-run stability. What approach is recommended?

2-16 Explain Deming’s system of profound knowledge with specifics in the following

industries:

(a) Hospital

(b) Software company

2-17 What are some organizational culture issues that management must address as they

strive for long-run stability and growth?

2-18 American Airlines, through the use of its SABRE reservation system, realized the

potential of yield management. Through such a system, it monitored the status of its

upcomingflights and competitors’flights continuously tomake pricing and allocation

decisions on unsold seats.

(a) Discuss the impact of this on customer satisfaction.

(b) Could it lead to customer dissatisfaction?

(c) What is a possible objective function to be optimized?

(d) Could such yield management practices be used in other industries? Explain

through specifics.

2-19 AmericanExpress has access to the spending habits of its cardholders. Howmay it use

this information to improve customer satisfaction? How may its retail customers use

this information?

2-20 Customer satisfaction is of importance tomanagement. Discuss customer needs in the

context of internet service providers (ISPs) and their degree of importance.

2-21 In the context of a health care organization, explain why it is important to know not

only the needs of the customers but also their relative importance.
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3
QUALITY� MANAGEMENT:� PRACTICES,
TOOLS,� AND� STANDARDS

3-1 Introduction and chapter objectives

3-2 Management practices

3-3 Quality function deployment

3-4 Benchmarking and performance evaluation

3-5 Health care analytics

3-6 Tools for continuous quality improvement

3-7 International Standards ISO 9000 and other derivatives

Summary

3-1� INTRO�DUC�TION� AND� CHAPT�ER� OBJE�CTIVE�S

The road to a quality organization is paved with the commitment of management. If

management is not totally behind this effort, the road will be filled with potholes, and the

effort will drag to a halt. A keen sense of involvement is a prerequisite for this journey, because

like any journey of import, the company will sometimes find itself in uncharted territory.

Company policies must be carefully formulated according to principles of a quality program.

Major shifts in paradigms may occur. Resources must, of course, be allocated to accomplish

the objectives, but this by itself is not sufficient. Personal support and motivation are the key

ingredients to reaching the final destinati on.

In this chapter we look at some of the quality management practices that enable a company

to achieve its goals. These practices start at the top, where top management creates the road

map, and continue with middle and line management, who help employees follow the map.

With an ever-watchful eye on the satisfaction of the customer, the entire workforce embarks

on an intensive study of product design and process design. Company policies on vendor

selection are discussed. Everything� is examined through the lens of quality improvement. The

importance of health care analytics is introduced as well.

The prime objectives of this chapter are to provide a framework through which manage

ment accomplishes its task of quality assurance. Principles of total quality management are

presented. Additional tools such as quality function deployment, which plays a major role in

incorporating customer needs in products and processes, are discussed. Problems to address

are investigated through Pareto charts and failure mode and effects criticality analysis.

Fundamentals of Quality Control and Improvement, Fourth Edition. Amitava Mitra
 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com\go\mitra\QualityControl4e
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Following this, root cause identification is explored through cause-and-effect diagrams. The

study of all processes, be they related to manufacturing or service, typically starts with a

process map that identifies all operations, their precedence relationships, the inputs and

outputs for each operation along with the controllable and uncontrollable factors, and the

designated ownership of each. A simpler version of the processmap is a flowchart that shows

the sequence of operations anddecisionpoints and assists in identifyingvalue-added andnon-

value-added activities.

Finally, we consider the standards set out by the International Organization for

Standardization (ISO): in particular, ISO 9000 standards. Organizations seek to be

certified by these standards to demonstrate the existence of a quality management process

in their company. Standards from some other industries are briefly examined.

3-2 MANAGEMENT PRACTICES

A company’s strategic plan is usually developed by top management; they are, after

all, responsible for the long-range direction of the company. A good strategic plan

addresses the needs of the company’s constituencies. First and foremost, of course, is the

customer, who can be internal and/or external. The customer wants a quality product

or service at the lowest possible cost. Meeting the needs of the shareholders is another

objective. Shareholders want to maximize their return on investment. Top management

has the difficult task of balancing these needs and creating a long-term plan that will

accomplish them.

What management needs are specific practices that enable them to install a quality

program. That is what this chapter is about, but first we need some terminology. In this

context, the term total quality management (TQM) refers to a comprehensive approach to

improving quality. According to the U.S. Department of Defense, TQM is both a philosophy

and a set of guiding principles that comprise the foundation of a continuously improving

organization. Other frequently used terms are synonymous to TQM; among them are

continuous quality improvement, quality management, total quality control, and company

wide quality assurance.

Total Quality Management

Total quality management revolves around three main themes: the customer, the

process, and the people. Figure 3-1 shows some basic features of a TQM model. At

its core are the company vision and mission and management commitment. They bind

the customer, the process, and the people into an integrated whole. A company’s

vision is quite simply what the company wants to be. The mission lays out the

company’s strategic focus. Every employee should understand the company’s vision

and mission so that individual efforts will contribute to the organizational mission.

When employees do not understand the strategic focus, individuals and even departments

pursue their own goals rather than those of the company, and the company’s goals are

inadvertently sabotaged. The classic example is maximizing production with no regard to

quality or cost.

Management commitment is another core value in the TQM model. It must exist at all

levels for the company to succeed in implementing TQM. Top management envisions the
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FIGURE 3-1 Features of a TQM model.

strategy andcreates policy.Middlemanagementworkson implementation.At theoperational

level, appropriate quality management tools and techniques are used.

Satisfying customer needs and expectations is a major theme in TQM—in fact, it is the

driving force. Without satisfied customers, market share will not grow and revenue will not

increase. Management should not second-guess the customer. For example, commercial

builders should construct general merchandise stores only after they have determined that

there is enough customer interest to support them. If consumers prefer specialty stores,

specialty stores should be constructed. Direct feedback using a data-driven approach is the

best way to identify customer expectations and needs. A company’s strategic plan must

conform to these needs.

A key principle in quality programs is that customers are both internal and external. The

receiving department of a processed component is a customer of that processing unit.

Feedback from such internal customers identifies problem areas before the product reaches

its finished stage, thus reducing the cost of scrap and rework.

Customer expectations can, to some extent, bemanaged by the organization. Factors such

as the quality of products and services and warranty policies offered by the competitor

influence customer expectations directly. The company can, through truthful advertising,

shape the public’s expectations. For example, if the average life of a lawn mower under

specified operating conditions is 15 years, there is no reason to exaggerate it. In service

operations, customers knowwhich companies are responsive and friendly. This doesn’t need

advertising. Customer surveys can help management determine discrepancies between
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expectations and satisfaction. Taking measures to eliminate discrepancies is known as gap

analysis.

The second theme in TQM is the process. Management is responsible for analyzing the

process to improve it continuously. In this framework, vendors are part of the extended

process, as advocated by Deming. As discussed earlier, integrating vendors into the

process improves the vendors’ products, which leads to better final products. Because

problems can and do span functional areas, self-directed cross-functional teams are

important for generating alternative feasible solutions—the process improves again.

Technical tools and techniques along with management tools come in handy in the quest

for quality improvement. Self-directed teams are given the authority to make decisions

and to make appropriate changes in the process.

The third theme deals with people. Human “capital” is an organization’s most

important asset. Empowerment—involving employees in the decision-making process

so that they take ownership of their work and the process—is a key factor in TQM. It is

people who find better ways to do a job, and this is no small source of pride. With pride

comes motivation. There is a sense of pride in making things better through the

elimination of redundant or non-value-added tasks or combining operations. In TQM,

managing is empowering.

Barriers restrict the flow of information. Thus, open channels of communication are

imperative, andmanagement had bettermaintain these. For example, ifmarketing fails to talk

to product design, a key input on customer needs will not be incorporated into the product.

Management must work with its human resources staff to empower people to break down

interdepartmental barriers. From the traditional role of management of coordinating and

controlling has developed the paradigm of coaching and caring. Once people understand that

they, and only they, can improve the state of affairs, and once they are given the authority to

make appropriate changes, they will do the job that needs to be done. There originates an

intrinsic urge fromwithin to do things better. Such an urge has a force that supersedes external

forms of motivation.

Linking the human element and the company’s vision is the fabric we call organizational

culture. Culture comprises the beliefs, values, norms, and rules that prevail within an

organization. How is business conducted? How does management behave? How are

employees treated? What gets rewarded? How does the reward system work? How is input

sought? How important are ethics? What is the social responsibility of the company? The

answers to these andmany other questions define an organization’s culture. One culture may

embrace a participative style of management that empowers its employees and delights its

customerswith innovative and timely products.Another culturemay choose short-termprofit

over responsibility to the community at large. Consider, for example, the social responsibility

adopted by the General Electric Company. The company and its employees made enormous

contributions to support education, the arts, the environment, and human services organiza

tions worldwide.

Vision and Quality Policy

A company’s vision comprises its values and beliefs. Their vision is what they want it to be,

and it is a message that every employee should not only hear but also believe in. Visions,

carefully articulated, give a coherent sense of purpose. Visions are about the future,

and effective visions are simple and inspirational. Finally, it must be motivational so as to

evoke a bond that creates unison in the efforts of persons working toward a common
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organizational goal. From the vision emanates amission statement for the organization that

is more specific and goal oriented.

A service organization, IBM Direct, is dedicated to serving U.S. customers who order

such IBM products as ES/9000 mainframes, RS/6000 and AS/400 systems, connectivity

networks, and desktop software. Its vision for customer service is “to create an

environment for customers where conducting business with IBM Direct is considered

an enjoyable, pleasurable and satisfying experience.” This is what IBM Direct wants to

be. Its mission is “to act as the focal point for post-sale customers issues for IBM Direct

customers. We must address customer complaints to obtain timely and complete

resolutions. And, through root cause analysis, we must ensure that our processes are

optimized to improve our customer satisfaction.” Here, again, the mission statement gets

specific. This is how IBM Direct will get to its vision. Note that no mention is made of a

time frame. This issue is usually dealt with in goals and objectives.

Framed by senior management, a quality policy is the company’s road map. It indicates

what is to be done, and it differs from procedures and instructions, which address how it is to

be done, where and when it is to be done, and who is to do it. A beacon in TQM leadership,

Xerox Corporation is the first major U.S. corporation to regain market share after losing it to

Japanese competitors. Xerox attributes its remarkable turnaround to its conversion to TQM

philosophy. The company’s decision to rededicate itself to quality through a strategy called

Leadership ThroughQuality has paid off. Through this process,Xerox created a participatory

style ofmanagement that focuses onquality improvementwhile reducing costs. It encouraged

teamwork, sought more customer feedback, focused on product development to target key

markets, encouraged greater employee involvement, and began competitive benchmarking.

Greater customer satisfaction and enhanced business performance are the driving forces in its

quality program, the commitment to which is set out in the Xerox quality policy: “Quality is

the basic business principle at Xerox.”

Another practitioner of TQM, the Eastman Chemical Company, manufactures

and markets over 400 chemicals, fibers, and plastics for over 7000 customers around the

world. A strong focus on customers is reflected in its vision: “to be the world’s preferred

chemical company.” A similar message is conveyed in its quality goal: “to be the leader in

quality and value of products and services.” Its vision, values, and goals define Eastman’s

quality culture. The company’s quality management process is set out in four directives:

“focus on customers; establish vision, mission, and indicators of performance; understand,

stabilize, and maintain processes; and plan, do, check, act for continual improvement and

innovation.”

Eastman Chemical encourages innovation and provides a structured approach to generat

ing new ideas for products. Cross-functional teams help the company understand the needs of

both its internal and external customers. The teams define and improve processes, and they

help build long-term relationships with vendors and customers. Through the Eastman

Innovative Process, a team of employees from various areas—design, sales, research,

engineering, and manufacturing—guides an idea from inception to market. People have

ownership of the product and of the process. Customer needs and expectations are addressed

through the process and are carefully validated. One outcome of the TQM program has been

the drastic reduction (almost 50%) of the time required to launch a new product. Through a

program called Quality First, employees team with key vendors to improve the quality and

value of purchased materials, equipment, and services. Over 70% of Eastman’s worldwide

customers have ranked the company as their best supplier. Additionally, Eastman has

received an outstanding rating on five factors that customers view asmost important: product
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quality, product uniformity, supplier integrity, correct delivery, and reliability. Extensive

customer surveys led the company to institute a no-fault return policy on its plastic products.

This policy, believed to be the only one of its kind in the chemical industry, allows customers

to return any product for any reason for a full refund.

Balanced Scorecard

Thebalanced scorecard (BSC) is amanagement system that integratesmeasures derived from

theorganization’s strategy. It integratesmeasures related to tangible aswell as intangible assets.

The focus of BSC is on accomplishing the company’s mission through the development of a

communication and learning system. It translates the mission and strategy to objectives and

measures that span four dimensions: learning and growth, internal processes, customers, and

financial (Kaplan and Norton 1996). Whereas traditional systems have focused only on

financial measures (such as return on investment), which is a short-term measure, BSC

considers all four perspectives from a long-term point of view. So, for example, even for the

financial perspective, it considers measures derived from the business strategy, such as sales

growth rate or market share in targeted regions or customers. Figure 3-2 shows the concept

behind the development of a balanced scorecard.

Measures in the learning and growth perspective that serve as drivers for the other three

perspectives are based on three themes. First, employee capabilities, which include employee

satisfaction, retention, and productivity, are developed. Improving satisfaction typically

improves retention and productivity. Second, development of information systems capabili

ties is as important as the system for procuring raw material, parts, or components. Third,

creation of a climate for growth through motivation and empowerment is an intangible asset

that merits consideration.

For each of the four perspectives, diagnostic and strategic measures could be identified.

Diagnostic measures relate to keeping a business in control or in operation (similar to the

concept of quality control). On the contrary, strategic measures are based on achieving

competitive excellence based on the business strategy. They relate to the position of the

company relative to its competitors and information on its customers, markets, and suppliers.

FIGURE 3-2 Balanced scorecard.
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Strategic measures could be of two types: outcome measures and performance measures.

Outcomemeasures are based on results frompast efforts and are lagging indicators. Examples

are return on equity or employee productivity. Performance measures reflect the uniqueness

of the business strategy and are lead indicators, examples of which are sales growth rate by

segment or percentage revenue from new products. Each performance measure has to be

related to an outcome measure through a cause-and-effect type of analysis, which will

therefore reflect thefinancial drivers of profitability. It could also identify the specific internal

processes that will deliver value to targeted customers if the company strategy is to expand its

market share for a particular category of customers.

In the learning and growth perspective, employee satisfaction, a strategic lag indicator,

could bemeasured on an ordinal scale of 1 to 5.Another lag indicator could be the revenue per

employee, a measure of employee productivity. A performance measure, a lead indicator,

could be the strategic job coverage ratio, which is the ratio of the number of employees

qualified for strategic jobs to the organizational needs that are anticipated. This is ameasure of

the degree to which the company has reskilled its employees. Under motivation, an outcome

measure could be the number of suggestions per employee or the number of suggestions

implemented.

When considering the internal processes perspective, one is required to identify the critical

processes that will enable the meeting of customer or shareholder objectives. Based on the

expectations of specific external constituencies, they may impose demands on internal

processes. Cycle time, throughput, and costs associatedwith existing processes are examples

of diagnostic measures. In the strategic context, a business process for creating value could

include innovation, operations, and post-sale service. Innovation may include basic research

to develop newproducts and services or applied research to exploit existing technology. Time

to develop new products is an example of a strategic outcome measure. Under post-sale

service, measures such as responsiveness (measured by time to respond), friendliness, and

reliability are applicable.

The strategic aspect of the customer perspective deals with identifying customers to target

and the corresponding market segments. For most businesses, core outcome measures are

market share, degree of customer retention, customer acquisition, customer satisfaction, and

customer profitability from targeted segments. All of these are lagging measures and do not

indicate what employees should be doing to achieve desired outcomes. Thus, under

performance drivers (leading indicators), measures that relate to creating value for the

customer are identified. These may fall in three broad areas: product/service attributes,

customer relationship, and image and reputation. In association with product/service

attributes, whereas lead time for existing products may be a diagnostic measure, time to

serve targeted customers (e.g., quick check-in for business travelers in a hotel) is a strategic

performance measure. Similarly, while quality of product/services (as measured by, say,

defect rates) is considered as a “must,” some uniquemeasures such as service guarantees (and

the cost of such), which offer not only a full refund but also a premium above the purchase

price, could be a performance measure.

Under the financial perspective, the strategic focus is dependent on the stage in which the

organization currently resides (i.e., infancy, dominancy, or maturity). In the infancy stage,

companies capitalize on significant potential for growth. Thus, large investments aremade in

equipment and infrastructure which may result in negative cash flow. Sales growth rate by

product or market segment could be a strategic outcome measure. In the dominancy phase,

where the business dwells mainly on the existing market, traditional measures such as gross

margin or operating income are valid. Finally, for those in the mature stage, a company may
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not invest in new capabilities with a goal of maximizing cash flow. Unit costs could be a

measure. For all three phases, some common themes are revenue growth, cost reduction, and

asset utilization (Kaplan and Norton 1996).

Several features are to be noted about the balanced scorecard. First, under strategic

measures, the link between performance measures and outcome measures represent a

cause-and-effect relationship. However, based on the outcome measures observed and a

comparison with the strategic performance expected, this feedback may indicate a choice of

different performance measures. Second, all of the measures in the entire balanced scorecard

represent a reflection of a business’s performance. If such a performance does not match the

performance expected based on the company strategy, a feedback loop exists to modify the

strategy. Thus, the balanced scorecard serves an important purpose in linking the selection

and implementation of an organization’s strategy.

Performance Standards

One intended outcome of a quality policy is a desirable level of performance: that is, a

defect-free product that meets or exceeds customer needs. Even though current performance

may satisfy customers, organizations cannot afford to be complacent. Continuous improve

ment is the only way to stay abreast of the changing needs of the customer. The tourism

industry, for instance, has seen dramatic changes in recent years; options have increased and

customer expectations have risen. Top-notch facilities and a room filled with amenities are

now the norm and don’t necessarily impress the customer. Meeting and exceeding consumer

expectations are no small challenges. Hyatt Hotels Corporation has met this challenge

head-on. Its “In Touch 100” quality assurance initiative provides a framework for its quality

philosophy and culture. Quality at Hyatt means consistently delivering products and services

100% of the time. The In Touch 100 program sets high standards—standards derived from

guest and employee feedback—and specifies the pace that will achieve these standards

every day. The core components of the quality assurance initiative are standards, technology,

training, measurements, recognition, communication, and continuous improvement

(Buzanis 1993).

Six Sigma Quality Although a company may be striving toward an ultimate goal of zero

defects, numerical standards for performance measurement should be avoided. Setting

numerical values that may or may not be achievable can have an unintended negative

emotional impact. Not meeting the standard, even though the company is making significant

progress, can be demoralizing for everyone. Numerical goals also shift the emphasis to the

short term, as long-term benefits are sacrificed for short-term gains.

So, the question is: How do we measure performance? The answer is: by making

continuous improvement the goal and then measuring the trend (not the numbers) in

improvement. This is also motivational. Another effective method is benchmarking; this

involves identifying high-performance companies or intra-company departments and using

their performance as the improvement goal. The idea is that although thegoalsmaybedifficult

to achieve, others have shown that it can be done.

Quantitative goals do have their place, however, as Motorola, Inc. has shown with its

concept of six sigmaquality. Sigma (σ) stands for the standard deviation, which is ameasure

of variation in the process. Assuming that the process output is represented by a normal

distribution, about 99.73% of the output is contained within bounds that are three standard

deviations (3σ) from themean. As shown in Figure 3-3, these are represented as the lower and
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FIGURE 3-3 Process output represented by a normal distribution.

upper tolerance limits (LTL and UTL). The normal distribution is characterized by two

parameters: themean and the standard deviation. Themean is ameasure of the location of the

process. Now, if the product specification limits are three standard deviations from themean,

the proportion of nonconforming product is about 0.27%, which is approximately 2700 parts

per million (ppm); that is, the two tails, each 1350 ppm, add to 2700 ppm. On the surface, this

appears to be a good process, but appearances can be deceiving. When we realize that most

products and services consist of numerous processes or operations, reality begins to dawn.

Even though a single operationmay yield 97.73% good parts, the compounding effect of out

of-tolerance partswill have amarked influence on the quality level of thefinishedproduct. For

instance, for a product that contains 1000 parts or has 1000 operations, an average of 2.7

defects per product unit is expected. The probability that a product contains no defective parts

is only 6.72% (e�2.7, using the Poisson distribution discussed in a later chapter)! This means

that only about 7units in100will go through the entiremanufacturingprocesswithout adefect

(rolled throughput yield)—not a desirable situation.

For a product to be built virtually defect free, itmust be designed to specification limits that

are significantly more than ±3σ from the mean. In other words, the process spread as

measured by ±3σ has to be significantly less than the spread between the upper and lower

specification limits (USL and LSL). Motorola’s answer to this problem is six sigma quality;

that is, process variability must be so small that the specification limits are six standard

deviations from the mean. Figure 3-4 demonstrates this concept. If the process distribution

is stable (i.e., it remains centered between the specification limits), the proportion of

nonconforming product should be only about 0.001 ppm on each tail.

In real-world situations, the process distribution will not always be centered between the

specification limits; process shifts to the right or left are not uncommon. It can be shown that

even if the process mean shifts by as much as 1.5 standard deviations from the center,

the proportion nonconforming will be about 3.4 ppm. Comparing this to a 3σ capability of

2700 ppm demonstrates the improvement in the expected level of quality from the process.

If we consider the previous example for a product containing 1000 parts and we design it for
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FIGURE 3-4 Six sigma capability.

6σ capability, an average of 0.0034defect per product unit (3.4 ppm) is expected instead of the

2.7 defects expected with 3σ capability. The cumulative yield (rolled throughput yield) from

theprocesswill thusbe about 99.66%, avast improvement over the 6.72%yield in the 3σ case.

Establishing a goal of 3σ capability is acceptable as a starting point, however, because it

allows an organization to set a baseline for improvement. As management becomes more

process oriented, higher goals such as 6σ capability become possible. Such goalsmay require

fundamental changes in management philosophy and the organizational culture.

Although the previous description of six sigma has defined it as a metric, on a broader

perspective six sigma may also be viewed as a philosophy or a methodology for continuous

improvement. When six sigma is considered as a philosophy, it is considered as a strategic

business initiative. In this context, the theme of identification of customer needs and ways to

satisfy the customer is central.Along the linesof other philosophies, continuous improvement

is integral to six sigma as well.

As a methodology, six sigma may be viewed as the collection of the following steps or

phases: define, measure, analyze, improve, and control. Within each phase there are certain

tools that could be utilized. Some of the tools are discussed in this chapter. In thedefinephase

customer needs are translated to specific attributes that are critical to meeting such needs.

Typically, these are categorized in terms of critical to quality, delivery, or cost. Identification

of these attributes will create a framework for study. For example, suppose that the waiting

time of customers in a bank is the problem to be tackled. The number of tellers on duty during

specific periods in the day is an attribute that is critical to reducing the waiting time, which

might be a factor of investigation.

Themeasure phase consists of identifyingmetrics for process performance. This includes

theestablishmentofbaselinelevelsaswell. Inourexample,achosenmetriccouldbetheaverage

waitingtimepriortoservice, inminutes,whilethebaselinelevelcouldbethecurrentvalueofthis

metric, say 5 minutes. Key process input and output variables are also identified. In the define

phase, some tools could be the process flowcharts or its detailed version, the process map. To

identify thevital fewfromthe trivialmany,aParetochart couldbeappropriate.Further, to study

the various factors that may affect an outcome, a cause-and-effect diagrammay be used. In the

measurephase,onefirsthas toensure that themeasurement system itself is stable.The technical
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name for such a study is gage repeatability and reproducibility. Thereafter, benchmark

measures of process capability could be utilized, some ofwhich are defects per unit of product,

partspermillionnonconforming,androlled throughoutyield, representingtheproportionof the

final product that has no defects. Other measures of process capability are discussed later in a

separate chapter.

In the analyze phase, the objective is to determine which of a multitude of factors affects

the output variable (s) significantly, through analysis of collected data. Tools may be simple

graphical tools such as scatterplots andmultivari charts. Alternatively, analyticalmodelsmay

be built linking the output or response variable to one of more independent variables through

regression analysis. Hypothesis testing on selected parameters (i.e., average waiting time

before and after process improvement) could be pursued. Analysis-of-variance techniques

may be used to investigate the statistical significance of one or more factors on the response

variable.

The improve phase consists of identifying the factor levels of significant factors to

optimize the performancemeasure chosen,which could be tominimize,maximize, or achieve

a goal value. In our example, the goal could be to minimize the average waiting time of

customers in the bank subject to certain resource or other process constraints. Here, concepts

in design of experiments are handy tools.

Finally, the control phase deals with methods to sustain the gains identified in the

preceding phase. Methods of statistical process control using control charts, discussed ex

tensivelyinlaterchapters,arecommontools.Processcapabilitymeasuresarealsomeaningfulin

this phase. They may provide a relative index of the degree to which the improved

product, process, or service meets established norms based on customer requirements.

3-3 QUALITY FUNCTION DEPLOYMENT

Quality functiondeployment (QFD) is a planning tool that focuses on designing quality into

a product or service by incorporating customer needs. It is a systems approach involving

cross-functional teams (whosemembers are not necessarily fromproduct design) that looks at

the complete cycle of product development. This quality cycle starts with creating a design

that meets customer needs and continues on through conducting detailed product analyses of

parts and components to achieve the desired product, identifying the processes necessary to

make the product, developing product requirements, prototype testing, final product or

service testing, and finishing with after-sales troubleshooting.

QFD is customer driven and translates customers’ needs into appropriate technical

requirements in products and services. It is proactive in nature. Also identified by other

names—house of quality, matrix product planning, customer-driven engineering, and

decision matrix—it has several advantages. It evaluates competitors from two perspectives,

the customer’s perspective and a technical perspective. The customer’s view of competitors

provides the company with valuable information on the market potential of its products.

The technical perspective, which is a form of benchmarking, provides information on the

relative performance of the companywith respect to industry leaders. This analysis identifies

the degree of improvements needed in products and processes and serves as a guide for

resource allocation.

QFD reduces the product development cycle time in each functional area, from product

inception and definition to production and sales. By considering product and design along

with manufacturing feasibility and resource restrictions, QFD cuts down on time that would
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otherwise be spent onproduct redesign.Midstreamdesign changes areminimized, alongwith

concerns on process capability and post-introduction problems of the product. This results in

significant benefits for products with long lead times, such as automobiles. Thus, QFD has

been vital for the Ford Motor Company and General Motors in their implementation of total

quality management.

Companies useQFD to create training programs, select new employees, establish supplier

development criteria, and improve service. Cross-functional teams have also used QFD to

show the linkages between departments and thereby have broken down existing barriers of

communication. Although the advantages of QFD are obvious, its success requires a

significant commitment of time and human resources because a large amount of information

is necessary for its startup.

QFD Process

Figure 3-5 shows a QFD matrix, also referred to as the house of quality. The objective

statement delineates the scope of the QFD project, thereby focusing the team effort. For a

space shuttle project, for example, the objective could be to identify critical safety features.

Only one task is specified in the objective.Multiple objectives are split into separate QFDs in

order to keep a well-defined focus.

FIGURE 3-5 Quality function deployment matrix: the house of quality.
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TABLE 3-1 Importance Rating of Credit-Card Customer Requirements

Customer Requirement (“Whats”) Importance Rating

Low interest rate 2

Error-free transactions 5

No annual fee 1

Extended warranty at no additional cost 3

Customer service 24 hours a day 4

Customers’ advocate in billing disputes 4

Thenext step is to determine customer needs andwants. These are listed as the “whats” and

represent the individual characteristics of the product or service. For example, in credit-card

services, the “whats” could be attributes such as a low interest rate, error-free transactions, no

annual fee, extended warranty at no additional cost, customer service 24 hours a day, and a

customers’ advocate in billing disputes. The list of “whats” is kept manageable by grouping

similar items. On determination of the “whats” list, a customer importance rating that

prioritizes the “whats” is assigned to each item. Typically, a scale of 1–5 is used, with 1 being

the least important. Multiple passes through the list may be necessary to arrive at ratings that

are acceptable to the team. The ratings serve as weighting factors and are used as multipliers

for determining the technical assessment of the “hows.” The focus is on attributes with high

ratings because they maximize customer satisfaction. Let’s suppose that we have rated

attributes for credit-card services as shown in Table 3-1. Our ratings thus imply that our

customers consider error-free transactions to be the most important attribute and the least

important to be charging no annual fee.

The customer plays an important role in determining the relative position of an organiza

tionwith respect to that of its competitors for each requirement or “what.” Such a comparison

is entered in the section on “customer assessment of competitors.”Thus, customer perception

of the product or service is verified, which will help identify strengths and weaknesses of the

company. Different focus groups or surveys should be used to attain statistical objectivity.

One outcome of the analysis might be new customer requirements, which would then be

added to the list of “whats,”or the importance ratingsmight change.Results from this analysis

will indicate what dimensions of the product or service the company should focus on. The

same rating scale that is used to denote the importance ratings of the customer requirements is

used in this analysis.

Consider, for example, the customer assessment of competitors shown inTable 3-2,where

A represents our organization. The ratings are average scores obtained from various samples

of consumers.The three competitors (companiesB,C, andD) areour company’s competition,

so themaximumrating scores in each “what”will serve asbenchmarks and thus the acceptable

standard towardwhichwewill strive. For instance, companyChas a ratingof 4 in the category

“customer service 24 hours a day” compared to our 2 rating; we are not doing as well in this

“what.”We have identified a gap in a customer requirement that we consider important. To

close this gap we could study company C’s practices and determine whether we can adopt

some of them. We conduct similar analyses with the other “whats,” gradually implementing

improved services. Our goal is tomeet or beat the circled values in Table 3-2, which represent

best performances in each customer requirement. That is, our goal is to become the

benchmark.

Coming up with a list of technical descriptors—the “hows”—that will enable our

company to accomplish the customer requirements is the next step in the QFD process.
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TABLE 3-2 Customer Assessment of Competitors

Competitive Assessment of Companies

Customer Requirements (“Whats”) A B C D

Low interest rate 3 2 ○4 2

Error-free transactions 4 ○5 3 3

No annual fee ○5 ○5 2 3

Extended warranty at no additional cost 2 2 1 ○4

Customer service 24 hours a day 2 2 ○4 3

Customers’ advocate in billing disputes ○4 2 3 3

Multidisciplinary teams whose members originate in various departments will brainstorm to

arrive at this list. Departments such as product design and development, marketing, sales,

accounting, finance, process design, manufacturing, purchasing, and customer service are

likely to be represented on the team. The key is to have a breadth of disciplines in order to

“capture” all feasible “hows.” To improve our company’s ratings in the credit-card services

example, the team might come up with these “hows”: software to detect errors in billing,

employee training on data input and customer services, negotiations and agreements with

major manufacturers and merchandise retailers to provide extended warranty, expanded

scheduling (including flextime) of employee operational hours, effective recruiting, training

in legal matters to assist customers in billing disputes, and obtaining financial management

services.

Target goals are next set for selected technical descriptors or “hows.” Three symbols are

used to indicate target goals: ↑ (maximize or increase the attained value), ↓ (minimize or

decrease the attained value), and○� (achieve a desired target value). Table 3-3 shows howour

team might define target goals for the credit-card services example. Seven “hows” are listed

along with their target goals. As an example, for how 1, creating a software to detect billing

errors, the desired target value is zero: that is, no billing errors. For how 2, it is desirable to

maximize or increase the effect of employee training to reduce input errors and interact

effectively with customers. Also, for how 4, the target value is to achieve customer service

TABLE 3-3 Target Goals of Technical Descriptors

“Hows” 1 2 3 4 5 6 7
� �Target goals ○ ↑ ↑ ○ ↑ ↑ ↑

Legend

Number Technical descriptors or “hows”

1 Software to detect billing errors

2 Employee training on data input and customer services

3 Negotiations with manufacturers and retailers (vendors)

4 Expanded scheduling (including flextime) of employees

5 Effective recruiting

6 Legal training

7 Financial management services

Symbol Target goal

↑ Maximize or increase attained value

↓ Minimize or decrease attained value
�○ Achieve a target value
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FIGURE 3-6 Correlation matrix of “Hows.”

24 hours a day. If measurable goals cannot be established for a technical descriptor, it should

be eliminated from the list and the inclusion of other “hows” considered.

The correlationmatrix of the relationship between the technical descriptors is the “roof” of

the house of quality. In the correlation matrix shown in Figure 3-6, four levels of relationship

are depicted: strong positive, positive, negative, and strong negative. These indicate the

degree to which the “hows” support or complement each other or are in conflict. Negative

relationships may require a trade-off in the objective values of the “hows” when a technical

competitive assessment is conducted. In Figure 3-6, which correlates the “hows” for our

credit-card services example, how 1, creating a software to detect billing errors, has a strong

positive relationship (++)with how2, employee trainingondata input and customer services.

The user friendliness of the software will have an impact on the type and amount of training

needed.A strongpositive relationship indicates the possibility of synergistic effects.Note that

how 2 also has a strong positive relationship with how 5; this indicates that a good recruiting

program in which desirable skills are incorporated into the selection procedure will form the

backbone of a successful and effective training program.

Following this, a technical competitive assessment of the “hows” is conducted along

the same lines as the customer assessment of competitors we discussed previously. The

difference is that instead of using customers to obtain data on the relative position of

the company’s “whats” with respect to those of the competitors, the technical staff of the

company provides the input on the “hows.”Arating scale of 1–5, as used inTable 3-2,may be

used. Table 3-4 shows how our company’s technical staff has assessed technical competi

tiveness for the “hows” in the credit-card services example.Our three competitors, companies

B, C, and D, are reconsidered. For how 1 (creating a software to detect billing errors), our
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TABLE 3-4 Technical Competitive Assessment of “Hows”

Technical Descriptors (“Hows”)

Company 1 2 3 4 5 6 7

A 4 3 2 3 4 ○4 ○5

B ○5 3 1 ○4 1 2 3

C 3 ○5 2 2 ○5 3 2

D 2 2 ○4 1 3 3 4

company is doing relatively well, with a rating of 4, but company B, with its rating of 5, is

doing better; company B is therefore the benchmark against which we will measure our

performance. Similarly, company C is the benchmark for how 2; we will look to improve the

quality and effectiveness of our training program. The other assessments reveal that we have

room to improve in hows 3, 4, and 5, but in hows 6 and 7 we are the benchmarks. The circled

values in Table 3-4 represent the benchmarks for each “how.”

The analysis shown in Table 3-4 can also assist in setting objective values, denoted by the

“how muches,” for the seven technical descriptors. The achievements of the highest-scoring

companies are set as the “how muches,” which represent the minimum acceptable achieve

ment level for each “how.”For example, for how4, since companyBhas the highest rating, its

achievement level will be the level that our company (company A) will strive to match or

exceed. Thus, if company B provides customer service 16 hours a day, this becomes our

objective value. If we cannot achieve these levels of “how muches,”we should not consider

entering this market because our product or service will not be as good as the competition’s.

In conducting the technical competitive assessment of the “hows,” the probability of

achieving the objective value (the “how muches”) is incorporated in the analysis. Using a

rating scale of 1–5, 5 representing a high probability of success, the absolute scores are

multiplied by the probability scores to obtain weighted scores. These weighted scores now

represent the relative positionwithin the industry and the company’s chances of becoming the

leader in that category.

The final step of the QFD process involves the relationship matrix located in the center of

the house of quality (see Figure 3-5). It provides a mechanism for analyzing how each

technical descriptorwill help in achieving each “what.”The relationshipbetween a “how” and

a “what” is represented by the following scale: 0� no relationship; 1� low relationship;

3�medium relationship; 5� high relationship. Table 3-5 shows the relationship matrix for

the credit-card services example. Consider, for instance, how 2 (employee training on data

input and customer services). Our technical staff believes that this “how” is related strongly to

providing error-free transactions, so a score of 5 is assigned. Furthermore, this “how” has a

moderate relationship with providing customer service 24 hours a day and serving as

customers’ advocate in billing disputes, so a score of 3 is assigned for these relationships.

Similar interpretations are drawn from the other entries in the table. “Hows” that have a large

number of zeros do not support meeting the customer requirements and should be dropped

from the list.

The cell values, shown in parentheses in Table 3-5, are obtained by multiplying the

rated score by the importance rating of the corresponding customer requirement. The absolute

score for each “How” is calculated by adding the values in parentheses. The relative score is

merely a ranking of the absolute scores, with 1 representing themost important. It is observed

that how 5 (effective recruiting) is most important because its absolute score of 57 is highest.
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TABLE 3-5 Relationship Matrix of Absolute and Relative Scores

Customer Requirements

(“Whats”)

Importance

Ratings

Technical Descriptors (“Hows”)

1 2 3 4 5 6 7

Low interest rate 2 0 (0) 0 (0) 5 (10) 0 (0) 0 (0) 0 (0) 5 (10)

Error-free transactions 5 5 (25) 5 (25) 0 (0) 3 (15) 5 (25) 0 (0) 0 (0)

No annual fee 1 0 (0) 0 (0) 3 (3) 0 (0) 0 (0) 0 (0) 5 (5)

Extended warranty 3 0 (0) 1 (3) 5 (15) 0 (0) 0 (0) 3 (9) 3 (9)

Customer service

24 hours a day

4 1 (4) 3 (12) 0 (0) 5 (20) 5 (20) 3 (12) 0 (0)

Customers’ advocate

in billing disputes

4 1 (4) 3 (12) 5 (20) 0 (0) 3 (12) 5 (20) 1 (4)

Absolute score 33 52 48 35 57 41 28

Relative score 6 2 3 5 1 4 7

Technical competitive

assessment

5 5 4 4 5 4 5

Weighted absolute score 165 260 192 140 285 164 140

Final relative score 4 2 3 6.5 1 5 6.5

The analysis can be extended by considering the technical competitive assessment of the

“hows.”Using the rating scores of the benchmark companies for each technical descriptor—

that is, the objective values (the “how muches”) from the circled values in Table 3-4—our

team can determine the importance of the “hows.” Theweighted absolute scores in Table 3-5

are found by multiplying the corresponding absolute scores by the technical competitive

assessment rating. The final scores demonstrate that the relative ratings of the top three

“hows” are the same as before. However, the rankings of the remaining technical descriptors

have changed. Hows 4 and 7 are tied for last place, each with an absolute score of 140 and a

relative score of 6.5 each. Management may consider the ease or difficulty of implementing

these “hows” in order to break the tie.

Our example QFD exercise illustrates the importance of teamwork in this process. An

enormous amount of information must be gathered, all of which promotes cross-functional

understanding of the product or service design system. Target values of the technical

descriptors or “hows” are then used to generate the next level of house of quality diagram,

where theywill become the “whats.”TheQFDprocess proceeds by determining the technical

descriptors for these new “whats.” We can therefore consider implementation of the QFD

process in different phases. As Figure 3-7 depicts, QFD facilitates the translation of customer

requirements into a product whose features meet these requirements. Once such a product

design is conceived, QFD may be used at the next level to identify specific characteristics of

critical parts that will help in achieving the product designed. The next level may address the

design of a process in order tomake parts with the characteristics identified. Finally, the QFD

FIGURE 3-7 Phases of use of QFD.
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process identifies production requirements for operating the process under specified condi

tions. Use of quality function deployment in such a multiphased environment requires a

significant commitment of time and resources. However, the advantages—the spirit of

teamwork, cross-functional understanding, and an enhanced product design—offset this

commitment.

3-4 BENCHMARKING AND PERFORMANCE EVALUATION

The goal of continuous improvement forces an organization to look for ways to improve

operations. Be it a manufacturing or service organization, the company must be aware of the

best practices in its industry and its relative position in the industry. Such information will set

the priorities for areas that need improvement.

Organizations benefit from innovation. Innovative approaches cut costs, reduce lead time,

improve productivity, save capital and human resources, and ultimately lead to increased

revenue. They constitute the breakthroughs that push product or process to new levels of

excellence. However, breakthroughs do not happen very often. Visionary ideas are few and

far between. Still, when improvements come, they are dramatic and memorable. The

development of the computer chip is a prime example. Its ability to store enormous amounts

of information in a fraction of the space that was previously required has revolutionized our

lives. Figure 3-8 shows the impact of innovation on a chosen quality measure over time. At

times a and b innovations occur as a result of which steep increases in quality from x to y and y

to z are observed.

Continuous improvement, on the other hand, leads to a slow but steady increase in the

quality measure. Figure 3-8 shows that for certain periods of time a process with continuous

improvement performs better than one that depends only on innovation. Of course, once

an innovation takes place, the immense improvement in the quality measure initially

outperforms the small improvements that occur on a gradual basis. This can be useful in

gaining market share, but it is also a high-risk strategy because innovations are rare. A

FIGURE 3-8 Impact of innovation and continuous improvement.
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company must carefully assess how risk averse it is. If its aversion to risk is high, continuous

improvement is its best strategy. Aprocess that is guaranteed to improve gradually is always a

wise investment.

Oneway to promote continuous improvement is through innovative adaptation of the best

practices in the industry. To improve its operations, an organization can incorporate

information on the companies perceived to be the leaders in the field. Depending on the

relative position of the companywith respect to the industry leader, gains will be incremental

or dramatic. Incorporating such adaptations on an ongoing basis provides a framework for

continuous improvement.

Benchmarking

As discussed earlier, the practice of identifying best practices in industry and thereby setting

goals to emulate them is known as benchmarking. Companies cannot afford to stagnate; this

guarantees a loss of market share to the competition. Continuous improvement is a mandate

for survival, and such fast-paced improvement is facilitated by benchmarking. This practice

enables an organization to accelerate its rate of improvement. While innovation allows an

organization to “leapfrog” its competitors, it does not occur frequently and thus cannot be

counted on. Benchmarking, on the other hand, is doable. To adopt the best, adapt it

innovatively, and thus reap improvements is a strategy for success.

Specific steps for benchmarking vary from company to company, but the fundamental

approach is the same. One company’s benchmarking may not work at another organization

because of different operating concerns. Successful benchmarking reflects the culture of the

organization, works within the existing infrastructure, and is harmonious with the leader

ship philosophy. Motorola, Inc., winner of the Malcolm Baldrige Award for 1988, uses a

five-step benchmarking model: (1) Decide what to benchmark; (2) select companies to

benchmark; (3) obtain data and collect information; (4) analyze data and form action plans;

and (5) recalibrate and start the process again.

AT&T,which has twoBaldrigewinners among its operating units, uses a nine-stepmodel:

(1)Decidewhat tobenchmark; (2) develop abenchmarkingplan; (3) select amethod to collect

data; (4) collect data; (5) select companies to benchmark; (6) collect data during a site visit; (7)

compare processes, identify gaps, andmake recommendations; (8) implement recommenda

tions; and (9) recalibrate benchmarks.

A primary advantage of the benchmarking practice is that it promotes a thorough

understanding of the company’s own processes—the company’s current profile is well

understood. Intensive studies of existing practices often lead to identification of non-value

added activities and plans for process improvement. Second, benchmarking enables com

parisonsof performancemeasures indifferent dimensions, eachwith thebest practices for that

particularmeasure. It is notmerely a comparison of the organizationwith a selected company,

but a comparison with several companies that are the best for the measure chosen. Some

common performance measures are return on assets, cycle time, percentage of on-time

delivery, percentage of damaged goods, proportion of defects, and time spent on administra

tive functions. The spider chart shown in Figure 3-9 is used to comparemultiple performance

measures and gaps between the host company and industry benchmark practices.

Six performance measures are being considered here. The scales are standardized: say,

between 0 and 1, 0 being at the center and 1 at the outer circumference, which represents the

most desired value. Best practices for each performance measure are indicated, along with

the companies that achieve them. The current performance level of the company performing
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FIGURE 3-9 Spider chart for gap analysis.

the benchmarking is also indicated in the figure. The difference between the company's level

and that of the best practice for that performancemeasure is identified as the gap. The analysis

that focuses onmethods and processes to reduce this gap and thereby improve the company’s

competitive position is known as gap analysis.

Another advantage of benchmarking is its focus on performance measures and processes,

not on the product. Thus, benchmarking is not restricted to the confines of the industry in

which the company resides. It extends beyond these boundaries and identifies organizations

in other industries that are superior with respect to themeasure chosen. It is usually difficult to

obtain data fromdirect competitors. However, companies outside the industry aremore likely

to share such information. It then becomes the task ofmanagement tofindways to adapt those

best practices innovatively within their own environment.

In theUnitedStates, oneof thepioneersofbenchmarking isXeroxCorporation. It embarked

on this process because its market share eroded rapidly in the late 1970s to Japanese

competition. Engineers from Xerox took competitors’ products apart and looked at them

component by component. When they found a better design, they sought ways to adapt it to

their own products or, even better, to improve on it. Similarly, managers from Xerox began

studying thebestmanagement practices in themarket; this includedcompaniesbothwithin and

outside the industry.AsXeroxexploredways to improve itswarehousingoperations, it founda

benchmark outside its own industry: L. L. Bean, Inc., the outdoor sporting goods retailer.

L. L. Bean has a reputation of high customer satisfaction; the attributes that support this

reputation are its ability tofill customer orders quickly and efficientlywithminimal errors and

to deliver undamaged merchandise. The backbone behind this successful operation is an

effective management system aided by state-of-the-art operations planning that addresses

warehouse layout, workflow design, and scheduling. Furthermore, the operations side of

theprocess is backedbyanorganizational culture of empowerment,management commitment
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FIGURE 3-10 Role of benchmarking in implementing best practices.

through effective education and training, and a motivational reward system of incentive

bonuses.

Figure 3-10 demonstrates how benchmarking brings the “soft” and “hard” systems

together. Benchmarking is not merely identification of the best practices. Rather, it seeks

to determine how such practices can be adapted to the organization. The real value of

benchmarking is accomplished only when the company has integrated the identified best

practices successfully into its operation. To be successful in this task, soft and hard systems

must mesh. The emerging organizational culture should empower employees to make

decisions based on the new practice.

For benchmarking to succeed,management must demonstrate its strategic commitment to

continuous improvement andmust alsomotivate employees through an adequate reward and

recognition system that promotes learning and innovative adaptation.Whendealingwithhard

systems, resources must be made available to allow release time from other activities, access

to information on best practices, and installation of new information systems to manage the

information acquired. Technical skills, required for benchmarking such as flowcharting and

process mapping, should be provided to team members through training sessions. The team

must also identify performance measures for which the benchmarking will take place.

Examples of suchmeasures are return on investment, profitability, cycle time, and defect rate.

Several factors influence the adoption of benchmarking; change management is one

of them. Figure 3-11 illustrates factors that influence benchmarking and the subsequent

outcomes that derive from it. In the current environment of global competition, change is

a given. Rather than react haphazardly to change, benchmarking provides an effective

way to manage it. Benchmarking provides a road map for adapting best practices, a major

component of change management. These are process-oriented changes. In addition,

benchmarking facilitates cultural changes in an organization. These deal with overcoming

resistance to change. This is a people-oriented approach, the objective being to demonstrate

that change is not a threat but an opportunity.

The ability to reduce process time and create a model of quick response is important to all

organizations. The concept of time-based competition is linked to reductions in cycle time,

which can be defined as the interval between the beginning and ending of a process, which
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FIGURE 3-11 Influences on benchmarking and its outcomes.

may consist of a sequence of activities. From the customer’s point of view, cycle time is

the elapsed time between placing an order and having it fulfilled satisfactorially. Reducing

cycle time is strongly correlated with performance measures such as cost, market share,

and customer satisfaction. Detailed flowcharting of the process can identify bottlenecks,

decision loops, and non-value-added activities. Reducing decision and inspection

points, creating electronic media systems for dynamic flow of information, standardizing

procedures and reporting forms, and consolidating purchases are examples of tactics that

reduce cycle time. Motorola, Inc., for example, reduced its corporate auditing process over a

three-year period from an average of seven weeks to five days.

Technological development is another impetus for benchmarking. Consider the micro

electronics industry. Its development pace is so rapid that a company has no choice but to

benchmark. Falling behind the competition in this industry means going out of business. In

this situation, benchmarking is critical to survival.

Quality Auditing

The effectiveness of management control programs may be examined through a practice

known as quality auditing.One reason thatmanagement control programs are implemented is

to prevent problems. Despite such control, however, problems can and do occur, so, quality

audits are undertaken to identify problems.

In any quality audit, three parties are involved. The party that requests the audit is known as

the client, the party that conducts the audit is the auditor, and the party being audited is the

auditee. Auditors can be of two types, internal or external. An internal auditor is an employee

of the auditee. External auditors are not members of the auditee’s organization. An external

auditor may be a single individual or a member of an independent auditing organization.

Quality audits fulfill two major purposes. The first purpose, performed in the suitability

quality audit, deals with an in-depth evaluation of the quality program against a reference

standard, usually predetermined by the client. Reference standards are set by several

organizations, including the ANSI/ASQ, ISO, and British Standards Institute (BSI). Some

ISO standards are discussed later in this chapter. The entire organization may be audited or

specific processes, products, or services may be audited. The second purpose, performed in

the conformity quality audit, deals with a thorough evaluation of the operations and

activities within the quality system and the degree to which they conform to the quality

policies and procedures defined.
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Quality audits may be categorized as one of three types. The most extensive and inclusive

type is the system audit. This entails an evaluation of the quality program documentation

(including policies, procedures, operating instructions, defined accountabilities, and respon

sibilities to achieve the quality function) using a reference standard. It also includes an

evaluation of the activities and operations that are implemented to accomplish the quality

objectives desired. Such audits therefore explore conformance to quality management

standards and their implementation to specified norms. They encompass the evaluation of

the phases of planning, implementation, evaluation, and comparison.An example of a system

audit is a pre-award survey, which typically evaluates the ability of a potential vendor to

provide a desired level of product or service.

A second type of quality audit (not as extensive as the system audit) is the process audit,

which is an in-depth evaluation of one or more processes in the organization. All relevant

elements of the identifiedprocess are examined and compared to specified standards.Because

aprocess audit takes less time to conduct than a systemaudit, it ismore focusedand less costly.

If management has already identified a process that needs to be evaluated and improved, the

process audit is an effective means of verifying compliance and suggesting places for

improvement. A process audit can also be triggered by unexpected output from a process. For

industries that use continuous manufacturing processes, such as chemical industries, a

process audit is the audit of choice.

The third type of quality audit is the product audit, which is an assessment of a final

product or service on its ability to meet or exceed customer expectations. This audit may

involve conducting periodic tests on the product or obtaining information from the

customer on a particular service. The objective of a product audit is to determine the

effectiveness of the management control system. Such an audit is separate from decisions

on product acceptance or rejection and is therefore not part of the inspection system used for

such processes. Customer or consumer input plays a major role in the decision to undertake

a product audit. For a company producing a variety of products, a relative comparison of

product performance that indicates poor performers could be used as a guideline for a

product audit.

Audit quality is heavily influenced by the independence and objectivity of the auditor. For

the audit to be effective, the auditor must be independent of the activities being examined.

Thus, whether the auditor is internal or external may have an influence on audit quality.

Consider the assessment of an organization’s quality documentation. It is quite difficult for an

internal auditor to be sufficiently independent to perform this evaluation effectively. For such

suitability audits, external auditors are preferable. System audits are also normally conducted

by external auditors. Process audits can be internal or external, as can product audits. An

example of an internal product audit is a dock audit, where the product is examined prior to

shipment. Product audits conducted at the endof a process line are also usually internal audits.

Product audits conducted at the customer site are typically external audits.

Vendor audits are external. They are performed by representatives of the company that is

seeking the vendor’s services. Knowledge of product and part specifications, contractual

obligations and their secrecy, and purchase agreements often necessitate a second-party audit

where the client company sends personnel from its own staff to perform the audit. Conformity

quality audits may be carried out by internal or external auditors as long as the individuals are

not directly involved in the activities being audited.

Methods for conducting a quality audit are of two types. One approach is to conduct an

evaluation of all quality system activities at a particular location or operation within an

organization, known as a location-oriented quality audit. This audit examines the actions and
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interactions of the elements in the quality program at that location andmay be used to interpret

differences between locations. The second approach is to examine and evaluate activities

relating to a particular element or function within a quality program at all locations where it

applies before moving on to the next function in the program. This is known as a function-

oriented quality audit. Successive visits to each location are necessary to complete the latter

audit. It is helpful in evaluating the overall effectiveness of the quality program and also useful

in tracing the continuity of a particular function through the locations where it is applicable.

The utility of a quality audit is derived only when remedial actions in deficient areas,

exposed by the quality audit, are undertaken by company management. A quality audit does

not necessarily prescribe actions for improvement; it typically identifies areas that do not

conform to prescribed standards and therefore need attention. If several areas are deficient, a

company may prioritize those that require immediate attention. Only on implementation of

the remedial actionswill a company improve its competitive position. Tools that help identify

critical areas, find root causes to problems, and propose solutions include cause-and-effect

diagrams, flowcharts, and Pareto charts; these are discussed later in the chapter.

Vendor Selection and Certification Programs

As discussed in Chapter 2, the modern trend is to establish long-term relationships with

vendors. In an organization’s pursuit of continuous improvement, the purchaser (customer)

and vendor must be integrated in a quality system that serves the strategic missions of both

companies. The vendor must be informed of the purchaser’s strategies for market-share

improvement, advance product information (including changes in design), and delivery

requirements. The purchaser, on the other hand, should have access to information on the

vendor’s processes and be advised of their unique capabilities.

Cultivating a partnership between purchaser and vendor has several advantages. First, it is a

win–win situation for both. To meet unique customer requirements, a purchaser can then

redesign products or components collaborativelywith the vendor. The vendor,whomakes those

particular components, has intimate knowledge of the components and the necessary processes

thatwill produce the desired improvements. The purchaser is thus able to design its own product

in a cost-effective manner and can be confident that the design will be feasible to implement.

Alternatively, the purchaser may give the performance specification to the vendor and entrust

them with design, manufacture, and testing. The purchaser thereby reduces design and

development costs, lowers internal costs, and gains access to proprietary technology through

its vendor, technology that would be expensive to develop internally. Through such partner

ships, the purchaser is able to focus on its areas of expertise, therebymaintaining its competitive

edge. Vendors gain from such partnerships by taking ownership of the product or component

from design to manufacture; they can meet specifications more effectively because of their

involvement in theentire process. Theyalsogain an expanded insight into product andpurchaser

requirements through linkagewith thepurchaser; this helps thembettermeet those requirements.

This, in turn, strengthens the vendor’s relationship with the purchaser.

Vendor Rating and Selection

Maintaining data on the continual performance of vendors requires an evaluation scheme.

Vendor rating based on established performancemeasures facilitates this process. There are

several advantages in monitoring vendor ratings. Since the quality of the output product is a

functionof thequality of the incoming rawmaterial or components procured throughvendors,

it makes sense to establish long-term relationships with vendors that consistently meet or
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exceed performance requirements. Analyzing the historical performance of vendors enables

the company to select vendors that deliver their goods on time. Vendor rating goes beyond

reporting on the historical performance of the vendor. It ensures a disciplinedmaterial control

program. Rating vendors also helps reduce quality costs by optimizing the cost of material

purchased.

Measures of vendor performance, which comprise the rating scheme, address the three

major categories of quality, cost, and delivery. Under quality, some common measures are

percent defective as expressed by defects in parts per million, process capability, product

stoppages due to poor quality of vendor components, number of customer complaints, and

average level of customer satisfaction. The category of cost includes such measures as scrap

and rework cost, return cost, incoming-inspection cost, life-cycle costs, and warranty costs.

The vendor’smaintenance of delivery schedules is important to the purchaser in order tomeet

customer-defined schedules. Some measures in this category are percent of on-time deliver

ies, percent of late deliveries, percent of early deliveries, percent of underorder quantity, and

percent of overorder quantity.

Which measures should be used are influenced by the type of product or service, the

customer’s expectations, and the level of quality systems that exists in the vendor’s organiza

tion. For example, the Federal Express Corporation, winner of the 1990 Malcolm Baldrige

NationalQualityAward in the service category, is the name in fast and reliable delivery. FedEx

tracks itsperformancewithsuchmeasuresas latedelivery, invoiceadjustmentneeded,damaged

packages, missing proof of delivery on invoices, lost packages, and missed pickups. For

incoming material inspection, defectives per shipment, inspection costs, and cost of returning

shipment are suitable measures. For vendors with statistical process control systems in place,

measuringprocesscapability isalsouseful.Customer satisfaction indicescanbeusedwith those

vendors that have extensive companywide quality systems in place.

Vendor performance measures are prioritized according to their importance to the

purchaser. Thus, a weighting scheme similar to that described in the house of quality

(Figure 3-5) is often used. Let’s consider a purchaser that uses rework and scrap cost,

price, percent of on-time delivery, and percent of underorder quantity as its key per

formance measures. Table 3-6 shows these performance measures and the relative

weight assigned to each one. This company feels that rework and scrap costs are most

important, with a weight of 40. Note that price is not the sole determinant; in fact, it

received the lowest weighting.

Table 3-6 shows the evaluationofvendors,A,B, andC.For eachperformancemeasure, the

vendors are rated on a scale of 1–5, with 1 representing the least desirable performance. A

weighted score is obtained by adding the products of the weight and the assigned rating for

each performance measure (weighted rating). The weighted scores are then ranked, with 1

denoting themost desirable vendor. FromTable 3-6we can see that vendorB,with the highest

weighted score of 350, is the most desirable.

Vendor evaluation in quality programs is quite comprehensive. Even the vendor’s culture

is subject to evaluation as the purchaser seeks to verify the existence of a quality program.

Commitment to customer satisfaction as demonstrated by appropriate actions is another

attribute the purchaser will examine closely. The purchaser will measure the vendor’s

financial stability; the purchaser obviously prefers vendors that are going to continue to

exist so the purchaser will not be visited with the problems that follow from liquidity or

bankruptcy.Thevendor’s technical expertise relating to product andprocess design is another

key concern as vendor and purchaser work together to solve problems and to promote

continuous improvement.
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TABLE 3-6 Prioritizing Vendor Performance Measures Using a Weighting Scheme

Vendor A Vendor B Vendor C

Performance

Measure Weight Rating

Weighted

Rating Rating

Weighted

Rating Rating

Weighted

Rating

Price

Rework and

10

40

4

2

40

80

2

4

20

160

3

3

30

120

scrap cost

Percent of

on-time

delivery

Percent of

underorder

quantity

30

20

1

2

30

40

3

4

90

80

2

5

60

100

Weighted score

Rank

190

3

350

1

310

2

Vendor Certification Vendor certification occurs when the vendor has reached the stage

at which it consistentlymeets or exceeds the purchaser’s expectations. Consequently, there is

no need for the purchaser to perform routine inspections of the vendor’s product. Certification

motivates vendors to improve their processes and, consequently, their products and services.

A vendormust also demonstrate a thorough understanding of the strategic quality goals of the

customer such that its own strategic goals are in harmony with those of the customer.

Improving key processes through joint efforts strengthens the relationship between purchaser

and vendor. The purchaser should therefore assess the vendor’s capabilities on a continuous

basis and provide adequate feedback.

A vendor goes through several levels of acceptance before being identified as a long-term

partner. Typically, these levels are an approved vendor, a preferred vendor, and finally a

certified vendor: that is, a “partner” in the quality process. Tomove from one level to the next,

the quality of the vendor’s product or service must improve. The certification process usually

transpires in the followingmanner. First, the process is documented; this defines the roles and

responsibilities of personnel of both organizations. Performance measures, described previ

ously, are chosen, andmeasurementmethods are documented.An orientationmeeting occurs

at this step.

The next step is to gain a commitment from the vendor. The vendor andpurchaser establish

an environment of mutual respect. This is important because they must share vital and

sometimes sensitive information in order to improve process and product quality. A quality

systemsurveyof the vendor is undertaken. In the event that the vendor is certifiedor registered

by a third party, the purchasermay forego its own survey and focus instead on obtaining valid

performance measurements. At this point, the purchaser sets acceptable performance

standards on quality, cost, and delivery and then identifies those vendors that meet these

standards. These are the approved vendors.

Following this step, the purchaser decides on what requirements it will use to define its

preferred vendors. Obviously, these requirements will be more stringent than for approved

vendors. For example, the purchaser may give the top 20% of its approved vendors preferred

vendor status. Preferred vendors may be required to have a process control mechanism in

place that demonstrates its focus on problem prevention (as opposed to problem detection).
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At thenext level of quality, the certified vendor, the criteria entail not only quality, costs, and

delivery measures but also technical support, management attitude, and organizational quality

culture.The value system for the certified vendormust be harmoniouswith that of the purchaser.

An analysis of the performance levels of various attributes is undertaken, and vendors that meet

the stipulated criteria are certified. Finally, a process is established to ensure vendor conformance

on an ongoing basis. Normally, such reviews are conducted annually.

3M Company, as part of its vendor management process, uses five categories to address

increasing levels of demonstrated quality competence to evaluate its vendors. The first

category is the new vendor. Their performance capabilities are unknown initially. Interim

specifications would be provided to them on an experimental basis. The next category is the

approved vendor, where agreed-upon specifications are used and a self-survey is performed

by the vendor. To qualify at this level, vendors need to have aminimumperformance rating of

90% and must also maintain a rating of no less than 88%. Following this is the qualified

vendor. To enter at this level, the vendor must demonstrate aminimum performance rating of

95% and must maintain a rating of at least 93%. Furthermore, the vendor must show that it

meets ISO9001 standards, or be approved by theU.S. Food andDrugAdministration, or pass

a quality system survey conducted by 3M.The next category is the preferred vendor. To enter

this category, the vendor must demonstrate a minimum performance rating of 98% and must

maintain a rating of at least 96%. The preferred vendor demonstrates continuous improve

ment in the process and constantlymeets 3Mstandards.Minimal or no incoming inspection is

performed. The highest level of achievement is the strategic vendor category. These are

typically high-volume, critical-item, or equipment vendors that have entered into strategic

partnerships with the company. They share their own strategic plans and cost data, make

available their plants andprocesses for studyby representatives from3M, andare open to joint

ventures, where they pursue design and process innovations with 3M. The strategic vendor

has a long-term relationship with the company.

Other certification criteria are based on accepted norms set by various agencies. The ISO is

an organization that has prepared a set of standards: ISO 9001,QualityManagement Systems:

Requirements. Certification through this standard sends a message to the purchaser that the

vendor has a documented quality system in place. To harmonize with the ISO 9000 standards,

an international automotive quality standard, ISO/TS 16949, was developed. In the United

States, the big three automakers, Daimler, Ford, andGeneralMotors, have been standardizing

their requirements for suppliers andnowsubscribe to the ISO/TS16949 standards. Further, the

Automotive Industry Action Group (AIAG) has been instrumental in eliminating multiple

audits of suppliers and requirements (often conflicting) from customers. Over 13,000 first-tier

suppliers to the big three automobile companies were required to adopt the standards. These

first-tier suppliers, in turn, created a ripple effect for second-tier and others in the supply chain

to move toward adoption of the ISO/TS 16949 standards.

3-5 HEALTH CARE ANALYTICS

A unique service industry is that of health care. It is of paramount importance for several

reasons. It not only comprises a significant portion of the gross domestic product but also

addresses a basic service that is desirable for all citizens of a country. In the United States, the

rising costs of health care and the associated increase in the aging population further

necessitate a careful consideration of the quality and cost of health care.



116 QUALITY MANAGEMENT: PRACTICES, TOOLS, AND STANDARDS

Health Care Analytics and Big Data

Health-care-related data, be it on patients, physicians, hospitals and providers, research

and evidence-based findings, and knowledge expansion through breakthroughs are

compounding at an aggressive rate beyond comprehension. It may physically be impos

sible to keep up with all of the data on an individual basis. The concept of big data is a

reality. The increased volume and velocity of such data are critical issues. Furthermore, a

major challenge is the ability to integrate data from a variety of sources, some not

necessarily compatible to each other, into a common platform on a dynamic basis and

analyze the information to provide value to the provider, patient, and organization. This

becomes a formidable task for health care analytics.

Application of health care analytics to big data may yield beneficial results to entities at

several levels. Figure 3-12 shows some sequential steps in decision making, using big data,

utilizing health care analytics. At the micro-level, data collected from data warehouses and

other sources will often require some form of cleansing to make it compatible for decision

making. In the simplest format, process data on a patient such aswaiting time to registration,

time to bed occupancy, and waiting time to see a physician may be kept on individual

patients.On the other hand, a laboratory in a facility conducting blood testsmaykeep records

on turnaround time by day and time of day and the order number, which is linked to a

particular patient. Hence, these two data sets could be linked by the patient number, a

commonality present in both. Further, electronic medical records (EMRs) on patients and

facilities may be kept in a variety of formats. Data on some patients on some of the various

process attributes could be missing, implying some form of data cleansing could be

necessary.

Once data are structured in a format suitable for processing, a visual means for

summarizing the information is usually afirst step in the analysis.Development of dashboards

such as average length of stay and mortality or morbidity rates is one form of visualization.

Alternatively, summarygraphs suchas thehistogramof lengthof stayofpatients onamonthly

basis is another form of data visualization.

At the next stage, say at the patient level, health care analytics could utilize the data to

develop predictivemodels by the type of illness. Here, based on patient characteristics, risk-

adjusted models, for example, could be developed for diabetic patients. Models using

methods of regression analysis may be utilized in this context. Such information could be

helpful to physicians for diagnosis aswell asmonitoringof patients. It could lead to changes in

medications as well as patient advisement.

At the macro-level, analysis of various forms of health care data at the aggregate level

could provide a status report on population health by state, region, country, or the world.

Such information could shape the development of health care policies at the national level.

Formulation of such policies based on prescriptive analytics of data could be utilized in

population health management. They typically involve optimization techniques based on

stated objectives and constraints. For example, for diabetic patients, guidelines for a

maximum level of hemoglobin A1C levels could be prescribed along with those for

cholesterol levels.

Uniqueness of Health Care

Customers in Health Care and Their Various Needs There are several features in the

health care system in theUnited States that make it rather unique. Let usfirst considerwho are
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FIGURE 3-12 Health care analytics using big data.

the customers in such a system and what are their needs. First and foremost, patients are the

primary customers. Their needs are in two categories: process-related experiences and

outcomes based on diagnosis. Satisfaction in physician and staff communication and

waiting time to be assigned to bed are examples in the process category. Mortality and

morbidity rates could be outcome measures. It should be noted that, according to the Kano

model, needs of patients could be prioritized by importance, whichwill assist management in

selecting a focused approach.

There are several secondary customers of the health care facilitywhose needsmaybedifferent

from each other. Physicians, who are retained or perform services for the health care facility, are

also customers. Their needs involve the availability of qualified medical and support staff,

adequate facilities, and a suitable work schedule. Support staff and nurses prefer a comfortable

work environment, adequate compensation, and an acceptable work schedule. Payers such as

insurance companies and the federal or state government constitute another category of

customers. They prefer an effective and efficient system in the delivery of health care services

by hospitals and physicians. Investors and stakeholders of the facility are interested in a growing

reputation of the organization and an acceptable rate of return on their investment.
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Organizational Structure Health care facilities usually have an organizational structure

that is composed ofmedical and nonmedical staff. Themanagement structuremay consist of a

chief executive officer and a chief operational officer who are not necessarily trained in the

technical aspects of health care. It is obvious that senior management would prefer the facility

to be ranked highly among peers. Improving patient satisfaction and operationalmeasures and

reducing errors may help in achieving the stated goals. However, input from physicians and

health care knowledgeable staff is important since they deal with the technical aspects of

curing an illness or alleviating the suffering. Flexibility of management in incorporating such

technical input is important to the successful functioning of the organization.

Who Pays? This is one of the most intricate issues in health care in the United States. The

patient, the consumer, is often not themajor contributor. The federal government, through the

Centers for Medicare and Medicaid Services (CMS, 2015), administers the Medicare

program for the elderly and works with state governments to administer the Medicaid

program. health maintenance organizations (HMO) (Kongstvedt, 2001) are another source

that manage care for health insurance for self-funded individuals or group plans for

employers. They act as a liaison with health care providers, which include physicians,

hospitals, clinics, and so on a prepaid basis. Patients have to select a primary care physician,

who often has to provide a referral to see a specialist. HMOs have various operationalmodels.

In a staff model, physicians are salaried employees of the organization. In a group model, the

HMO may contract with a multispecialty physician group practice, where individual

physicians are employed by the group and not the HMO.

Another form of health insurance coverage is through preferred provider organizations

(PPOs). This is a variation of an HMO and combines features of a traditional insurance with

thoseofmanagedcare. ThePPOplan sponsornegotiates a fee-for-service ratewithphysicians

and hospitals. Patients may choose from a network of providers but do need a primary care

physician referral to see a specialist. A PPO enrollee has the option to seek care outside the

network, for which they pay a higher cost.

Yet another alternative form of health insurance coverage is through a point-of-service

(POS) model, which is a hybrid model that combines features of HMOs and PPOs. Patients

pay a copayment for contracted services within a network of providers. However, they do not

need a referral from a primary care physician before seeing a specialist. Additionally, they

have the flexibility to seek care from an out-of-network provider similar to a traditional

indemnity plan. However, the deductible and copayment may be higher in such instances.

Cost containment is a major issue and the U.S. Congress continues to consider legislation

to regulate managed care providers. Some believe that for-profit HMOs place greater

emphasis on revenue than on providing the needed care. The type, form, and criteria of

reimbursement by private and public (such as the federal government) payers to health care

providers have been evolving over the years. Some forms of reimbursement policies are now

discussed.

Fee-for-Services Prior to the 1970s, private andgovernment payers reimbursed physicians

and hospitals customary fees for their services. Insurance companies typically paid the full

amount submitted.As the cost of health care continued to rise, a newmodel came into being in

the 1970s.

Diagnosis-Related Groups This scheme incorporates the concept of fixed case-rate

payment. Based on their diagnosis, patients are categorized into diagnosis-related
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groups (DRGs). Introduced in the 1980s, specificpayment rateswere given to hospitals based

on thepatient diagnosis. This introduced the concept of capitation andencouragedhospitals to

reduce their costs. Expensive, optional tests could be omitted. The hospitals retained more of

their reimbursement if they could run their operations in an effective and efficient manner.

Adoption of such a payment scheme had an impact in reducing length of stay of patients in

hospitals. Medicare’s adoption of this prospective payment system (PPS) using DRG codes

had a major impact on medical financing through the federal government. Currently, DRG

codes exist in a variety of systems to meet the expanded needs (Baker 2002). These include

Medicare DRGs (CMS-DRGs and MS-DRGs), refined DRGs (R-DRG), all-patient DRGs

(AP-DRG), severity DRGs (S-DRG), and all-patient severity-adjusted DRGs (APS-DRG),

for instance. There are somebarriers to the use ofDRGs. First, there aremanyDRGs to choose

from and it may be difficult to identify the exact choice because of overlapping definitions.

Second, many of the DRG codes are privately held. For example, the College of American

Pathologists holds diagnosis codes,while theAmericanMedicalAssociationholds procedure

codes.

Pay-for-Participation A newer payment scheme is pay-for-participation, which

provides incentives to hospitals, say, for participation in quality measurement, regardless

of actual quality delivered (Birkmeyer and Birkmeyer 2006). Such programs create

procedure-specific patient outcome registries that promote collaboration among hospitals

and provide regular feedback. Participants may meet regularly to discuss performance and

methods through which quality may be improved. Quality, therefore, is judged collectively

rather than on an individual hospital. Such a system does not require public reporting.

Consequently, public support lacks for these programs, even though collaborative effortsmay

lead to quality improvement.

Pay-for-Performance The present trend of payment schemes leans toward the pay-for

performance system. It rewards high-performance hospitals and clinicians with a monetary

bonus while low-performance providers are penalized a portion of their reimbursement

(Chung andShauver 2009). Ingeneral, this supports the conceptof “value-based purchasing.”

At the core of the implementation of such a scheme lies the selection of metrics that define

quality. Suchmetrics, classified into the three areas of structure, process, andoutcome,will be

discussed subsequently as they also address a broader issue: How is quality measured in the

area of health care?

TheCMS initially piloted such a program in 2003 and currently has several demonstration

projects. Core performance measures were developed in a variety of areas such as coronary

artery bypass graft, heart failure, acute myocardial infarction, community-acquired pneumo

nia, and hip and knee replacement (Darr 2003). Process measures were mainly used to

measure quality in these areas. Once hospitals report their compliance to the performance

measures, CMS ranks the hospitals,makes thempublic, and uses them to distribute incentives

or assess penalties. Usually, hospitals in the top 10% receive a 2% bonus, those in the next

10% receive a 1%bonus, and those in the top 50% receive recognition but nomonetary bonus.

Hospitals that do notmeetminimumperformance levels could be penalized asmuch as 2%of

their reimbursements.

The Institute of Medicine (IOM) has created design principles for pay-for-performance

programs (IOM 2006). They focus on reliable measures that signify good care and

optimal health outcomes, promote coordination among providers while maintaining a

patient-centered approach, and reward data collection, reporting, and integration of
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information technology. While the intentions of the pay-for-performance system have

been good, the results have been mixed. Carroll (2014) claims that while incentives may

change practice, clinical outcomes have not necessarily improved. Desirable practices

such as spending time with patients are not always quantifi able. Some studies (Rosenthal

and Frank 2006) have shown that there could be some unintended consequences, such as

avoidance of high-risk patients, when payments are linked to outcome improvements.

CMS has proposed the elimination of negative incentives that result from injury, illness,

or death.

Hybrid Programs A national nonprofit organization, Th�e� Le�apfrog� Grou�p� 2000 (www     

.leapfroggroup.org), was created through a membership of 160 private and public sector

employers to create transparency in quality and safety of health care in U.S. hospitals. Some

major goals are to reduce preventable medical errors, encourage public reporting of quality

and outcomes data, and assist consumers in making informed decisions. An objective is to

improve quality while reducing costs. The four “leaps” are as follows (The Leapfrog Group

2000): computerized physician order entry; evidence-based hospital referral; intensive care

unit physician staffing; and the Leapfrog safe practice score. An online voluntary hospital

survey is available. The group has adopted a hospital rewards program, governed by

measures of quality and safety, and provides incentives for both participation and excellence

in performance, two concepts previously described.

Capitation Capitation is a form of payment arrangement contracted byHMOswith health

care providers, such as physicians and nurses that pays a set amount per time period for each

HMO-enrolled patient. The amount reimbursed to the provider is a function of the patient’s

medical history as well as cost of providing care in the particular geographical location.

Providers focus on preventive health care since there is a greater financial reward and less

financial risk in preventing rather than treating an illness. Such risks are better managed by

large providers (Cox 2011).

Bundled Payment A bundled payment reimbursement scheme to health care providers,

which may consist of hospitals and physicians, is based on the expected costs for clinically

defined episodes of care (Rand Corporation 2015). Alternative names to this scheme are

episode-based payment, case rate, evidence-based case rate, global bundled payment, or

packaged pricing. Since a single payment is made to cover, for example, all inpatient and

physician services in a coronary artery bypass graft (CABG) surgery as well as a period of

post–acute care, it is expected that there will be better coordination among the service

providers, leading to an efficient and less costly set of services.

The federal government, through the CMS, is an advocate of such a scheme, which is

also linked to outcomes. It is expected to lead to financial and performance accountability

for episodes of care. Currently four broadly defined models of care exist (CMS 2015):

retrospective acute care inpatient hospitalization; retrospective acute care hospital stay

plus post–acute care; retrospective post–acute care only; and a prospective acute care

based on an entire episode of care. Different episodes of care have been defined in a

variety of areas that span many DRGs. These include, for example, acute myocardial

infarction, amputation, atherosclerosis, cardiac arrhythmia, congestive heart failure,

CABG surgery, diabetes, gastrointestinal hemorrhage, sepsis, and so forth. In the context

of providing coordinated care to patients across various care settings, the model of

accountable care organizations (ACOs) has evolved. These are groups of hospitals,

http://www.leapfroggroup.org
http://www.leapfroggroup.org
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physicians, and health care providers who voluntarily join to provide coordinated high-

quality care to the medicare patients that they serve. Such coordination may help to

prevent medical errors and reduce duplication of services, thereby resulting in cost

savings for Medicare, employers, and patients. Before an ACO can share in any savings

generated, it must demonstrate that it has met defined quality performance standards

developed by CMS. Currently, there are 33 quality measures in the 2014 ACO quality

standards in four key domain areas of patient/caregiver experience, care coordination/

patient safety, at-risk population (that includes diabetes, hypertension, ischemic vascular

disease, heart failure, and coronary artery disease), and preventive care (CMS 2015).

Some advantages of bundled payments include streamlining and coordination of care

among providers. It improves efficiency and reduces redundancy, such as duplicate testing

and unnecessary care. It may encourage economies of scale, especially if providers use a

single product or type of medical supply. Allowing for risk adjustment or case mix, on a

patient-by-patient basis, assists in the determination of an equitable payment amount. Certain

drawbacks may also exist in such a system. It does not discourage unnecessary episodes of

care. Providers could avoid high-risk patients, overstate the severity of illness, provide the

lowest level of service, or delay post-hospital care until after the end of the bundled payment.

Certain illnesses may not fall neatly into the “defined episodes” or a patient could have

multiple bundles that overlap each other (Robinow 2010).

Challenges in Health Care Quality

Given the unique structure of the health care delivery system, there are some challenges to

improving quality and reducing costs concurrently. A few of these are discussed.

Lack of Strategic Planning In all organizations, in conjunction with the vision and

mission, strategic plans must be created, fromwhich operational goals and objectives should

be derived. In the formulation of such plans, the priorities and needs of the customer must be

the guiding light.With the patient being the primary customer, their prioritized needs demand

attention. This leads to identification of the customer needs in health care and associated

metrics for measuring and monitoring them.

Quality Metrics Selection of metrics that define quality is influenced by the patient,

physician, payer, health care facility, accreditation agencies such as The Joint Commission

(TJC), not-for-profit agencies such as the National Committee for Quality Assurance

(NCQA), and the federal government, such as CMS and the IOM, which is a division of

theNationalAcademies of Sciences, Engineering, andMedicine. If a health care organization

seeks accreditation, wishes to use the seal of approval from the NCQA, or wishes to treat

Medicare patients and be reimbursed by CMS, it must meet the prescribed quality standards

set by the corresponding authority. At the national level, there needs to be some form of

coordination to determine stated benchmarks.

Since the various stakeholdersmay have a different set ofmeasures, prioritized in different

ways, itmay be a challenge to come upwithmeasures that satisfy everyone. It should be noted

that anychosenmetricmust bemeasurable for it to bemonitored.Let us, for example, consider

the quality metrics from a patient perspective. These could be facility related, such as

satisfaction with the room, meals, or noise level at night; process related, such as the

interactionwith the physician, nurse, staff orwaiting time for a procedure; or outcome related,

such asoverall patient satisfaction,mortality,morbidity, or lengthof stay.At amore aggregate
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perspective at the national level, improved population health could be an objective, where

certain measures such as the proportion of people suffering from diabetes or hypertension or

deaths annually related to cancer would be of interest. On the other hand, some operational

metrics of quality of a health care facility could be measured by the turnaround time for a

laboratory test, the accuracy of the financial or billing system, or the efficiency of its

collections. For a surgeon, the proportion of readmissions could be a quality metric.

Adoption and Integration of Health Information Technology (HIT) As data continue to

amass at an ever-increasing rate, the use of electronic health records (EHRs) or EMRswill be

the only feasible option that will support decision making in an informed, timely, and error-

free manner. The federal government through the CMS is strongly supporting this initiative.

While data input to EHR/EMR by physicians and providers is important, a critical issue is

the development of a compatible health information technology platform that can assimilate

and integrate various forms and types of data from different sources. Figure 3-13 demon

strates the challenges involved in this concept.

Presently, in creating EHR/EMR records there is not a single standard. Further, clinical

data for the same patient who hasmultiple providers not in the same networkmay be stored in

different formats. Additionally, operational data from health care facilities, laboratories, and

pharmacies could be in varying formats. Financial data, important for billing and collection

and estimation of profitability of the organization, could be in yet another format. The

challenge is to create an HIT platform that can aggregate and integrate these structures into a

compatible platform that is suitable for health care decision making.

Health CareDecision Support Systems One of themajor challenges in decisionmaking in

health care in the twenty-first century is the development of an adequatehealth care decision

support system (HCDSS).With the rate at which knowledge in the field is expanding, it may

not be feasible for individuals to keep up with this information and utilize it in their decision

making without appropriate technology support. While it is true that a decision support

system can only recommend actions based on historical evidence, the importance of the

physician to integrate that information along with current knowledge, which is ongoing and

dynamic, will always exist. Figure 3-14 displays the challenges and the benefits from the

development of a HCDSS.

FIGURE 3-13 Health information technology platform.
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Aggregating and integrating information fromvarious datawarehouses aswell as ongoing

research and discoveries to create an integrated and dynamic knowledge base will require a

coordinated and dedicated effort on a continual basis. This notion will support the concept of

continuous quality improvement but may have the following barriers. High investment costs

and lack of standards, such that most applications do not communicate well, leading to high

costs of interfacing, are a couple. Maintaining privacy of patient records is another barrier as

merging of information takes place (Bates and Gawande 2003).

An ongoing challenge is the development of an appropriate search engine, which is the

backbone of a HCDSS. The search engine must be able to handle the volume of information

and support timely decision making at the point of service (POS) level. It must be able to

integrate the discoveries in the fields of genomics, proteomics, and pharmacogenomics, for

example, to assist the health care provider.

With the adoption of an adequate search engine, the creation of a suitable HCDSS will

occur. Methods of health care analytics will be utilized in the formulation of decisions to be

depicted by the decision support system. The benefits from such a HCDSSwill be realized at

all levels.At the aggregate level, itmay lead to improved population health. Such aDSScould

project the amount of vaccination that would be necessary to stop the spread of a certain

influenza virus in the population. At the patient and physician levels, major benefits may

occur. Reductions in medication errors could occur as possible interactions between drugs to

be taken by the patient are reported to the provider in a timely manner. Also, there is less

chance of an error in the calculation of weight-based doses of medication. Additionally, as

current information on the patient is input to the system, the DSS could provide a rapid

response on certain adverse events such as nosocomial infections. As another example,

remote monitoring of intensive care unit (ICU) patients could happen, which could aid in

timely decisions.On amore general basis,with the reduction ofmedical errors and updates on

waiting times in various units within the facilities, decisions recommended will improve the

effectiveness and efficiency of the facilities.

FIGURE 3-14 Health care decision support systems.
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3-6 TOOLS FOR CONTINUOUS QUALITY IMPROVEMENT

To make rational decisions using data obtained on a product, process, service or from a

consumer, organizations use certain graphical and analytical tools.We explore some of these

tools.

Pareto Diagrams

Pareto diagrams are important tools in the quality improvement process. Alfredo Pareto,

an Italian economist (1848–1923), found that wealth is concentrated in the hands of a few

people. This observation led him to formulate the Pareto principle, which states that the

majority of wealth is held by a disproportionately small segment of the population. In

manufacturing or service organizations, for example, problem areas or defect types follow

a similar distribution. Of all the problems that occur, only a few are quite frequent; the

others seldom occur. These two problem areas are labeled the vital few and the trivial

many. The Pareto principle also lends support to the 80/20 rule, which states that 80% of

problems (nonconformities or defects) are created by 20% of causes. Pareto diagrams

help prioritize problems by arranging them in decreasing order of importance. In an

environment of limited resources, these diagrams help companies decide the order in

which they should address problems.

Example 3-1 We demonstrate the use of Minitab software to construct a Pareto chart.

In Minitab, variables are input as columns in a worksheet. Thus, using the data shown in

Table 3-7 on customer dissatisfaction in airlines, two columns, one labeled “Reasons”

(column C1) and the other labeled “Count” (column C2), are input in theMinitab worksheet.

The following point-and-click commands are executed: Stat>Quality Tools>Pareto

Chart. Select. In Defects or attribute data in, enter the name or column number (in this

example, C1). In Frequencies in, enter the name or column number (in this case, C2) that

contains the count data. Other options exist for axis labels and graph titles. Click OK.

Figure 3-15 shows a Pareto diagram of reasons for airline customer dissatisfaction.Delays

in arrival is themajor reason, as indicated by 40% of customers. Thus, this is the problem that

the airlines should address first.

Flowcharts

Flowcharts, which show the sequence of events in a process, are used for manufacturing and

service operations. They are often used to diagram operational procedures to simplify a

system, as they can identify bottlenecks, redundant steps, and non-value-added activities. A

realistic flowchart can be constructed by using the knowledge of the personnel who are

directly involved in the particular process. Valuable process information is usually gained

TABLE 3-7 Customer Dissatisfaction in Airlines

Reasons Count

Lost baggage 15

Delay in arrival 40

Quality of meals 20

Attitude of attendant 25
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FIGURE 3-15 Pareto diagram for dissatisfied airline customers.

through the construction offlowcharts. Figure 3-16 shows aflowchart for patients reporting to

the emergency department in a hospital. The chart identifies where delays can occur: for

example, in several steps that involve waiting. A more detailed flowchart would allow

pinpointing of key problem areas that contribute to lengthening waiting time.

Further, certain procedures could bemodified or process operations could be combined to

reduce waiting time. A detailed version of the flowchart is the process map, which identifies

the following for each operation in a process: process inputs (e.g., material, equipment,

personnel, measurement gage), process outputs (these could be thefinal results of the product

or service), and process or product parameters (classified into the categories of controllable,

procedural, or noise).Noise parameters are uncontrollable and could represent the in-flowrate

FIGURE 3-16 Flowchart for patients in an emergency department (ED).
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of patients or the absenteeism of employees. Through discussion and data analysis, some of

the parameters could be classified as critical. It will then be imperative to monitor the critical

parameters to maintain or improve the process.

Cause-and-Effect Diagrams

Cause-and-effect diagrams were developed by Kaoru Ishikawa in 1943 and thus are often

called Ishikawa diagrams. They are also known as fishbone diagrams because of their

appearance (in the plotted form). Basically, cause-and-effect diagrams are used to identify

and systematically list various causes that can be attributed to a problem (or an effect)

(Ishikawa 1976). These diagrams thus help determinewhich of several causes has the greatest

effect.A cause-and-effect diagramcan aid in identifying the reasonswhy aprocess goes out of

control. Alternatively, if a process is stable, these diagrams can help management decide

which causes to investigate for process improvement. There are three main applications of

cause-and-effect diagrams: cause enumeration, dispersion analysis, and process analysis.

Cause enumeration is usually developed through a brainstorming session in which

all possible types of causes (however remote they may be) are listed to show their influence

on the problems (or effect) in question. In dispersion analysis, each major cause is

analyzed thoroughly by investigating the subcauses and their impact on the quality charac

teristic (or effect) in question. This process is repeated for each major cause in a prioritized

order. The cause-and-effect diagram helps us analyze the reasons for any variability or

dispersion. When cause-and-effect diagrams are constructed for process analysis, the

emphasis is on listing the causes in the sequence in which the operations are actually

conducted. This process is similar to creating a flow diagram, except that a cause-and-effect

diagram lists in detail the causes that influence the quality characteristic of interest at each step

of a process.

Example 3-2 One of the quality characteristics of interest in automobile tires is the bore

size, which should be within certain specifications. In a cause-and-effect diagram, the final

bore size is the effect. Some of the main causes that influence the bore size are the incoming

material, mixing process, tubing operation, splicing, press operation, operator, and

measuring equipment. For each main cause, subcauses are identified and listed. For the

rawmaterial category, the incoming quality is affected by such subcauses as vendor selection

process (e.g., is the vendor certified?), the content of scrap tire in the rawmaterial, the density,

and the ash content.

Using Minitab, for each Branch or main cause, create a column and enter the

subcauses in the worksheet. Then, execute the following: Stat>Quality Tools>

Cause-and-Effect. Under Causes, enter the name or column number of the main causes.

The Label for each branch may be entered to match the column names. In Effect, input

the brief problem description. Click OK. Figure 3-17 shows the completed cause-and

effect diagram.

Scatterplots

The simplest form of a scatterplot consists of plotting bivariate data to depict the relationship

between two variables. When we analyze processes, the relationship between a controllable

variable and a desired quality characteristic is frequently of importance. Knowing this

relationshipmayhelp us decide how to set a controllable variable to achieve a desired level for
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FIGURE 3-17 Cause-and-effect diagram for the bore size of tires.

the output characteristic. Scatterplots are often used as follow-ups to a cause-and-effect

analysis.

Example 3-3 Suppose that we are interested in determining the relationship between the

depth of cut in amilling operation and the amount of tool wear.We take 40 observations from

the process such that the depth of cut (in millimeters) is varied over a range of values and the

corresponding amount of tool wear (also in millimeters) over 40 operation cycles is noted.

The data values are shown in Table 3-8.

UsingMinitab, choose the commandsGraph> Scatterplot. SelectSimple and clickOK.

Under Y, enter the column number or name, in this case, “Tool wear.” Under X, enter the

column number or name, in this case, “Depth of cut.” Click OK.

The resulting scatterplot is shown in Figure 3-18. It gives us an idea of the relationship

that exists between depth of cut and amount of tool wear. In this case the relationship is

generally nonlinear. For depth-of-cut values of less than 3.0mm, the tool wear rate seems

to be constant, whereas with increases in depth of cut, tool wear starts increasing at an

increasing rate. For depth-of-cut values above 4.5mm, tool wear appears to increase

drastically. This information will help us determine the depth of cut to use to minimize

downtime due to tool changes.

Multivariable Charts

In most manufacturing or service operations, there are usually several variables or attributes

that affect product or service quality. Since realistic problems usually have more than two

variables, multivariable charts are useful means of displaying collective information.

Several types of multivariate charts are available (Blazek et al. 1987). One of these is

known as a radial plot, or star, for which the variables of interest correspond to different

rays emanating from a star. The length of each ray represents the magnitude of the

variable.
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TABLE 3-8 Data on Depth of Cut and Tool Wear

Depth of Cut Tool Wear Depth of Cut Tool Wear

Observation (mm) (mm) Observation (mm) (mm)

1 2.1 0.035 21 5.6 0.073

2 4.2 0.041 22 4.7 0.064

3 1.5 0.031 23 1.9 0.030

4 1.8 0.027 24 2.4 0.029

5 2.3 0.033 25 3.2 0.039

6 3.8 0.045 26 3.4 0.038

7 2.6 0.038 27 2.8 0.040

8 4.3 0.047 28 2.2 0.031

9 3.4 0.040 29 2.0 0.033

10 4.5 0.058 30 2.9 0.035

11 2.6 0.039 31 3.0 0.032

12 5.2 0.056 32 3.6 0.038

13 4.1 0.048 33 1.9 0.032

14 3.0 0.037 34 5.1 0.052

15 2.2 0.028 35 4.7 0.050

16 4.6 0.057 36 5.2 0.058

17 4.8 0.060 37 4.1 0.048

18 5.3 0.068 38 4.3 0.049

19 3.9 0.048 39 3.8 0.042

20 3.5 0.036 40 3.6 0.045

Example 3-4 Suppose that the controllable variables in a process are temperature, pressure,

manganese content, and silicon content. Figure 3-19 shows radial plots, or stars, for two

samples of size 10 taken an hour apart. The sample means for the respective variables are

calculated. These are represented by the length of the rays. A relative measure of quality

FIGURE 3-18 Scatterplot of tool wear versus depth of cut.
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FIGURE 3-19 Radial plot of multiple variables.

performance is used to locate the center of a star vertically (in this case, the percentage of

nonconforming product), while the horizontal axis represents the two sampling times.

Several process characteristics can be observed from Figure 3-19. First, from time 1 to

time 2, an improvement in the process performance is seen, as indicated by a decline in the

percentage nonconforming. Next, we can examinewhat changes in the controllable variables

led to this improvement. We see that a decrease in temperature, an increase in both pressure

and manganese content, and a basically constant level of silicon caused this reduction in the

percentage nonconforming.

Other forms of multivariable plots (such as standardized stars, glyphs, trees, faces, and

weathervanes) are conceptually similar to radial plots. For details on these forms, refer to

Gnanadesikan (1977).

Matrix and Three-Dimensional Plots

Investigating quality improvement in products and processes often involves data that deal

with more than two variables. With the exception of multivariable charts, the graphical

methods discussed so far deal with only one or two variables. Thematrix plot is a graphical

option for situations with more than two variables. This plot depicts two-variable relation

ships between a number of variables all in one plot. As a two-dimensional matrix of separate

plots, it enables us to conceptualize relationships among the variables. TheMinitab software

can produce matrix plots.

Example 3-5 Consider the data shown in Table 3-9 on temperature, pressure, and seal

strength of plastic packages. Since temperature and pressure are process variables, wewant to

investigate their impact on seal strength, a product characteristic.
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TABLE 3-9 Data on Temperature, Pressure, and Seal Strength for Plastic Packages

Obser- Temper- Seal Obser- Temper- Seal

vation ature Pressure Strength vation ature Pressure Strength

1 180 80 8.5 16 220 40 11.5

2 190 60 9.5 17 250 30 10.8

3 160 80 8.0 18 180 70 9.3

4 200 40 10.5 19 190 75 9.6

5 210 45 10.3 20 200 65 9.9

6 190 50 9.0 21 210 55 10.1

7 220 50 11.4 22 230 50 11.3

8 240 35 10.2 23 200 40 10.8

9 220 50 11.0 24 240 40 10.9

10 210 40 10.6 25 250 35 10.8

11 190 60 8.8 26 230 45 11.5

12 200 70 9.8 27 220 40 11.3

13 230 50 10.4 28 180 70 9.6

14 240 45 10.0 29 210 60 10.1

15 240 30 11.2 30 220 55 11.1

Using Minitab, the data are entered for the three variables in a worksheet. Next, choose

Graph>Matrix Plot and Matrix of Plots Simple. Under Graph variables, input

the variable names or column numbers. Click OK. The resulting matrix plot is shown in

Figure 3-20. Observe that seal strength tends to increase linearly with temperature up to a

certain point, which is about 210°C. Beyond 210°C, seal strength tends to decrease. The

relationship between seal strength and pressure decreases with pressure. Also, the existing

process conditions exhibit a relationship between temperature and pressure that decreases

with pressure. Such graphical aids provide us with some insight on the relationship between

the variables, taken two at a time.

FIGURE 3-20 Matrix plot of strength, temperature, and pressure of plastic packages.
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Three-dimensional scatterplots depict the joint relationship of a dependent variable

with two independent variables.While surface-plots demonstrate two-variable relationships,

they do not show the joint effect of more than one variable on a third variable. Since

interactions do occur between variables, a three-dimensional scatterplot is useful in

identifying optimal process parameters based on a desired level of an output characteristic.

Example 3-6 Let’s reconsider the plastic package data shown in Table 3-9. Suppose that

we want to identify the joint relationship of the process variables, temperature and pressure,

on seal strength of packages, an output characteristic. Using Minitab, we choose

Graph> 3D Surface Plot> Surface. Type in the variable names, say Strength in Z,

Pressure in Y, and Temperature in X, then click OK. Figure 3-21 shows the resulting

three-dimensional surface plot of strength versus temperature and pressure. This surface plot

helps us identify optimal process parameter values that will maximize a variable. For

example, a temperature around 230°Cand a pressure around 40 kg/cm2 appear to be desirable

process parameter values for maximizing seal strength.

Failure Mode and Effects Criticality Analysis

Failure mode and effects criticality analysis (FMECA) is a disciplined procedure for

systematic evaluation of the impact of potential failures and thereby to determine a priority of

possible actions thatwill reduce the occurrence of such failures. It can be applied at the system

level, at the design level for a product or service, at the process level for manufacturing or

services, or at the functional level of a component or subsystem level.

In products involving safety issues, say the braking mechanism in automobiles, FMECA

assists in a thorough analysis of what the various failure modes could be, their impact and

effect on the customer, the severity of the failure, the possible causes that may lead to such a

failure, the chance of occurrence of such failures, existing controls, and the chance of

detection of such failures. Based on the information specified above, a risk priority number

(RPN) is calculated, which indicates a relative priority scheme to address the various failures.

The risk priority number is the product of the severity, occurrence, and detection ratings.

FIGURE 3-21 Three-dimensional surface plot of strength versus temperature and pressure of plastic

packages.
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The larger theRPN, thehigher thepriority.Consequently, recommendedactions are proposed

for each failure mode. Based on the selected action, the ratings on severity, occurrence, and

detection are revised. The severity ratings typically do not change since a chosen action

normally influences only the occurrence and/or detection of the failure. Only through

fundamental design changes can the severity be reduced. Associatedwith the action selected,

a rating thatmeasures the risk associatedwith taking that action is incorporated. This rating on

risk is a measure of the degree of successful implementation. Finally, a weighted risk priority

number, which is the product of the revised ratings on severity, occurrence, and detection and

the risk rating, is computed. This number provides management with a priority in the

subsequent failure-related problems to address.

Several benefits may accrue from using failure modes and effects criticality analysis. First,

by addressingallpotential failures evenbefore a product is soldor service rendered, there exists

the ability to improve quality and reliability. A FMECA studymay identify some fundamental

design changes that must be addressed. This creates a better product in the first place rather

than subsequent changes in the product and/or process. Once a better design is achieved,

processes to create such a design can be emphasized. All of this leads to a reduction in

development time of products and, consequently, costs. Since a FMECA involves a team

effort, it leads to a thorough analysis and thereby identification of all possible failures. Finally,

customer satisfaction is improved, with fewer failures being experienced by the customer.

It is important to decide on the level at which FMECA will be used since the degree of

detailed analysis will be influenced by this selection. At the system level, usually undertaken

prior to the introduction of either a product or service, the analysis may identify the general

areas of focus for failure reduction. For a product, for example, this could be suppliers

providing components, parts manufactured or assembled by the organization, or the infor

mation system that links all the units. A design FMECA is used to analyze product or

servicedesignsprior to production oroperation. Similarly, a processFMECAcouldbeused to

analyze the processing/assembly of a product or the performance of a service. Thus, a

hierarchy exists in FMECA use.

After selection of the level and scope of theFMECA, a blockdiagram that depicts the units/

operations and their interrelationships is constructed, and the unit or operation to be studied is

outlined. Let us illustrate use of FMECA through an example. Consider an OEM with one

supplier who assembles to-order computers, as shown in Figure 3-22. There is flow of

information and goods taking place in this chain. We restrict our focus to the OEM, where

failure constitutes not meeting customer requirements regarding order quantity, quality, and

delivery date.

Now, functional requirements are defined based on the selected level and scope.

Table 3-10 lists these requirements based on customer’s order quantity, quality, and delivery

date. Through group brainstorming, potential failures for each functional requirement are

listed. There could be more than one failure mode for each function. Here, for example, a

failure in notmeeting order quantity couldoccur due to the supplier and/or theOEM,as shown

in Table 3-10. The impact or effects of failures are then listed. In the example, it leads to

customer dissatisfaction. Also, for failures in order quantity or delivery date, another effect

could be the creation of back orders, if permissible.

The next step involves rating the severity of the failure. Severity ratings are a measure

of the impact of such failures on the customer. Such a rating is typically on a discrete scale

from 1 (no effect) to 10 (hazardous effect). The Automotive Industry Action Group

(AIAG) has some guidelines for severity ratings (El-Haik and Roy 2005), which other

industries have adapted correspondingly. Table 3-11 shows rating scores on severity,
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FIGURE 3-22 Original equipment manufacturer with a single supplier.

occurrence, and detection, each of which is on a discrete scale of 1–10. AIAG has guidelines

on occurrence and detection ratings as well, with appropriate modifications for process

functions (Ehrlich 2002). For the example we indicate a severity rating of 6 on failure to meet

order quantity or delivery date, while a rating of 7 is assigned to order quality, indicating that

it has more impact on customer dissatisfaction, as shown in Table 3-10.

Causes of each failure are then listed, which will lead to suggestion of remedial actions.

The next rating relates to the occurrence of failures; the larger the rating the more likely the

possible happening. The guidelines in Table 3-11 could be used to select the rated value.

Here, we deem that a failure in not meeting order quantity or delivery date at the supplier

to be more likely (rating of 7 in occurrence) relative to that of the OEM (rating of 4).

Further, in not meeting specified quality, we believe that this is less likely to happen at the

supplier (supplier rating is 5) and even more remote at the OEM (rating of 3). Existing

controls, to detect failures, are studied. Finally, the chance of existing controls detecting

failures is indicated by a rating score. In this example, there is a moderately high chance

(rating of 4) of detecting lack of capacity at the supplier’s location through available

capacity/inventory reports, whereas detecting the same at the OEM through capacity

reports has a very high chance (rating of 2). A similar situation exists for detecting lack of

quality, with the OEM having a high chance of detection (rating of 3) through matching of

customer orders with product bar codes relative to that of the supplier (rating of 4) through

process control and capability analysis. Finally, in Table 3-10, a risk priority number

(RPN) is calculated for each failure mode and listed. Larger RPN values indicate higher

priority to the corresponding failure modes. Here, we would address capacity issues at the

supplier (RPN of 168), and not meeting due dates due to the supplier (RPN of 168) first,

followed by lack of quality at the supplier (RPN of 140).

Continuing on with the FMECA analyses, the next step involves listing specific

recommended actions for addressing each failure mode. Table 3-12 presents this phase

of the analysis. The objectives of the recommended actions are to reduce the severity and/or

occurrence of the failuremodes and to increase their detection through appropriate controls

such as evaluation techniques or detection equipment. Whereas severity can be reduced

only through a design change, occurrence may be reduced through design or process

improvements. Of the possible recommended actions, Table 3-12 lists the action taken for
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each failure mode and the revised ratings on severity, occurrence, and detection. In this

example, with no design changes made, the severity ratings are the same as before.

However, the occurrence has been lowered by the corresponding action taken. Also, for

certain failure modes (e.g., lack of quality), through monitoring critical to quality (CTQ)

characteristics, the chances of detection are improved (lower rating compared to those in

Table 3-10). An RPN is calculated, which could then be used for further follow-up actions.

Here, it seems that failure to meet order quantity due to lack of capacity at the supplier and

the OEM is still a priority issue.

Associated with each action, a rating on a scale of 1–5 is used to indicate the risk of taking

that action. Here, risk refers to the chance of implementing the action successfully, with a 1

indicating the smallest risk.Using this concept, observe fromTable 3-12 that it is easier to add

overtime at the OEM (risk rating of 1) compared to that at the supplier (risk rating of 3), since

the OEM has more control over its operations. Similarly, for the OEM it is easier to add

overtime than it is to reduce downtime (risk rating of 4). Finally, the last step involves

multiplying the revisedRPNby the risk factor to obtain aweighted risk priority number. The

larger this number, the higher the priority associated with the failure mode and the

corresponding remedial action. Management could use this as a means of choosing areas

to address.

3-7 INTERNATIONAL STANDARDS ISO 9000 AND OTHER DERIVATIVES

Quality philosophies have revolutionized the way that business is conducted. It can be

argued that without quality programs the global economy would not exist because quality

programs have been so effective in driving down costs and increasing competitiveness.

Total quality systems are no longer an option—they are required. Companies without

quality programs are at risk. The emphasis on customer satisfaction and continuous quality

improvement has necessitated a system of standards and guidelines that support the quality

philosophy. To address this need, the ISO developed a set of standards, ISO 9000, 9001,

and 9004.

The ISO 9000 standards referred to as quality management standards (QMSs)were revised

in 2015. This series consists of three primary standards: ISO 9000, Quality Management

Systems: Fundamentals and Vocabulary; ISO 9001, Quality Management Systems: Require

ments; and ISO 9004, Quality Management Systems: Guidelines for Performance Improve

ments. ISO 9001 is amore generic standard applicable tomanufacturing and service industries,

which have the option of omitting requirements that do not apply to them specifically. Further,

organizations may be certified and registered only to ISO 9001. ISO 9004 presents compre

hensive quality management guidelines that could be used by companies to improve their

existing quality systems; these are not subject to audit, and organizations do not register to

ISO 9004.

Features of ISO 9000

There are eight keymanagement principles based onwhich the revisions of ISO 9000 and the

associated ANSI/ISO/ASQ Q9000 have been incorporated. They reflect the philosophy and

principles of total quality management, as discussed earlier in the chapter.

With the primary focus on an organization being to meet or exceed customer needs, a

desirable shift in the standards has been toward addressing customer needs. This blends
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with our discussion of the philosophies of quality management that equally emphasize

this aspect. Senior management must set the direction for the vision and mission of the

company, with input from all levels in order to obtain the necessary buy-in of all people.

As stated in one of the points of Deming's System of Profound Knowledge, optimization

of the system (which may consist of suppliers and internal and external customers) is a

desirable approach. Further, emphasis on improving the process based on observed data

and information derived through analyses of the data, as advocated by Deming, is found

to exist in the current revision of the standards. Finally, the principle of continuous

improvement, advocated in the philosophy of total quality management, is also embraced

in the standards.

ISO9001and ISO9004are a consistent pair. Theyare designed for use together butmaybe

used independently, with their structures being similar. Two fundamental themes, customer-

related processes and the concept of continual improvement, are visible in the new revision of

the standards.

The standards have evolved to a focus on developing and managing effective processes

from documenting procedures. An emphasis on the role of top management is viewed along

with a data-driven process of identifying measurable objectives and measuring performance

against them. Concepts of quality improvement discussed under the Shewhart (Deming)

cycle of plan–do–check–act are integrated in the standards.

The new version of ISO 9000 standards follows a high-level structure with uniform use of

core texts and terms. The focus on a process-oriented approach is adopted along with an

inclusion of topics on risk management, change management, and knowledge management.

Other Industry Standards

Various industries are adopting to standards, similar to ISO 9000, but modified to meet their

specific needs. A few of these standards are listed:

1. ISO/TS 16949. In theUnited States, the automotive industry comprised of the big three

companies—Daimler, Ford, andGeneralMotors adopted the ISO/TS 16949—Quality

Management Systems—Particular Requirements for Automotive Production and

Relevant Service Organizations, through the Automotive Industry Action Group

(AIAG), standards, thereby eliminating the conflicting requirements for suppliers.

Previously, each company had its own requirements for suppliers.

2. AS 9100. The aerospace industry, following a process similar to that used in the

automotive industry, has developed the standard AS 9100, Quality Management

Systems—Requirements for Aviation, Space, and Defense Organizations. These

standards incorporate the features of ISO 9001 as well as the Federal Aviation

Administration (FAA) Aircraft Certification System Evaluation Program and

Boeing’s massive D1-9000 variant of ISO 9000. Companies such as Boeing,

Rolls-Royce Allison, and Pratt & Whitney use AS 9100 as the basic quality

management system for their suppliers.

3. TL 9000. This is the standard developed in the telecommunications service industry

to seek continuous improvement in quality and reliability. The Quality Excellence

for Suppliers of Telecommunications (QuEST) Leadership Forum, formed by

leading telecommunications service providers such as BellSouth, Bell Atlantic,

Pacific Bell, and Southwestern Bell was instrumental in the creation of this

standard. The membership now includes all regional Bell operating companies
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(RBOCs), AT&T, GTE, Bell Canada, and telecommunications suppliers such as

Fujitsu Network Communications, Lucent Technologies, Motorola, and Nortel

Networks. The globalization of the telecommunications industry has created a need

for service providers and suppliers to implement common quality system require

ments. The purpose of the standard is to effectively and efficiently manage

hardware, software, and services by this industry. Through the adoption of such

a standard, the intent is also to create cost- and performance-based metrics to

evaluate efforts in the quality improvement area.

4. ISO 13485. The ISO 13485 standard is applicable to medical devices manufacturers

and is a stand-alone standard.

5. Anticipated developments.OHSAS 18001—Occupational Health and Safety Zone is a

set of international occupational health and safety management standards to help

minimize risks to employees. ISO 45001—Occupational Health and Safety Manage

ment Standard is set to replace OHSAS 18001.

SUMMARY

In the chapter we examined the philosophy of total quality management and the role

management plays in accomplishing desired organizational goals and objectives. A

company’s vision describes what it wants to be; the vision molds quality policy. This

policy, along with the support and commitment of top management, defines the quality

culture that prevails in an organization. Since meeting and exceeding customer needs are

fundamental criteria for the existence and growth of any company, the steps of product

design and development, process analysis, and production scheduling have to be

integrated into the quality system.

The fundamental role played by top management cannot be overemphasized. Based on a

company’s strategic plans, the concept of using a balanced scorecard that links financial and

other dimensions, such as learning and growth and customers, is a means for charting

performance. Exposure to the techniques of failure mode and effects criticality analysis

enables adequate product or process design.

The planning tool of quality function deployment is used in an interdisciplinary team effort

to accomplish the desired customer requirements. Benchmarking enables a company to

understand its relative performance with respect to industry performance measures and thus

helps the company improve its competitive position. Adaptation of best practices to the

organization’s environment also ensures continuous improvement. Vendor quality audits,

selection, and certification programs are important because final product quality is influenced

by the quality of raw material and components.

The field of health care is unique and important. Accordingly, a discussion of health care

analytics, its application to big data, and challenges in creating an information technology

platform that will promote the development of a decision support system to impact point-of

service decisions are presented.

Since quality decisions are dependent on the collected data and information on products,

processes, and customer satisfaction, simple tools for quality improvement that make use of

such data have been presented. These include Pareto analysis, flowcharts, cause-and-effect

diagrams, and various scatterplots. Finally, some international standards on quality assurance

practices have been depicted.
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KEY TERMS

approved vendor capitation

AS 9100 diagnosis-related groups

balanced scorecard fee-for-services

benchmarking pay-for-participation

big data pay-for-performance

cause-and-effect diagram performance standards

certified vendor preferred vendor

change management quality audit

cycle time conformity quality audit

empowerment process audit

failure mode and effects criticality product audit

analysis suitability quality audit

flowchart system audit

gap analysis quality function deployment

health care analytics quality policy

data visualization risk priority number

predictive models scatter diagrams

prescriptive analytics scatterplot

health information technology six sigma quality

health care decision support systems define phase

house of quality measure phase

ISO 13485 analyze phase

ISO/TS 16949 improve phase

ISO 9000; 9001, 9004 control phase

matrix plot three-dimensional scatterplot

mission statement time-based competition

multivariable charts TL 9000

organizational culture vendor certification

Pareto diagram vendor rating

payment schemes in health care vision

bundled payment

EXERCISES

3-1 Describe the total quality management philosophy. Choose a company and discuss

how its quality culture fits this theme.

3-2 What are the advantages of creating a long-term partnership with vendors?

3-3 Compare and contrast a company vision, mission, and quality policy. Discuss these

concepts in the context of a hospital of your choice.

3-4 Describe Motorola’s concept of six sigma quality and explain the level of

nonconforming product that could be expected from such a process.

3-5 What are the advantages of using quality function deployment? What are some key

ingredients that are necessary for its success?
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3-6 Select an organization of your choice in the following categories. Identify the

organization’s strategy. Based on these strategies, perform a balanced scorecard

analysis by indicating possible diagnostic and strategic measures in each of the areas

of learning and growth, internal processes, customers, and financial status.

(a) Information technology services

(b) Health care

(c) Semiconductor manufacturing

(d) Pharmaceutical

3-7 Consider the airline transportation industry. Develop a house of quality showing

customer requirements and technical descriptors.

3-8 Consider a logistics company transporting goods on a global basis. Identify possible

vision and mission statements and company strategies. Conduct a balanced scorecard

analysis and indicate suggested diagnostic and strategic measures in each of the areas

of learning and growth, internal processes, customers, and financial.

3-9 Consider the logistics company in Exercise 3-8. Conduct a quality function deploy

ment analysis where the objective is to minimize delays in promised delivery dates.

3-10 Describe the steps of benchmarking relative to a company that develops microchips.

What is the role of top management in this process?

3-11 What are the various types of quality audits? Discuss each and identify the context in

which they are used.

3-12 A financial institution is considering outsourcing its information technology–related

services. What are some criteria that the institution should consider? Propose a

scheme to select a vendor.

3-13 The area of nanotechnology is of much importance in many phases of our lives—one

particular area being development of drugs for Alzheimer’s disease. Discuss the role

of benchmarking, innovation, and time-based competition in this context.

3-14 In a large city, the mass-transit system, currently operated by the city, needs to be

overhauled with projected demand expected to increase substantially in the future.

The city government is considering possible outsourcing.

(a) Discuss the mission and objectives of such a system.

(b) What are some criteria to be used for selecting a vendor?

(c) For a private vendor, through a balanced scorecard analysis, propose possible

diagnostic and strategic measures.

3-15 What is the purpose of vendor certification? Describe typical phases of certification.

3-16 Discuss the role of national and international standards in certifying vendors.

3-17 The postal systemhas undertaken a quality improvement project to reduce the number

of lost packages. Construct a cause-and-effect diagram and discuss possible measures

that should be taken.

3-18 The safe operation of an automobile is dependent on several subsystems (e.g., engine,

transmission, braking mechanism). Construct a cause-and-effect diagram for auto

mobile accidents. Conduct a failuremode and effects criticality analysis and comment

on areas of emphasis for prevention of accidents.
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3-19 Consider Exercise 3-18 on the prevention of automobile accidents. However, in this

exercise, consider the driver of the automobile. Construct a cause-and-effect diagram

for accidents influenced by the driver. Conduct a failure model and effects criticality

analysis considering issues related to the driver, assuming that the automobile is in

fine condition.

3-20 You are asked to make a presentation to senior management outlining the demand for

a product. Describe the data youwould collect and the tools youwould use to organize

your presentation.

3-21 Consider a visit to your local physician’s office for a routine procedure. Develop a

flowchart for the process. What methods could be implemented to improve your

satisfaction and reduce waiting time?

3-22 What are some reasons for failure of total quality management in organizations?

Discuss.

3-23 A product goes through 20 independent operations. For each operation, the first-pass

yield is 95%. What is the rolled throughput yield for the process?

3-24 Consider Exercise 3-23. Suppose, through a quality improvement effort, that the first-

pass yield of each operation is improved to 98%.What is the percentage improvement

in rolled throughput yield?

3-25 Consider Exercise 3-24. Through consolidation of activities, the number of opera

tions has now been reduced to 10, with the first-pass yield of each operation being

98%.What is the percentage improvement in rolled throughout yield relative to that in

Exercise 3-24?

3-26 Discuss the importance of health care analytics and its possible contributions.

3-27 What are some of the challenges faced by the health care industry in the twenty-first

century?

3-28 Discuss the challenges and the contributions that could be derived from

development of a health care decision support system in the current century.

the

3-29 Discuss the role of established standards and third-party auditors in quality auditing.

What is the role of ISO 9000 standards in this context?

3-30 In a printing company, data from the previous month show the following types of

errors, with the unit cost (in dollars) of rectifying each error, in Table 3-13.

(a) Construct a Pareto chart and discuss the results.

(b) Ifmanagement has amonthly allocationof $18,000,which areas should they tackle?

TABLE 3-13

Error Categories Frequency Unit Costs

Typographical 4000 0.20

Proofreading 3500 0.50

Paper tension 80 50.00

Paper misalignment 100 30.00

Inadequate binding 120 100.00
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TABLE 3-14

Disposable Income Life Insurance

($ thousands) Coverage ($ thousands)

45 60

40 58

65 100

50 50

70 120

75 140

70 100

40 50

50 70

45 60

Disposable Income Life Insurance

($ thousands) Coverage ($ thousands)

65

60

45

40

55

55

60

75

45

65

80

90

50

50

70

60

80

120

50

70

3-31 An insurance company is interested in determiningwhether life insurance coverage is

influenced linearly by disposable income. A randomly chosen sample of size 20

produced the data shown in Table 3-14. Construct a scatterplot.What conclusions can

you draw?

3-32 Use a flowchart to develop an advertising campaign for a new product that you will

present to top management.

3-33 Is accomplishing registration to ISO 9001 standards similar to undergoing an audit

process? What are the differences?

TABLE 3-15

Temperature Pressure Proportion Acidity Proportion

Observation (°C) (kg/cm2) of Catalyst (pH) Nonconforming

1 300 100 0.03 20 0.080

2 350 90 0.04 20 0.070

3 400 80 0.05 15 0.040

4 500 70 0.06 25 0.060

5 550 60 0.04 10 0.070

6 500 50 0.06 15 0.050

7 450 40 0.05 15 0.055

8 450 30 0.04 20 0.060

9 350 40 0.04 15 0.054

10 400 40 0.04 15 0.052

11 550 40 0.05 10 0.035

12 350 90 0.04 20 0.070

13 500 40 0.06 10 0.030

14 350 80 0.04 15 0.070

15 300 80 0.03 20 0.060

16 550 30 0.05 10 0.030

17 400 80 0.03 20 0.065

18 500 40 0.05 15 0.035

19 350 90 0.03 20 0.065

20 500 30 0.06 10 0.040
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3-34 Discuss the emerging role of ISO 9000 standards in the global economy.

3-35 In a chemical process, the parameters of temperature, pressure, proportion of catalyst,

and pH value of the mixture infl uence the acceptability of the batch. The data from 20

observations are shown in Table 3-15.

(a) Construct a multivariable chart. What inferences can you make regarding the

desirable values of the process parameters?

(b) Construct a matrix plot and make inferences on desirable process parameter

levels.

(c) Construct contour plots of the proportion nonconforming by selecting two of the

process parameters at a time and comment.
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4
FUNDAMENTALS� OF� STATISTICAL
CONCEPTS� AND� TECHNIQUES� IN
QUALITY� CONTROL� AND
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4-1 Introduction and chapter objectives

4-2 Population and sample

4-3 Parameter and statistic

4-4 Probability

4-5 Descriptive statistics: describing product or process characteristics

4-6 Probability distributions

4-7 Inferential statistics: drawing conclusions on product and process quality

Summary

Appendix: Approximations to some probability distributions

Symbols

P�(A) Probability of event A f(x)

μ Population mean of a quality characteristic

X Sample average F(x)

s Sample standard deviation E(X�)

n Sample size

Xi ith observation in a sample Z

N Population size p

T(α ) α % trimmed mean

σ Population standard deviation λ
2s� Sample variance λ

σ 

2 Population variance

R Range γ

γ1 Skewness coefficient

γ2 Kurtosis coefficient α

r Sample correlation coefficient

M Sample median β

sm Standard deviation of the sample median

p(x) Probability distribution (or mass function) Γ (u)

for a discrete random variable 1 �  α

Probability density function for a

continuous random variable

Cumulative distribution function

Expected value or mean of a random

variable X

Standard normal random variable

Probability of success on a trial in a

binomial experiment

Mean of a Poisson random variable

Failure rate for an exponential

distribution

Location parameter for a Weibull

distribution

Scale parameter for a Weibull

distribution

Shape parameter for a Weibull

distribution

Gamma function for the variable u

Level of confidence for confidence

intervals
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4-1 INTRODUCTION AND CHAPTER OBJECTIVES

In this chapter we build a foundation for the statistical concepts and techniques used in quality

control and improvement. Statistics is a subtle science, and it plays an important role in quality

programs.Only a clear understandingof statisticswill enable you to apply it properly. They are

often misused, but a sound knowledge of statistical principles will help you formulate correct

procedures in different situations and will help you interpret the results properly. When we

analyze a process, we often find it necessary to study its characteristics individually. Breaking

theprocessdownallowsus todeterminewhether some identifiable causehas forcedadeviation

from the expectednormandwhether a remedial action needs to be taken.Thus, our objective in

this chapter is to review different statistical concepts and techniques along twomajor themes.

The first deals with descriptive statistics, those that are used to describe products or processes

and their characteristic features, based on collected data. The second theme is focused on

inferential statistics, whereby conclusions on product or process parameters aremade through

statistical analysis of data. Such inferences, for example, may be used to determine if there has

beenasignificant improvementinthequality levelofaprocess,asmeasuredbytheproportionof

nonconforming product.

4-2 POPULATION AND SAMPLE

A population is the set of all items that possess a certain characteristic of interest.

Example 4-1 Suppose that our objective is to determine the averageweight of cans of brand

A soup processed by our company for the month of July. The population in this case is the set

of all cans of brand A soup that are output in the month of July (say, 50,000). Other brands of

soupmade during this time are not of interest; here only the population of brandA soup cans is

considered.

A sample is a subset of a population. Realistically, in many manufacturing or service

industries, it is not feasible to obtain data on every element in the population. Measurement,

storage, and retrieval of large volumes of data are impractical, and the costs of obtaining such

information are high. Thus, we usually obtain data from only a portion of the population—a

sample.

Example 4-2 Consider our brand A soup. To save ourselves the cost and effort of weigh

ing 50,000 cans, we randomly select a sample of 500 cans of brandA soup from the July output.

4-3 PARAMETER AND STATISTIC

A parameter is a characteristic of a population, something that describes it.

Example 4-3 For our soup example, we will be looking at the parameter average weight of

all 50,000 cans processed in the month of July.

A statistic is a characteristic of a sample. It is used to make inferences on the population

parameters that are typically unknown.

Example 4-4 Our statistic then is the average weight of a sample of 500 cans chosen from

the July output. Suppose that this value is 300 g; this would then be an estimate of the average

weight of all 50,000 cans. A statistic is sometimes called an estimator.
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4-4 PROBABILITY

Our discussion of the concepts of probability is intentionally brief. For an in-depth look at

probability, see the references at the end of the chapter. The probability of an event describes

the chance of occurrence of that event. A probability function is bounded between 0 and 1,

with 0 representing the definite nonoccurrence of the event and 1 representing the certain

occurrence of the event.

The set of all outcomes of an experiment is known as the sample space S.

Relative Frequency Definition of Probability

If each event in the sample space is equally likely to happen, the probability of an event A is

given by

nA
P�A� �  �4-1� 

N

where P(A)� probability of event A, nA� number of occurrences of event A, and N� size of

the sample space.

This definition is associated with the relative frequency concept of probability. It is

applicable to situations where historical data on the outcome of interest are available. The

probability associated with the sample space is 1 [i.e., P(S)� 1].

Example 4-5 Acompanymakes plastic storage bags for the food industry.Out of the hourly

production of two thousand 500-g bags, 40 were found to be nonconforming. If the inspector

chooses a bag randomly from the hour’s production, what is the probability of it being

nonconforming?

Solution We define event A as getting a bag that is nonconforming. The sample space S

consists of 2000 bags (i. e.,N� 2000). The number of occurrences of eventA(nA) is 40. Thus,

if the inspector is equally likely to choose any one of the 2000 bags,

40
P�A� �  � 0:02

2000

Simple and Compound Events

Simple events cannot be broken down into other events. They represent the most elementary

form of the outcomes possible in an experiment. Compound events are made up of two or

more simple events.

Example 4-6 Suppose that an inspector is sampling transistors from an assembly line and

identifying themas acceptable or not. Suppose the inspector chooses two transistors.What are

the simple events? Give an example of a compound event. Find the probability of finding at

least one acceptable transistor.

Solution Consider the following outcomes:

A1: event that the first transistor is acceptable

D1: event that the first transistor is unacceptable
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A2: event that the second transistor is acceptable

D2: event that the second transistor is unacceptable

Four simple events make up the sample space S:

S � fA1A2;A1D2;D1A2;D1D2g 

These events may be described as follows:

E1�{A1A2}: event that the first and second transistors are acceptable

E2�{A1D2}: event that the first transistor is acceptable and the second one is not

E3�{D1A2}: event that the first transistor is unacceptable and the second one is

acceptable

E4�{D1D2}: event that both transistors are unacceptable

Compound event B is the event that at least one of the transistors is acceptable. In

this case, event B consists of the following three simple events: B� {E1, E2, E3}. Assuming

that each of the simple events is equally likely to happen, P�B� � P�E1� � P�E2�� 
P�E3� � 1 � 1 � 1 � 3. Figure 4-1 shows a Venn diagram, which is a graphical representation

4 4 4 4

of the sample space and its associated events.

Complementary Events

The complement of an eventA implies the occurrence of everything butA. Ifwe defineAc to be

the complement of A, then

P�Ac� � 1 � P�A� �4-2� 
Figure 4-2 shows the probability of the complement of an event by means of a Venn

diagram. Continuing with Example 4-6, suppose that we want to find the probability of the

event that both transistors are unacceptable.Note that this is the complement of eventB,which

was defined as at least one of the transistors being acceptable. So

3 1
P�Bc� � 1 � P�B� � 1 � � 

4 4

FIGURE 4-1 Venn diagram.



PROBABILITY 153

FIGURE 4-2 An event and its complement. Note: The shaded area represents P(Ac ).

Additive Law

The additive law of probability defines the probability of the union of two or more events

happening. If we have two events A andB, the union of these two implies that A happens or B

happens or both happen. Figure 4-3 shows the union of two events,A andB. The hatched area

in the sample space represents the probability of the union of the two events. Theadditive law

is as follows:

P�A∪B� � P�A or B or both� 
� P�A� � P�B� � P�A∩B� �4-3� 

Note thatP(A∩B) represents the probability of the intersection of events A andB: that is, the

occurrenceof bothA andB. The logicbehind the additive lawcan easily be seen from theVenn

diagram in Figure 4-3, where P(A) represents the area within the boundary-defining event A.

Similarly, P(B) represents the area within the boundary-defining event B. The overlap

(crosshatched) between areas A and B represents the probability of the intersection,

P(A∩ B). When P(A) is added to P(B), this intersection is included twice, so eq. (4-3) adds

P(A) to P(B) and subtracts P(A ∩ B) once.

FIGURE 4-3 Union of two events.
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Multiplicative Law

The multiplicative law of probability defines the probability of the intersection of two or

more events. Intersection of a group of events means that all the events in that group occur. In

general, for two events A and B,

P�A∩B� � P�A and B� � P�A�P�B jA� 
� P�B�P�A jB� �4-4� 

The term P(B |A) represents the conditional probability of B given that eventA has happened

(i.e., the probability that B will occur if A has). Similarly, P(A |B) represents the conditional
probability of A given that event B has happened. Of the two forms given by eq. (4-4), the

problem will dictate which version to use.

Independence and Mutually Exclusive Events

Two events A and B are said to be independent if the outcome of one has no influence on the

outcome of the other. IfA andB are independent, then P(B |A)�P(B); that is, the conditional

probability of B given that A has happened equals the unconditional probability of B.

Similarly, P(A |B)�P(A) if A and B are independent. From eq. (4-4), it can be seen that if A

and B are independent, the general multiplicative law reduces to

P�A∩B� � P�A and B� � P�A�P�B� if A and B are independent �4-5� 
Two events A and B are said to be mutually exclusive if they cannot happen simulta

neously. The intersection of twomutually exclusive events is the null set, and the probability

of their intersection is zero. Notationally, P(A ∩ B)� 0 if A and B are mutually exclusive.

Figure 4-4 shows a Venn diagram for twomutually exclusive events. Note that when A andB

are mutually exclusive events, the probability of their union is simply the sum of their

individual probabilities. In other words, the additive law takes on the following special form:

P�A∪B� � P�A� � P�B� if A and B are mutually exclusive

If events A and B are mutually exclusive, what can we say about their dependence or

independence? Obviously, ifA happens,B cannot happen, and vice versa. Therefore, ifA and

B are mutually exclusive, they are dependent. If A and B are independent, the additive rule

from eq. (4-3) becomes

P�A or B or both� � P�A� � P�B� � P�A�P�B� �4-6� 

FIGURE 4-4 Mutually exclusive events.
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Example 4-7

(a) In the production of metal plates for an assembly, it is known from past experience

that 5%of the plates do notmeet the length requirement. Also, fromhistorical records,

3% of the plates do not meet the width requirement. Assume that there are no

dependencies between the processes that make the length and those that trim the

width. What is the probability of producing a plate that meets both the length and

width requirements?

Solution Let A be the outcome that the plate meets the length requirement and B be

the outcome that the plate meets the width requirement. From the problem statement,

P(Ac)� 0.05 and P(Bc)� 0.03. Then

P�A� � 1 � P�Ac� � 1 � 0:05 � 0:95
P�B� � 1 � P�Bc� � 1 � 0:03 � 0:97

Using the special case of the multiplicative law for independent events, we have

P�meeting both length and width requirements� � P�A∩B� 
� P�A�P�B� �since A and B are independent events� 
� �0:95��0:97� � 0:9215

(b) What proportion of the parts will not meet at least one of the requirements?

Solution The required probability�P(Ac or Bc or both). Using the additive law, we get

Ac Ac
∩Bc� 

� 0:05 � 0:03 � �0:03��0:05� � 0:0785
P� or Bc or both� � P�Ac� � P�Bc� � P�

Therefore, 7.85% of the parts will have at least one characteristic (length, width, or both) not

meeting the requirements.

(c) What proportion of parts will meet neither length nor width requirements?

Solution We want to find P(Ac
∩Bc).

Ac Ac�P�P� ∩Bc� � P� Bc� � �0:05��0:03� � 0:0015

(d) Suppose the operations that produce the length and the width are not independent. If

the length does not satisfy the requirement, it causes an improper positioning of the

part during the width trimming and thereby increases the chances of nonconforming

width. From experience, it is estimated that if the length does not conform to the

requirement, the chance of producing nonconforming widths is 60%. Find

the proportion of parts that will not conform to either the length or the width

requirement.

Solution The probability of interest is P(Ac
∩Bc). The problem states that P(Bc |Ac)� 

0.60. Using the general form of the multiplicative law

P�Ac
∩Bc� � P�Ac�P�Bc jAc� 

� �0:05��0:60� � 0:03

So 3%of the partswill meet neither the length nor thewidth requirements. Notice that this value

is different from the answer to part (c), where the events were assumed to be independent.
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(e) In part (a), are events A and B mutually exclusive?

Solution We have found P(A)� 0.95, P(B)� 0.97, and P(A ∩ B)� 0.9215. If A and B

weremutually exclusive,P(A∩B) would have to be zero.However, this is not the case, since

P(A ∩ B)� 0.9215. So A and B are not mutually exclusive.

(f) Describe two events in this example setting that are mutually exclusive.

Solution Events A andAc aremutuallyexclusive,tonameoneinstance,andP(A∩Ac)� 0,
because A and Ac cannot happen simultaneously. This means that it is not possible to

produce a part that both meets and does not meet the length requirement.

4-5 DESCRIPTIVE STATISTICS: DESCRIBING PRODUCT OR PROCESS

CHARACTERISTICS

Statistics is the science that deals with the collection, classification, analysis, and making of

inferences from data or information. Statistics is subdivided into two categories: descriptive

statistics and inferential statistics.

Descriptive statistics describes the characteristics of a product or process using informa

tion collected on it. Suppose that we have recorded service times for 500 customers in a fast-

food restaurant.Wecanplot this as a frequencyhistogramwhere thehorizontal axis represents

a range of service time values and the vertical axis denotes the number of service times

observed in each time range, which would give us some idea of the process condition. The

average service time for 500 customers could also tell us something about the process.

Inferential statistics draws conclusions on unknownproduct or process parameters based

on information contained in a sample. Let’s say that wewant to test the validity of a claim that

the average service time in the fast-food restaurant is no more than 3 minutes (min). Suppose

wefind that the sample average service time (based on a sample of 500 people) is 3.5minutes.

We then need to determine whether this observed average of 3.5minutes is significantly

greater than the claimed mean of 3minutes.

Suchprocedures fall under theheadingof inferential statistics.Theyhelpusdrawconclusions

about the conditions of a process. They also help us determine whether a process has improved

by comparing conditions before and after changes. For example, suppose that the management

of the fast-food restaurant is interested in reducing the average time to serve a customer. They

decide to add twopeople to their service staff.Once this change is implemented, theysample500

customers andfind that the average service time is 2.8minutes. Thequestion then iswhether this

decrease is a statistically significant decrease orwhether it is due to randomvariation inherent to

sampling. Procedures that address such problems are discussed later.

Data Collection

Tocontrol or improve a process,we need information, or data.Data can be collected in several

ways.One of themost commonmethods is throught direct observation. Here, ameasurement

of the quality characteristic is taken by an observer (or automatically by an instrument); for

instance, measurements on the depth of tread in automobile tires taken by an inspector are

direct observations.On the other hand, data collected on the performance of a particular brand

of hair dryer through questionnaires mailed to consumers are indirect observations. In this

case, the data reportedby the consumers have not beenobserved by the experimenter,whohas

no control over the data collection process. Thus, the data may be flawed because errors can
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arise from a respondent’s incorrect interpretation of a question, an error in estimating the

satisfactory performance period, or an inconsistent degree of precision among respondents’

answers.

Data on quality characteristics are described by a randomvariable and are categorized as

continuous or discrete.

Continuous Variable A variable that can assume any value on a continuous scale within a

range is said to be continuous. Examples of continuous variables are the hubdiameter of lawn

mower tires, the viscosity of a certain resin, the specific gravity of a toner used in

photocopying machines, the thickness of a metal plate, and the time to admit a patient to

a hospital. Such variables are measurable and have associated numerical values.

Discrete Variable Variables that can assume afinite or countably infinite number of values

are said to be discrete. These variables are counts of an event. The number of defective rivets

in an assembly is a discrete random variable. Other examples include the number of paint

blemishes in an automobile, the number of operating capacitors in an electrical instrument,

and the number of satisfied customers in an automobile repair shop.

Counting events usually costs less than measuring the corresponding continuous

variables. The discrete variable is merely classified as being, say, unacceptable or not;

this can be done through a go/no-go gage, which is faster and cheaper than finding exact

measurements. However, the reduced collection cost may be offset by the lack of detailed

information in the data.

Sometimes, continuous characteristics are viewed as discrete to allow easier data collec

tion and reduced inspection costs. For example, the hub diameter in a tire is actually a

continuous random variable, but rather than precisely measuring the hub diameter numeri

cally, a go/no-go gage is used to quickly identify the characteristic as either acceptable or not.

Hence, theacceptabilityof thehubdiameter is adiscrete randomvariable. In this case, the goal

is not to know the exact hub diameter but rather to knowwhether it iswithin certain acceptable

limits.

Accuracy and Precision The accuracy of a data set or ameasuring instrument refers to the

degree of uniformity of the observations around a desired value such that, on average, the

target value is realized. Let’s assume that the target thickness of a metal plate is 5.25mm.

Figure 4-5a shows observations spread on either side of the target value in almost equal

FIGURE 4-5 Accuracy and precision of observations.
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proportions; these observations are said to be accurate. Even though individual observations

may bequite different from the target value, a data set is considered accurate if the average of a

large number of observations is close to the target.

Formeasuring instruments, accuracy is dependent on calibration. If ameasuring device is

properly calibrated, the average output value given by the device for a particular quality

characteristic should, after repeated use, equal the true input value.

The precision of a data set or a measuring instrument refers to the degree of variability of

the observations. Observations may be off the target value but still be considered precise, as

shown in Figure 4-5b.A sophisticatedmeasuring instrument should showvery little variation

in output values if a constant value is used multiple times as input. Similarly, sophisticated

equipment in a process should be able to produce an output characteristic with as little

variability as possible. The precision of the data is influenced by the precision of the

measuring instrument. For example, the thickness of a metal plate may be 12.5mm when

measured by calipers; however, amicrometermayyield a value of 12.52mm,while an optical

sensor may give a measurement of 12.523mm.

Having both accuracy and precision is desirable. In equipment or measuring instruments,

accuracy can usually be altered by changing the setting of a certain adjustment. However,

precision is an inherent function of the equipment itself and cannot be improved bychanging a

setting.

Measurement Scales

Four scales of measurement are used to classify data: the nominal, ordinal, interval, and ratio

scales. Notice that each scale builds on the previous scale.

1. Nominal scale. The scale of measurement is nominal when the data variables are

simply labels used to identify an attribute of the sample element. Labels can be

“conforming and nonconforming” or “critical, major, and minor.” Numerical values,

even though assigned, are not involved.

2. Ordinal scale. The scale of measurement is ordinalwhen the data have the properties

of nominal data (i.e., labels) and the data rank or order the observations. Suppose that

customers at a clothing store are asked to rate the quality of the store’s service. The

customers rate the quality according to these criteria: 1 (outstanding), 2 (good),

3 (average), 4 (fair), 5 (poor). These are ordinal data. Note that a rating of 1 does not

necessarily imply that the service is twice as good as a rating of 2. However, we can say

that a rating of 1 is preferable to a rating of 2, and so on.

3. Interval scale. The scale ofmeasurement is intervalwhen the data have the properties

of ordinal data and a fixed unit ofmeasure describes the interval between observations.

Suppose that we are interested in the temperature of a furnace used in steel smelting.

Four readings taken during a 2-hour interval are 2050, 2100, 2150, and 2200 °F.

Obviously, these data values ranked (like ordinal data) in ascending order of

temperature, indicating the coolest temperature, the next coolest, and so on. Further

more, the differences between the ranked values can then be compared. Here the

interval between the data values 2050 and 2100 represents a 50 °F increase in

temperature, as do the intervals between the remaining ranked values.

4. Ratio scale. The scale of measurement is ratio when the data have the properties of

interval data and a natural zero exists for the measurement scale. Both the order of and

difference between observations can be compared and there exists a natural zero for the
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measurement scale. Suppose that the weights of four castings are 2.0, 2.1, 2.3, and

2.5 kg. The order (ordinal) of and difference (interval) in the weights can be compared.

Thus, the increase in weight from 2 to 2.1 is 0.1 kg, which is the same as the increase

from 2.3 to 2.4 kg. Also, when we compare the weights of 2.0 and 2.4 kg, we find a

meaningful ratio. A casting weighing 2.4 kg is 20% heavier than one weighing 2.0 kg.

There is also a natural zero for the scale—0 kg implies no weight.

Measures of Central Tendency

In statistical quality control, data collected need to be described so that analysts can objectively

evaluate the process or product characteristic. In this sectionwe describe some of the common

numerical measures used to derive summary information from observed values. Measures of

central tendency tell us something about the location of the observations and the value about

which they cluster and thus help us decide whether the settings of process variables should be

changed.

Mean Themean is the simple average of the observations in a data set. In quality control,

the mean is one of the most commonly used measures. It is used to determine whether, on

average, the process is operating around a desirable target value. The sample mean, or

average (denoted by X), is found by adding all observations in a sample and dividing by the

number of observations (n) in that sample. If the ith observation is denoted by Xi, the sample

mean is calculated as

Xi
i�1

X � �4-7� 
n

Thepopulationmean (μ) is foundby adding all the data values in the population anddividing

by the size of the population (N). It is calculated as

Xi
i�1

μ � �4-8� 
N

The population mean is sometimes denoted as E(X), the expected value of the random

variable X. It is also called the mean of the probability distribution of X. Probability

distributions are discussed later in the chapter.

Example 4-8 A random sample of five observations of the waiting time of customers in a

bank is taken. The times (in minutes) are 3, 2, 4, 1, and 2. The sample average �X�, or mean

waiting time, is

3 � 2 � 4 � 1 � 2 12
X � � � 2:4 minutes

5 5

Thebank canuse this information to determinewhether thewaiting timeneeds to be improved

by increasing the number of tellers.

Median Themedian is the value in the middle when the observations are ranked. If there

are an even number of observations, the simple average of the twomiddle numbers is chosen

as the median. The median has the property that 50% of the values are less than or equal to it.

n

N
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Example 4-9

(a) A random sample of 10 observations of piston ring diameters (in millimeters) yields

the following values: 52.3, 51.9, 52.6, 52.4, 52.4, 52.1, 52.3, 52.0, 52.5, and 52.5.We

first rank the observations:

51:9 52:0 52:1 52:3 52:3
52:4 52:4 52:5 52:5 52:6

The observations in the middle are 52.3 and 52.4. The median is (52.3+ 52.4)/2, or

52.35.

Themedian is less influenced by the extreme values in the data set; thus, it is said to be

more “robust” than the mean.

(b) A department store is interested in expanding its facilities and wants to do a

preliminary analysis of the number of customers it serves. Five weeks are chosen

at random, and the number of customers served during those weeks were as follows:

3000; 3500; 500; 3300; 3800

The median number of customers is 3300, while the mean is 2820. On further

investigationof theweekwith 500 customers, it is found that amajor universitywhose

students frequently shop at the store was closed for spring break. In this case, the

median (3300) is a better measure of central tendency than themean (2820) because it

gives abetter idea of thevariable of interest. In fact, had thedata valuebeen100 instead

of 500, the median would still be 3300, although the mean would decrease further,

another demonstration of the robustness of the median.

Outliers (values that are very large or very small compared to the majority of the data

points) can have a significant influence on the mean, which is pulled toward the

outliers. Figure 4-6 demonstrates the effect of outliers.

Mode The mode is the value that occurs most frequently in the data set. It denotes a

“typical” value from the process.

FIGURE 4-6 Effect of outliers on a mean.
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Example 4-10 A hardware store wants to determine what size of circular saws it should

stock. Frompast sales data, a random sample of 30 shows the following sizes (inmillimeters):

80 120 100 100 150 120 80 150 120 80

120 100 120 120 150 80 120 100 120 80

100 120 120 150 120 100 120 120 100 100

Note that the mode has the highest frequency. In this case, the mode is 120 (13 is the largest

number of occurrences). So, the manager may decide to stock more size 120 saws. A data set

can have more than one mode, in which case it is said to be multimodal.

TrimmedMean The trimmed mean is a robust estimator of the central tendency of a

set of observations. It is obtained by calculating the mean of the observations that

remain after a proportion of the high and low values have been deleted. The α% trimmed

mean, denoted by T(α), is the average of the observations that remain after trimming (or

deleting) α% of the high observations and α% of the low observations. This is a suitable

measure when it is believed that existing outliers do not represent usual process

characteristics. Thus, analysts will sometimes trim extreme observations caused by a

faulty measurement process to obtain a better estimate of the population’s central

tendency.

Example 4-11 The time taken for car tune-ups (in minutes) is observed for 20 randomly

selected cars. The data values are as follows:

15 10 12 20 16 18 30 14 16 15

18 40 20 19 17 15 22 20 19 22

To find the 5% trimmed mean [i.e., T(0.05)], first rank the data in increasing order:

10 12 14 15 15 15 16 16 17 18

18 19 19 20 20 20 22 22 30 40

Thenumber of observations (high and low) to be deleted on each side is (20)(0.05)� 1.Delete
the lowest observation (10) and the highest one (40). The trimmedmean (of the remaining 18

observations) is 18.222,which is obviouslymore robust than themean (18.9). For example, if

the largest observation of 40 had been 60, the 5% trimmed mean would still be 18.222.

However, the untrimmed mean would jump to 19.9.

Measures of Dispersion

An important function of quality control and improvement is to analyze and reduce the

variability of a process. The numerical measures of location we have described give us

indications of the central tendency, ormiddle, of a data set. They do not tell usmuch about the

variability of the observations. Consequently, sound analysis requires an understanding of

measures of dispersion, which provide information on the variability, or scatter, of the

observations around a given value (usually, the mean).

Range A widely used measure of dispersion in quality control is the range, which is the

difference between the largest and smallest values in a data set. Notationally, the range R is
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defined as

R � XL � XS �4-9� 
where XL is the largest observation and XS is the smallest observation.

Example 4-12 The following 10 observations of the time to receive baggage after landing

are randomly taken in an airport. The data values (in minutes) are as follows:

15; 12; 20; 13; 22; 18; 19; 21; 17; 20

The range R� 22�12� 10 minutes. This value gives us an idea of the variability in the

observations. Management can now decide whether this spread is acceptable.

Variance The variancemeasures thefluctuation of the observations around themean. The

larger the value, the greater the fluctuation. The population variance σ2 is given by

�Xi � μ�2
σ2 � i�1 �4-10� 

N

where μ is the population mean and N represents the size of the population. The sample

variance s2 is given by

�Xi � X�2
i�12 �s �4-11� 

n � 1

where X is the sample mean and n is the number of observations in the sample. In most

applications, the sample variance is calculated rather than the population variance because

calculation of the latter is possible only when every value in the population is known.

A modified version of eq. (4-11) for calculating the sample variance is

2

X2 � 
n n

=nXii
i�1 i�12 �s �4-12� 

N

n

n � 1

This version is sometimes easier to use. It involves accumulating the sum of the

observations and the sum of squares of the observations as data values become available.

These two equations are algebraically equivalent.

Note that in calculating the sample variance, the denominator is n� 1, whereas for the

population variance the denominator isN. Thus, eq. (4-10) can be interpreted as the average of

the squared deviations of the observations from the mean, and eq. (4-11) can be interpreted

similarly, except for the difference in the denominator, where n� 1 is used instead of n. This

difference can be explained as follows. First, a population varianceσ2 is a parameter, whereas

a sample variance s2 is an estimator, or a statistic. The value of s2 can therefore change from

sample to sample, whereas σ2 should be constant.

One desirable property of s2 is that even though it may not equal σ2 for every sample, on

average s2 does equal σ2. This is known as the property of unbiasedness, where the mean or
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FIGURE 4-7 Sampling distribution of an unbiased sample variance.

FIGURE 4-8 Variablity of two data sets with the same range.

expected value of the estimator equals the corresponding parameter. If a denominator of n� 1

is used to calculate the sample variance, it can be shown that the sample variance is an

unbiasedestimator of thepopulationvariance.On theother hand, if a denominator ofn is used,

on average the sample variance underestimates the population variance.

Figure 4-7 denotes the sampling distribution (i.e., the relative frequency) of s2 calculated

using eq. (4-11) or (4-12) over repeated samples. Suppose that the value of σ2 is as shown. If

the average value of s2 is calculated over repeated samples, it will equal the population
2 2 2 2variance. Technically, the expected value of s will equalσ [i.e.,E(s )� σ ]. If a denominator

of n is used in eq. (4-11) or (4-12), E(s2) will be less than σ2.

Unlike the range, which uses only the extreme values of the data set, the sample variance

incorporates every observation in the sample. Two data sets with the same range can have

different variability. As Figure 4-8 shows, data sets A and B have the same range; however,

their degree of variability is quite different. The sample variances will thus indicate different

degrees of fluctuation around the mean. The units of variance are the square of the units of

measurement for the individual values. For example, if the observations are inmillimeters, the

units of variance are square millimeters.

Standard Deviation Like the variance, the standard deviationmeasures the variability of

the observations around the mean. It is equal to the positive square root of the variance. A

standard deviation has the same units as the observations and is thus easier to interpret. It is

probably the most widely used measure of dispersion in quality control. Using eq. (4-10), the
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population standard deviation is given by

�4-13� 

Similarly, the sample standard deviation s is found using eq. (4-11) or (4-12) as

n
2�Xi � X�

i�1
s � �4-14� 

n � 1

2n n

X2 � Xi ni
i�1 i�1� �4-15� 

n � 1

As with the variance, the data set with the largest standard deviation will be identified as

having the most variability about its average. If the probability distribution of the random

variable is known—a normal distribution, say—the proportion of observations within a

certain number of standard deviations of the mean can be obtained. Techniques for obtaining

such information are discussed in Section 4-6.

Example 4-13 A random sample of 10 observations of the output voltage of transformers is

taken. The values (in volts, V) are as follows:

9:2; 8:9; 8:7; 9:5; 9:0; 9:3; 9:4; 9:5; 9:0; 9:1

Using eq. (4-7), the sample mean X is 9.16V.

Table 4-1 shows the calculations. From the table, �Xi � X�2 � 0:644. The sample

variance is given by

σ � 

N

i�1
�Xi � μ�2

N

2�Xi � X� 0:644
s2 � � � 0:0716V2

n � 1 9

TABLE 4-1 Calculation of Sample Variance Using Eq. (4-11) or (4-12)

Deviation from Mean, Squared Deviation,

Xi X2
i Xi � X �Xi � X�2

9.2 84.64 0.04 0.0016

8.9 79.21 �0.26 0.0676

8.7 75.69 �0.46 0.2116

9.5 90.25 0.34 0.1156

9.0 81.00 �0.16 0.0256

9.3 86.49 0.14 0.0196

9.4 88.36 0.24 0.0576

9.5 90.25 0.34 0.1156

9.0 81.00 �0.16 0.0256

9.1 81.81 �0.06 0.0036

Xi � 91:60 X2
i � 839:70 �Xi � X� � 0 �Xi � X�2 � 0:644
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The sample standard deviation given by eq. (4-14) is

p
s � 0:0716 � 0:2675 V

Next, using eq. (4-12) (the calculations are shown in Table 4-1), the sample variance is given

by

2X2 � �  Xi� =ni2 � 
n � 1

s

839:70 � �91:60�2=10� 
9

� 0:0716 V2

The sample standard deviation s is 0.2675V, as before.

Interquartile Range The lower quartile, Q1, is the value such that one-fourth of the

observations fall below it and three-fourths fall above it. The middle quartile is the median—

half theobservations fall below it andhalf above it. The third quartile,Q3, is the value such that

three-fourths of the observations fall below it and one-fourth above it.

The interquartile range (IQR) is the difference between the third quartile and the first

quartile. Thus,

IOR � Q3 � Q1 �4-16� 
Note fromFigure 4-9 that the IQRcontains 50%of the observations. The larger the IQRvalue,

the greater the spread of the data. Tofind the IQR, the data are ranked in ascending order;Q1 is

located at rank 0.25(n+ 1), where n is the number of data points in the sample, and Q3 is

located at rank 0.75(n+ 1).

FIGURE 4-9 Interquartile range for a distribution.
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Example 4-14 A random sample of 20 observations on the welding time (in minutes) of an

operation gives the following values:

2:2 2:5 1:8 2:0 2:1 1:7 1:9 2:6 1:8 2:3
2:0 2:1 2:6 1:9 2:0 1:8 1:7 2:2 2:4 2:2

First let’s find the locations of Q1 and Q3:

location of Q1 � 0:25�n � 1� � �0:25��21� �  5:25
location of Q3 � 0:75�n � 1� � �0:75��21� � 15:75

Now let’s rank the data values:

Q1’s location� 5.25 Q3’s location� 15.75

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data Value 1.7 1.7 1.8 1.8 1.8 1.9 1.9 2.0 2.0 2.0 2.1 2.1 2.2 2.2 2.2 2.3 2.4 2.5 2.6 2.6

Q1� 1.825 Q3� 2.275

Thus, linear interpolation yields a Q1 of 1.825 and a Q3 of 2.275. The interquartile range is

then

IQR � Q3 � Q1

� 2:275 � 1:825 � 0:45 minute

Measures of Skewness and Kurtosis

In addition to central tendency and dispersion, two other measures are used to describe data

sets: the skewness coefficient and the kurtosis coefficient.

Skewness Coefficient The skewness coefficient describes the asymmetry of the data set

about the mean. The skewness coefficient is calculated as follows:

3�Xi � X�
n

γ1 � i�1 �4-17� �n � 1��n � 2� s3

n

In Figure 4-10, part (a) is a negatively skewed distribution (skewed to the left), part (b) is

positively skewed (skewed to the right), and part (c) is symmetric about the mean. The

skewness coefficient is zero for a symmetric distribution, because [as shown in part (c)] the

mean and the median are equal. For a positively skewed distribution, the mean is greater than

the median because a few values are large compared to the others; the skewness coefficient

will be a positive number. If a distribution is negatively skewed, the mean is less than the

median because the outliers are very small compared to the other values, and the skewness

coefficient will be negative. The skewness coefficient indicates the degree to which a

distribution deviates from symmetry. It is used for data sets that are unimodal (that is, have

one mode) and have a sample size of at least 100. The larger the magnitude of the skewness

coefficient, the stronger the case for rejecting the notion that the distribution is symmetric.
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FIGURE 4-10 Symmetric and skewed distributions.

Kurtosis Coefficient Kurtosis is a measure of the peakedness of the data set. It is also

viewed as ameasure of the “heaviness” of the tails of a distribution. The kurtosis coefficient is

given by

�Xi � X�4
n�n � 1� i�1 3�n � 1�2

γ2 � � �4-18� �n � 1��n � 2��n � 3� s4 �n � 2��n � 3� 

n

Thekurtosis coefficient is a relativemeasure. For normal distributions (discussed in depth

later), the kurtosis coefficient is zero. Figure 4-11 shows a normal distribution (mesokurtic), a

distribution that is more peaked than the normal (leptokurtic), and one that is less peaked than

the normal (platykurtic). For a leptokurtic distribution, the kurtosis coefficient is greater than

zero.Themore pronounced the peakedness, the larger the value of the kurtosis coefficient. For

platykurtic distributions, the kurtosis coefficient is less than zero. The kurtosis coefficient

should only be used to make inferences on a data set when the sample size is at least 100 and

the distribution is unimodal.

Example 4-15 A sample of 50 coils to be used in an electrical circuit is randomly selected,

and the resistance of each ismeasured (in ohms). From the data in Table 4-2, the samplemean

X is found to be

1505:5
X � � 30:11

50
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FIGURE 4-11 Distributions with different degrees of peakedness.

TABLE 4-2 Resistance of Coil Data

Observation, i Resistance, Xi Observation, i Resistance, Xi Observation, i Resistance, Xi

1 35.1 18 25.8 35 31.4

2 35.4 19 26.4 36 28.5

3 36.3 20 25.6 37 28.4

4 38.8 21 33.1 38 27.6

5 39.0 22 33.6 39 27.6

6 22.5 23 32.3 40 28.2

7 23.7 24 32.6 41 30.8

8 25.0 25 32.2 42 30.6

9 25.3 26 27.5 43 30.4

10 25.0 27 26.5 44 30.5

11 34.7 28 26.9 45 30.5

12 34.2 29 26.7 46 28.5

13 34.4 30 27.2 47 30.2

14 34.7 31 31.8 48 30.1

15 34.3 32 32.1 49 30.0

16 26.4 33 31.5 50 28.9

17 25.5 34 31.2
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Using the data, the following values are obtained:

�Xi � X�2 � 727:900; �Xi � X�3 � 736:321; �Xi � X�4 � 26151:892

The sample standard deviation is calculated as

� 3:854s � 727:900

49

The skewness coefficient is

50 736:321
γ1 � � 0:273�49��48� �3:854�3

The positive skewness coefficient indicates that the distribution of the data points is slightly

skewed to the right. The kurtosis coefficient is

�50��51� 26; 151:892 �3��49�2
γ2 � � � �0:459�49��48��47� �3:854�4 �48��47� 

This implies that the given distribution is less peaked than a normal distribution.

Example4-16 For the coil resistance data shown inTable 4-2, all of the previous descriptive

statistics can be obtained using Minitab. The commands to be used are Stat>Basic

Statistics>Display Descriptive Statistics. In theVariables box, enter the column number

or name of the variable (in this case, Resistance). By clicking on the Statistics button in the

dialog box, you may choose the statistics to be displayed. ClickOK. The output is shown in

Figure 4-12.

The mean and the standard deviation of the resistance of coils are 30.11 and 3.854,

respectively, and the median is 30.3. The minimum and maximum values are 22.5 and 39.0,

respectively, and the IQR is 5.875. Skewness and kurtosis coefficients are 0.27 and �0.46,
matching the previously computed values.

Measures of Association

Measures of association indicate how two or more variables are related to each other. For

instance, as one variable increases, howdoes it influence another variable?Small values of the

measures of association indicate a nonexistent or weak relationship between the variables,

and large values indicate a strong relationship.

FIGURE 4-12 Descriptive statistics for coil resistance using Minitab.
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Correlation Coefficient A correlation coefficient is ameasure of the strength of the linear

relationship between two variables in bivariate data. If two variables are denoted by X and Y,

the correlation coefficient r of a sample of observations is found from

r � 

n

i�1
�Xi � X��Yi � Y� 

n

i�1
�Xi � X�2

n

i�1
�Yi � Y�2

�4-19� 

where Xi and Yi denote the coordinates of the ith observation, X is the sample mean of the

Xi-values, Y is the sample mean of the Yi-values, and n is the sample size. An alternative

version for calculating the sample correlation coefficient is

XiYi � �  Xi�� Yi�=n
r � �4-20� 

� X2 � �  Xi�2=n�� Y2 � �  Yi�2=n�i i

The sample correlation coefficient r is always between�1 and 1. An r-value of 1 denotes a
perfect positive linear relationship between X and Y. This means that, as X increases, Y

increases linearly and, as X decreases, Y decreases linearly. Similarly, an r-value of �1
indicates aperfect negative linear relationshipbetweenXandY. If thevalueof r is zero, the two

variablesX andY are uncorrelated,which implies that ifX increases,we cannot really say how

Ywould change. A value of r that is close to zero thus indicates that the relationship between

the variables is weak.

Figure 4-13 shows plots of bivariate data with different degrees of strength of the linear

relationship. Figure 4-13a shows a perfect positive linear relationship between X and Y. As X

increases, Y very definitely increases linearly, and vice versa. In Figure 4-13c, X and Y are

positively correlated (say,with a correlation coefficient of 0.8) but not perfectly related.Here,

on the whole, as X increases, Y tends to increase, and vice versa. Similar analogies can be

drawn for Figures 4-13b and d, whereX and Y are negatively correlated. In Figure 4-13e, note

that it is not evident what happens to Y as X increases or decreases. No general trend can be

established from the plot, and X and Y are either uncorrelated or very weakly correlated.

Statistical tests are available for testing the significance of the sample correlation coefficient

and for determining if the population correlation coefficient is significantly different from

zero (Neter et al. 2005), as discussed later in the chapter.

Example 4-17 Consider the data shown in Table 4-3 on the depth of cut and tool wear (in

millimeters) in a milling operation. To find the strength of linear relationship between these

two variables, we need to compute the correlation coefficient.

Using Minitab, choose Stat>Basic Statistics>Correlation. In Variables, enter the

column number or names of the two variables, Depth and Tool Wear. Click OK. The

output from Minitab shows the correlation coefficient as 0.915, indicating a strong

positive linear relationship between depth of cut and tool wear. Further, Minitab tests the

null hypothesis (H0: ρ� 0) versus the alternative hypothesis (Ha: ρ�6 0), where ρ denotes
the population correlation coefficient and reports a probability value ( p-value) of 0.000.

As we discuss in Section 4-7, if the p-value is small relative to a chosen level of
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FIGURE 4-13 Scatterplots indicating different degrees of correlation.

significance, we reject the null hypothesis. So, here, for a chosen level of significance (α)

of 0.05 (say), we reject the null hypothesis.

Example 4-18 Now let’s use the milling operation data in Table 4-3 to obtain summary

descriptive statistics. The data are entered in two columns for the variables Depth and Tool

Wear. From the Minitab Windows menu, choose Stat>Basic Statistics>Graphical

Summary. Now, select the variable you want to describe—say, Depth.

A sample Minitab output of the graphical summary is shown in Figure 4-14. The mean

and standard deviation of depth of cut are 3.527 and 1.138, indicating location and

dispersion measures, respectively. The first and third quartiles are 2.45 and 4.45,

respectively, yielding an interquartile range of 2.0, within which 50% of the observations

are contained. Skewness and kurtosis coefficients are also shown. The skewness coefficient

is �0.034, indicating that the distribution is close to being symmetrical, although slightly

negatively skewed. A kurtosis value of�1.085 indicates that the distribution is less peaked
than the normal distribution, which would have a value of zero. The graphical summary
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TABLE 4-3 Milling Operation Data

Observation, i Depth of Cut, Xi Tool Wear, Yi

1 2.1

2 4.2

3 1.5

4 1.8

5 2.3

6 3.8

7 2.6

8 4.3

9 3.4

10 4.5

11 2.6

12 5.2

13 4.1

14 3.0

15 2.2

16 4.6

17 4.8

18 5.3

19 3.9

20 3.5

0.035

0.041

0.031

0.027

0.033

0.045

0.038

0.047

0.040

0.058

0.039

0.056

0.048

0.037

0.028

0.057

0.060

0.068

0.048

0.036

Observation, i Depth of Cut, Xi Tool Wear, Yi

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

5.6 0.073

4.7 0.064

1.9 0.030

2.4 0.029

3.2 0.039

3.4 0.038

3.8 0.040

2.2 0.031

2.0 0.033

2.9 0.035

3.0 0.032

3.6 0.038

1.9 0.032

5.1 0.052

4.7 0.050

5.2 0.058

4.1 0.048

4.3 0.049

3.8 0.042

3.6 0.045

yields four plots. The first is a frequency distribution with the normal curve superimposed

on it. The confidence intervals shown are discussed in Section 4-7, as is the p-value and the

hypothesis testing associated with it. The box plot shown in Figure 4-14 is discussed in

Chapter 5.

FIGURE 4-14 Graphical summary of a variable depth of cut.
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4-6 PROBABILITY DISTRIBUTIONS

Sampledata canbedescribedwith frequencyhistogramsorvariations thereof (such as relative

frequency or cumulative frequency, which we discuss later). Data values in a population

are described by a probability distribution. As noted previously, random variables may be

discrete or continuous. For discrete random variables, a probability distribution shows

the values that the random variable can assume and their corresponding probabilities.

Some examples of discrete random variables are the number of defects in an assembly, the

number of customers served over a period of time, and the number of acceptable

compressors.

Continuous random variables can take on an infinite number of values, so the probability

distribution is usually expressed as a mathematical function of the random variable. This

function can be used to find the probability that the random variable will be between certain

bounds. Almost all variables for which numerical measurements can be obtained are

continuous in nature: for example, the waiting time in a bank, the diameter of a bolt, the

tensile strength of a cable, or the specific gravity of a liquid.

For a discrete randomvariableX, which takes on the values x1, x2, and so on, a probability

distribution function p(x) has the following properties:

1: p�xi� � 0 for all i;where p�xi� � P�X � xi�; i � 1; 2; . . .

2: p�xi� � 1

WhenX is a continuous random variable, the probability density function is represented by

f(x), which has the following properties:

b

1: f �x� � 0 for all x;where P�a � x � b� �  f �x� dx
1 a

2: f �x�dx � 1
�1 

Note the similarity of these two properties to those for discrete random variables.

Example 4-19 Let X denote a random variable that represents the number of defective

solders in a printed circuit board. The probability distribution of the discrete random variable

X may be given by

x 0 1 2 3

all i

p(x) 0.3 0.4 0.2 0.1

This table gives the values taken on by the random variable and their corresponding

probabilities. For instance, P(X� 1)� 0.4; that is, there is a 40% chance of finding one

defective solder. A graph of the probability distribution of this discrete random variable is

shown in Figure 4-15.

Example 4-20 Consider a continuous random variable X representing the time taken to

assemble a part. The variable X is known to be between 0 and 2minutes, and its probability
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FIGURE 4-15 Probability distribution of a discrete random variable.

density function (pdf), f(x), is given by

x
f �x� �  ; 0 < x � 2

2

The graph of this probability density function is shown in Figure 4-16. Note that

2 2 x
f �x�dx � dx � 1

20 0

FIGURE 4-16 Probability density function, 0 < x � 2:
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The probability that X is between 1 and 2 is

2 x 3
P�1 � X � 2� �  dx � 

2 41

Cumulative Distribution Function

The cumulative distribution function (cdf) is usually denoted by F(x) and represents the

probability of the random variable X taking on a value less than or equal to x, that is,

F�x� � P�X � x� 
For a discrete random variable,

F�x� �  p�xi� for xi � x �4-21� 

If X is a continuous random variable,

x

F�x� �  f �t�dt �4-22� 
�1 

Note that F(x) is a nondecreasing function of x such that

lim F�x� � 1 and lim F�x� � 0
x→1 x→�1 

Expected Value

The expected value or mean of a random variable is given by

μ � E�X� �  xip�xi� if X is discrete �4-23� 

and

1 
μ � E�X� �  x f �x�dx if X is continuous �4-24� 

�1 

The variance of a random variable X is given by

2�Var�X� � E��X � μ�
2� E�X2� � �E�X�� �4-25� 

Example 4-21 For the probability distribution of Example 4-19, regarding the defective

solders, the mean μ or expected value E(X) is given by

μ � E�X� �  xip�xi� 
� �0��0:3� � �1��0:4� � �2��0:2� � �3��0:1� � 1:1

The variance of X is

2σ2 � Var�X� � E�X2� � �E�X��

all i

all i

all i
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First, E(X2) is calculated as follows:

all i

2E�X2� �  xi p�xi� 

2 2 2 2� �0� �0:3� � �1� �0:4� � �2� �0:2� � �3� �0:1� � 2:1

So

Var�X� � 2:1 � �1:1�2 � 0:89

p
Hence, the standard deviation of X is σ � 0:89 � 0:943.

Example 4-22 For the probability distribution function in Example 4-20, regarding a part’s

assembly time, the mean μ, or expected value E(X), is given by

1 2 x
E�X� �  x f �x�dx � x dx

2�1 0

23� � 1:333minutes
6

Thus, the mean assembly time for this part is 1.333minutes.

Discrete Distributions

The discrete class of probability distributions deals with those random variables that can take

on a finite or countably infinite number of values. Several discrete distributions have

applications in quality control, three of which are discussed in this section.

Hypergeometric Distribution A hypergeometric distribution is useful in sampling from

afinite population (or lot)without replacement (i.e.,without placing the sample elements back

in the population) when the items or outcomes can be categorized into one of two groups

(usually called success and failure). If we consider finding a nonconforming item a

success, the probability distribution of the number of nonconforming items (x) in the

sample is given by

; x � 0; 1; 2; . . . ;min�n;D� �4-26�p�x� �  
D

x

N � D

n � x

N

n

where D� number of nonconforming items in the population, N� size of the population,

Dn� size of the sample, x� number of nonconforming items in the sample, and � 
combination of D items taken x at a time, D!=�x!�D � x�!�: x
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The factorial of a positive integer x is written as x! � x(x – 1)(x – 2) ∙ ∙ ∙ 3 �2 �1, and 0! is

defined to be 1. The mean (or expected value) of a hypergeometric distribution is given by

nD
μ � E�X� �  �4-27� 

N

The variance of a hypergeometric random variable is given by

D N � n
σ2 � Var�X� �  nD 1 � �4-28� 

N N N � 1

Example 4-23 A lot of 20 chips contains 5 nonconforming ones. If an inspector randomly

samples 4 items, find the probability of 3 nonconforming chips.

Solution In this problem, N� 20, D� 5, n� 4, and x� 3.

5 15

3 1
P�X � 3� �  � 0:031

20

4

Using Minitab, click on Calc>Probability Distributions>Hypergeometric. The

option exists to select one of the following three:Probability, which represents the individual

probability of the variable taking on a chosen value (x) [i.e., P(X� x)]; Cumulative

probability, which represents P(X� x); and Inverse cumulative probability, which

represents the value a such that P(X� a)� b, where b is the specified cumulative probability.

Here, we select Probability. Input the Population size as 20,Event count in population

as 5, andSample size as 4. Select Input constant and input the value of 3. ClickOK.Minitab

outputs P(X� 3)� 0.03096.

Binomial Distribution Consider a series of independent trials where each trial results in

one of two outcomes. These outcomes are labeled as either a success or a failure. The

probability p of success on any trial is assumed to be constant. Let X denote the number of

successes if n such trials are conducted. Then the probability of x successes is given by

n x n�x
p�x� �  p �1 � p� ; x � 0; 1; 2; . . . ; n �4-29� 

x

and X is said to have a binomial distribution. The mean of the binomial random variable is

given by

μ � E�X� � np �4-30� 
and the variance is expressed as

σ2 � Var�X� � np�1 � p� �4-31� 
Abinomial distribution is a distribution using the two parameters n and p. If the values of

these parameters are known, all information associated with the binomial distribution can be

determined. Such a distribution is applicable to sampling without replacement from a

population (or lot) that is large compared to the sample or to sampling with replacement
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from a finite population. It is also used for situations in which items are selected from an

ongoing process (i.e., the population size is very large). Tables of cumulative binomial

probabilities are shown in Appendix A-1.

Example 4-24 Amanufacturing process is estimated to produce 5% nonconforming items.

If a random sample of five items is chosen, find the probability of getting two nonconforming

items.

Solution Here, n� 5, p� 0.05 (if success is defined as getting a nonconforming item),

and x� 2.

5 2
P�X � 2� �  �0:05� �0:95�3 � 0:021

2

This probability may be checked using Appendix A-1.

P�X � 2� �  P�X � 2� � P�X � 1� 
� 0:999 � 0:977 � 0:022

The discrepancy between the two values is due to rounding the values of Appendix A-1 to

three decimal places. Using Appendix A-1, the complete probability distribution of X, the

number of nonconforming items, may be obtained:

x 0 1 2 3 4 5

p(x) 0.774 0.203 0.022 0.001 0.000 0.000

The expected number of nonconforming items in the sample is

μ � E�X� � �5��0:05� � 0:25 item

while the variance is

σ2 � �5��0:05��0:95� � 0:2375 item2

To generate the probability distribution of X using Minitab, first create a worksheet by

using a column to represent the values of the random variableX (i.e., 0, 1, 2, 3, 4 and 5). Click

on Calc>Probability Distributions>Binominal. Select Probability, and input the

Number of trials as 5 and Event probability as 0.05. Select Input column, and input the

column number or name of the variable X. Click OK. Minitab outputs the probability

distribution of X, which matches the values calculated previously.

The major differences between binomial and hypergeometric distributions are as follows:

The trials are independent in a binomial distribution,whereas they are not in a hypergeometric

one; the probability of success on any trial remains constant in a binomial distribution but not

so in ahypergeometric one.Ahypergeometric distribution approaches abinomial distribution

as N→1 and D/N remains constant.

The proportion of nonconforming items in the sample is frequently used in statistical

quality control. This may be expressed as

x
p̂ � 

n
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where X has a binomial distribution with parameters n and p and x denotes an observed

value of X. The probability distribution of p̂ is obtained using

x
P�p̂ � a� � P � a � P�x � na� 

n

dnae 
n x n�x� p �1 � p� �4-32� 
x

x�0

where dnae is the largest integer less than or equal to na. It can be shown that themean of p̂ is p

and that the variance of p̂ is given by

p�1 � p� 
Var�p̂� �

n

Poisson Distribution A Poisson distribution is used to model the number of events that

happenwithin aproduct unit (number of defective rivets in an airplanewing), space or volume

(blemishes per 200 squaremeters of fabric), or time period (machine breakdowns permonth).

It is assumed that the events happen randomly and independently.

The Poisson random variable is denoted by X. An observed value of X is represented by x.

The probability distribution (or mass) function of the number of events (x) is given by

�λλxe
p�x� �  ; x � 0; 1; 2; . . . �4-33� 

x!

where λ is themeanor average number of events that happenover the product, volume, or time

period specified. The symbol e represents the base of natural logarithms, which is equal to

about 2.7183. ThePoisson distribution has one parameter, λ. Themean and the variance of the

Poisson distribution are equal and are given by

μ � σ2 � λ �4-34� 

The Poisson distribution is sometimes used as an approximation to the binomial

distribution when n is large (n→1) and p is small (p→ 0), such that np� λ is constant.

That is, a Poisson distribution can be used when all of the following hold:

1. The number of possible occurrences of defects or nonconformities per unit is large.

2. The probability or chance of a defect or nonconformity happening is small (p→ 0).

3. The average number of defects or nonconformities per unit is constant.

Appendix A-2 lists cumulative Poisson probabilities for various values of λ

Example 4-25 It is estimated that the average number of surface defects in 20m2 of paper

produced by a process is 3. What is the probability of finding no more than two defects in

40m2 of paper through random selection?
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Solution Here, one unit is 40m2 of paper. So, λ is 6 because the average number of

surface defects per 40m2 is 6. The probability is

P�X � 2� � P�X � 0� � P�X � 1� � P�X � 2� 
�6 �6 �6e �60� e �61� e �62� � � � � 0:062
0! 1! 2!

To calculate this probability usingMinitab, click onCalc>Probability Distributions>

Poisson. SelectCumulative probability, and input the value of theMean as 6. Select Input

constant and input the value as 2. Click OK. Minitab outputs P(X� 2)� 0.0619688.

AppendixA-2alsogives this probability as0.062.Themeanandvarianceof thedistribution

are both equal to 6. Using Appendix A-2, the probability distribution is as follows:

x 0 1 2 3 4 5 6 7 8

p(x) 0.002 0.015 0.045 0.089 0.134 0.161 0.160 0.138 0.103

x 9 10 11 12 13 14 15 16

p(x) 0.069 0.041 0.023 0.011 0.005 0.003 0.000 0.000

Continuous Distributions

Continuous randomvariablesmay assume an infinite number of values over afinite or infinite

range. The probability distribution of a continuous random variable X is often called the

probability density function f(x). The total area under the probability density function is 1.

Normal Distribution The most widely used distribution in the theory of statistical quality

control is the normal distribution. The probability density function of a normal random

variable is given by

1 ��x � μ�2
f �x� � p exp ; �1 < x < 1 �4-35� 

2σ22πσ

where μ is the population mean and σ is the population standard deviation.

The two parameters of a normal distribution are the mean and the variance (or standard

deviation). Note that the variance σ2 is the square of the standard deviation. Figure 4-17 shows

FIGURE 4-17 Normal distribution.
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2FIGURE 4-18 Effects of the parameters μ and σ on the normal distribution.

the normal probability density function. The effect of the parametersμ andσ2 on the shape of the

probability density function is shown in Figures 4-18a and b. A change in the mean μ causes a

change in the location of the distribution. As the mean increases, the distribution shifts to the

right, and as themean decreases, the distribution shifts to the left. As the varianceσ2 (or standard

deviation) increases, the spread about the mean increases. A normal distribution is symmetric

about the mean; that is, the mean, median, and mode are equal.

The standard deviation is very important in a normal distribution. The proportion

of population values that fall in range μ± σ is 68.26%. Similarly, 95.44% of the total

area is within μ± 2σ, and 99.74% of the area is between μ± 3σ.

Finding the area under a normal curve requires integrating eq. (4-35) within the prescribed

limits of the random variable, a fairly involved task. Fortunately, already constructed tables

enable us to find this area. Note that because the shape of the density function changes with

each possible combination of μ and σ2, it is impossible to tabulate areas for each conceivable

normal distribution. Nevertheless, the area within certain limits for any normal distribution

can be found by looking up tabulated areas for a standard normal distribution. The

standardized normal random variable Z is given by

X � μ
Z � �4-36� 

σ

The z-value, or standardized value, is the number of standard deviations that a raw, or

observed, value x is from the mean. The z-value can be positive or negative. If the z-value is

positive, the raw value is to the right of themean, whereas negative z-values indicate points to

the left of the mean. At themean, the z-value is 0. The distribution of the standardized normal

random variable has a mean of 0 and a variance of 1. It is represented as an N(0, 1) variable,

where the first parameter represents the mean and the second the variance, and its density

function is given by

1 �z2=2f �z� � p e ; �1 < z < 1 �4-37� 
2π
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FIGURE 4-19 Normal distributions.

The cumulative distribution function of Z is

z

Φ�z� � F�z� �  f �t�dt �4-38� 
�1 

Figures 4-19a and b show the standard normal distribution and its relationship to the raw

variable X.

Appendix A-3 gives values for the cumulative distribution function of Z. The normal

distribution has the property that the area between certain limits a and b for a variable X is the

same as the area between the standardized values for a and b under the standard normal

distribution. Thus, we need only one set of tables—those for the standard normal distribution

function—to calculate the area between certain limits for any normal distribution.

Example 4-26 The length of a machined part is known to have a normal distribution with a

mean of 100mm and a standard deviation of 2mm.

(a) What proportion of the parts will be above 103.3mm?

Solution Let X denote the length of the part. The parameter values for the normal

distribution are μ� 100 and σ� 2. The probability required is shown in Figure 4-20a. The

standardized value of 103.3 corresponds to

x1 � μ 103:3 � 100
z1 � � � 1:65

σ 2

Thus, P(X> 103.3)�P(Z> 1.65). From Appendix A-3, P(Z� 1.65)� 0.9505, which also

equals P(X� 103.3). So

P�Z > 1:65� � 1 � P�Z � 1:65� 
� 1 � 0:9505 � 0:0495

The desired probability P(X> 103.3) is 0.0495, or 4.95%.

To obtain the desired probability using Minitab, click on Calc>Probability Dis

tributions>Normal. Select Cumulative Probability, and input the value of the Mean

to be 100 and that of the Standard deviation to be 2. Select Input constant and input
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FIGURE 4-20 Calculation of normal probabilities.

the value of 103.3. Click OK. Minitab outputs P(X� 103.3)� 0.950529. Hence,

P(X> 103.3)� 0.049471.
(b) What proportion of the output will be between 98.5 and 102.0mm?

Solution We wish to find P(98.5�X� 102.0), which is shown in Figure 4-20b. The

standardized values are computed as

102:0 � 100
z1 � � 1:00

2

98:5 � 100
z2 � � �0:75

2

FromAppendixA-3,wehaveP(Z� 1.00)� 0.8413 andP(Z��0.75)� 0.2266.The required

probability equals 0.8413 – 0.2266� 0.6147. Thus, 61.47% of the output is expected to be

between 98.5 and 102.0mm

(c) What proportion of the parts will be shorter than 96.5mm?

Solution We want P(X< 96.5), which is equivalent to P(X� 96.5), since for a continu

ous random variable the probability that the variable equals a particular value is zero. The

standardized value is

96:5 � 100
z1 � � �1:75

2

The required proportion is shown in Figure 4-20c. Using Appendix A-3, P(Z��1.75)� 
0.0401. Thus, 4.01% of the parts will have a length less than 96.5mm.

(d) It is important that not many of the parts exceed the desired length. If a manager

stipulates that no more than 5% of the parts should be oversized, what specification

limit should be recommended?
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Solution Let the specification limit be A. From the problem information, P(X�A) � 
0.05. TofindA, wefirstfind the standardized value at the pointwhere the raw value isA. Here,

the approachwill be the reverse of what was done for the previous three parts of this example.

That is, we are given an area, andwewant tofind the z-value.Here,P(X�A)� 1–0.05� 0.95.

We look for an area of 0.95 in Appendix A-3 and find that the linearly interpolated z-value is

1.645. Finally, we unstandardize this value to determine the limit A:

x1 � 100
1:645 � 

2

x1 � 103:29 mm

Thus, A should be set at 103.29mm to achieve the desired stipulation.

To solve this usingMinitab, click onCalc>ProbabilityDistributions>Normal. Select

Inverse cumulative probability, and input the value of the Mean as 100 and Standard

deviation as 2. Select Input constant, and input the value 0.95. ClickOK. Minitab outputs

the value of X as 103.290, for which P(X� x)� 0.95.

Exponential Distribution The exponential distribution is used in reliability analysis to

describe the time to the failure of a component or system. Its probability density function is

given by

f �x� � λe�λx; x � 0 �4-39� 
where λ denotes the failure rate. Figure 4-21 shows the density function. An exponential

distribution represents a constant failure rate and is used to model failures that happen

randomly and independently. If we consider the typical life cycle of a product, its useful life

occurs after the debugging phase and before the wearout phase. During its useful life, the

failure rate is fairly constant, and failures happen randomly and independently. An

exponential distribution, which has these properties, is therefore appropriate for modeling

failures in the useful phase of a product. Themean and the variance of an exponential random

variable are given by

μ � 1
λ
; σ2 � 1

λ2
�4-40� 

Thus, the mean and the standard deviation are equal for an exponential random variable.

FIGURE 4-21 Exponential density function.
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The exponential cumulative distribution function is obtained as follows:

F�x� � P�X � x� 
x

�λt �λx� λe dt � 1 � e
0 �4-41� 

An exponential distribution has the property of being memoryless. This means that the

probability of a component’s exceeding s+ t time units, given that it has lasted t time units,

is the same as the probability of the life exceeding s time units. Mathematically, this property

may be represented as

P�X > s � t jX > t� � P�X > s� for all s and t � 0 �4-42� 
The exponential distribution has some relationship to the Poisson distribution discussed

previously. If the number of events that happen over a specified interval of time occur

randomly and independently, according to a Poisson distribution, the time between the

occurrences of events may be modeled by the exponential distribution. So, if the number of

arrivals per hour in the emergencydepartment of a hospital follows aPoissondistributionwith

parameterλ= 20,which also represents themeannumber of arrivals per hour, the inter-arrival

time between patients will follow an exponential distribution with a mean time between

arrivals of 1/20 hour= 3 minutes.

Example 4-27 It is known that a battery for a video game has an average life of 500 hours

(h). The failures of batteries are known to be random and independent and may be described

by an exponential distribution.

(a) Find the probability that a battery will last at least 600 hours.

Solution Since the average life, or mean life, of a battery is given to be 500 hours, the

failure rate is λ � 1=500:
If the life of a battery is denoted by X, we wish to find P(X> 600):

��1=500��600�� � eP�X > 600� � 1 � P�X � 600� � 1 � �1 � e �1:2 � 0:301

(b) Find the probability of a battery failing within 200 hours.

Solution

��1=500��200� � 1 � eP�X � 200� � 1 � e �0:4 � 0:330

(c) Find the probability of a battery lasting between 300 and 600 hours.

Solution

��1=500��300� � e��1=500��600�P�300 � X � 600� � F�600� �  F�300� � e
�0:6 � e� e �1:2 � 0:248

To find this probability using Minitab, create a worksheet by using a column for the

variableX and input the values of 300 and 600.Click onCalc>ProbabilityDistributions>

Exponential. SelectCumulative Probability and input the value of Scale, which is equal to

the mean when the threshold is 0, as 500. Select Input column and input the column number
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or name of the variable X. Click OK. Minitab outputs P(X� 300)� 0.451188 and

P(X� 600)� 0.698806. The desired probability is 0.247618.

(d) Find the standard deviation of the life of a battery.

Solution

σ � 1=λ � 500 hours

(e) If it is known that a battery has lasted 300 hours, what is the probability that it will last

at least 500 hours?

Solution

P�X > 500 jX > 300� � P�X > 200� � 1 � P�X � 200�
 
��1=500�200��� 1 � �1 � e

� e�0:4 � 0:670

Weibull Distribution AWeibull random variable is typically used in reliability analysis to

describe the time to failure of mechanical and electrical components. It is a three-parameter

distribution (Banks 1989; Henley and Kumamoto 1991). A Weibull probability density

function is given by

β�1 ββ x � γ x � γ
f �x� �  exp � ; x � γ �4-43� 

α α α

The parameters are a location parameter γ(�1< γ<1), a scale parameter

α(α> 0), and a shape parameter β(β> 0).

Figure 4-22 shows the probability density functions for γ� 0, α� 1, and several values

of β. TheWeibull distribution as a general distribution is important because it can be used

to model a variety of situations. The shape varies depending on the parameter values.

For certain parameter combinations, it approaches a normal distribution. If γ� 0 and

FIGURE 4-22 Weibull probability density functions (γ= 0, α= 1, β= 0.5, 1, 2, 4).
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β�1, a Weibull distribution reduces to an exponential distribution. The mean and the

variance of the Weibull distribution are

1
μ � E�X� � γ � αΓ � 1 �4-44� 

β

2
2 1

σ2 � Var�X� � α2 Γ � 1 � Γ � 1 �4-45� 
β β

where Γ(t) represents the gamma function, given by

1 
�x t�1Γ�t� �  e x dx

0

If u is an integer such that u� 1, then Γ(u)� (u – 1)! Note that u!� u(u – 1)(u – 2) . . . 1 and

0!� 1.

The cumulative distribution function of a Weibull random variable is given by

βx � γ
F�x� � 1 � exp � ; x � γ �4-46� 

α

Example 4-28 The time to failure for a cathode ray tube can be modeled using a Weibull

distribution with parameters γ� 0, β � 1 and α� 200 hours.
3

(a) Find the mean time to failure and its standard deviation.

Solution The mean time to failure is given by

μ � E�X� 
� 0 � 200Γ�3 � 1� 
� 200Γ�4� � 1200 hours

The variance is given by

2σ2 � �200�2fΓ�6 � 1� � �Γ�3 � 1�� g
� �200�2fΓ�7� � �Γ�4��2g � 2736 � 104

The standard deviation is σ� 5230.679 hours.

(b) What is the probability of a tube operating for at least 800 hours?

Solution

P�X > 800� � 1 � P�X � 800�
 
1=3�� 1 � 1 � exp���800=200�

� exp���4�1=3� � exp��1:587� 
� 0:204

To find this probability using Minitab, click on Calc>Probability Distributions>

Weibull. Select Cumulative probability and input Shape parameter as 0.3333, Scale

parameter as 200, andThreshold parameter (for location) as 0. Select Input constant and

input the value 800. Click OK. Minitab outputs P(X� 800)� 0.795529. The desired

probability is thus 0.204471.
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Gamma Distribution Another important distribution with applications in reliability

analysis is the gamma distribution. Its probability density function is given by

λk k�1 �λxf �x� �  x e ; x � 0 �4-47� 
Γ�k� 

where k is a shape parameter, k> 0, and λ is a scale parameter, λ> 0. The mean and the

variance of the gamma distribution are

k
μ � �4-48� 

λ

σ2 � 
λ

k
2

�4-49� 

Gamma distributions may take on a variety of shapes, similar to theWeibull, based on the

choice of the parameters k and λ. If k� 1, a special case of the gamma distribution defaults to

the exponential distribution. The gamma distribution may be viewed as the sum of k

independent and identically distributed exponential distributions, each with parameter λ,

the constant failure rate. Thus, it could model the time to the kth failure in a system, where

items fail randomly and independently. Minitab may be used to calculate probabilities using

the gamma distribution.

Lognormal Distribution A random variable X has a lognormal distribution if ln(x)

has a normal distribution with mean μ and variance σ
2, where ln represents the natural

logarithm. Its probability density function is given by

2

ln�x� � μ1
f �x� � p exp ; x > 0 �4-50� 

2σ22π σx

The mean and variance of the lognormal distribution are

σ2
E�X� � exp μ� �4-51� 

2

Var�X� � exp�2μ � σ2� �exp�σ2� � 1� �4-52� 
The cumulative distribution function is expressed as

ln�x� � μ
F�x� � Φ ; x > 0 �4-53� 

σ

where Φ (�) represents the cdf of the standard normal.

Certain quality characteristics such as tensile strength or compressive strength aremodeled

by the lognormal distribution. It is used to model failure distributions due to accumulated

damage, such as crack propagation or wear. These characteristics typically have a distribution

that is positively skewed. It can be shown that the skewness increases rapidly with σ2,

independent of μ. The location and shape parameters are given by eμ and σ, respectively.
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4-7 INFERENTIAL STATISTICS: DRAWING CONCLUSIONS

ON PRODUCT AND PROCESS QUALITY

In this section we examine statistical procedures that are used to make inferences about a

population (a process or product characteristic) on the basis of sample data. As mentioned

previously, analysts use statistics to draw conclusions about a process based on limited

information. The two main procedures of inferential statistics are estimation (point and

interval) and hypothesis testing.

Usually, the parameters of aprocess, such as average furnace temperature, average component

length, and averagewaiting time prior to service, are unknown, so these valuesmust be estimated

or claims as to these parameter values must be tested for verification. For a more thorough

treatment of estimation and hypothesis testing, see Duncan (1986) or Mendenhall et al. (1993).

Sampling Distributions

An estimator, or statistic (which is a characteristic of a sample), is used tomake inferences on

the corresponding parameter. For example, an estimator of the sample mean is used to draw

conclusions on the population mean. Similarly, a sample variance is an estimator of the

population variance. Studying the behavior of these estimators through repeated sampling

allows us to draw conclusions about the corresponding parameters. The behavior of an

estimator in repeated sampling is known as the sampling distributionof the estimator, which

is expressed as the probability distribution of the statistic. Sampling distributions are

discussed in greater detail in the section on interval estimation.

The sample mean is one of the most widely used estimators in quality control because

analysts frequently need to estimate the population mean. It is therefore of interest to know the

sampling distribution of the sample mean; this is described by the central limit theorem.

Suppose thatwe have a populationwithmean μ and standard deviationσ. If random samples

of size n are selected from this population, the following hold if the sample size is large:

1. The sampling distribution of the sample mean will be approximately normal.

2. The mean of the sampling distribution of the sample mean �μ � will be equal to theX

population mean, μ. p
3. The standard deviation of the sample mean is given by σ � σ= n, known as theX

standard error.

The degree to which a sampling distribution of a sample mean approximates a normal

distribution becomes greater as the sample size n becomes larger. Figure 4-23 shows a

sampling distribution of a sample mean. A sample size should be 30 or more to allow a close

approximation of a normal distribution. However, it has been shown that if a population

distribution is symmetric and unimodal, sample sizes as small as 4 or 5 yield sample means

that are approximately normally distributed. In the case of a population distribution already

being normal, samples of any size (even n� 1) will lead to sample means that are normally

distributed. Note that the variability of the sample means, as measured by the standard

deviation, decreases as the sample size increases.

Example 4-29 The tuft bind strength of a synthetic material used to make carpets is known

to have a mean of 50 kg and a standard deviation of 10 kg. If a sample of size 40 is randomly

selected, what is the probability that the sample mean will be less than 52.5 kg?
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FIGURE 4-23 Sampling distribution of a sample mean.

Solution Using the central limit theorem, the sampling distribution of the sample mean

will be approximately normal with a mean μ of 50 kg and a standard deviation ofX

10
σ � p � 1:581 kgX

40

We want to find P�X < 52:5� and first find the standardized value:

X� μXz1 � σX
52:5 � 50� � 1:58
1:581

Then P�X< 52:5� � P�Z< 1:58� � 0:9429 using Appendix A-3.

Estimation of Product and Process Parameters

One branch of statistical inference uses sample data to estimate unknown population

parameters. There are two types of estimation: point estimation and interval estimation. In

point estimation, a single numerical value is obtained as an estimate of the population

parameter. In interval estimation, a range or interval is determined such that there is some

desired level of probability that the true parameter value is contained within it. Interval

estimates are also called confidence intervals.

PointEstimation Apoint estimateconsistsofa singlenumericalvalue that isused tomakean

inference about anunknownproduct orprocessparameter. Suppose thatwewish toestimate the

mean diameter of all piston rings produced in a certain month. We randomly select 100 piston

rings and compute the sample mean diameter, which is 50mm. The value of 50mm is thus a

point estimate of the mean diameter of all piston rings produced that month. A common

convention for denoting an estimator is to use “^” above the corresponding parameter. For

example, an estimator of the populationmean μ is μ̂, which is the samplemeanX. An estimator

of the population variance σ2 is σ̂2, usually noted as the sample variance s2.

Desirable Properties of Estimators Two desirable properties of estimators are worth

noting here. A point estimator is said to be unbiased if the expected value, or mean, of its
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sampling distribution is equal to the parameter being estimated. A point estimator is said to

have aminimumvariance if its variance is smaller than that of any other point estimator for the

parameter under consideration.

The point estimators X and s2 are unbiased estimators of the parameters μ and σ2,

respectively. We know that E�X� � μ and E�s2� � σ2. In fact, using a denominator of n� 1

in the computation of s2 in eq. (4-11) or (4-12) makes s2 unbiased. The central limit theorem

supports the idea that the samplemean is unbiased. Also note from the central limit theorem that

the variance of the samplemeanX is inversely proportional to the square root of the sample size.

Interval Estimation Interval estimation consists of finding an interval defined by two

end-points–say, L andU—such that the probability of the parameter θ being contained in the

interval is some value 1� α. That is,

P�L � θ � U� � 1 � α �4-54� 

This expression represents a two-sided confidence interval, withL representing the lower

confidence limit and U the upper confidence limit. If a large number of such confidence

intervals were constructed from independent samples, then 100(1� α)% of these intervals

would be expected to contain the true parameter value of θ. (Methods for using sample data

to construct such intervals are discussed in the next subsections.)

Suppose that a 90% confidence interval for themean piston ring diameter in millimeters is

desired. One sample yields an interval of (48.5, 51.5)—that is, L� 48.5mm and U� 51.5

mm. Then, if 100 such intervals were constructed (one each from 100 samples), we would

expect 90 of them to contain the populationmean piston ring diameter. Figure 4-24 shows this

concept. The quantity 1� α is called the level of confidence or the confidence coefficient.

Confidence intervals can also be one-sided. An interval of the type

L � θ such that P�L � θ� � 1 � α

is a one-sided lower 100(1� α)% confidence interval for θ. On the other hand, an interval of

the type

θ � U such that P�θ � U� � 1 � α

FIGURE 4-24 Interpreting confidence intervals.
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is an upper 100(1� α)% confidence interval for θ. The context of a situation will influence the

type of confidence interval to be selected. For example, when the concern is the breaking

strength of steel cables, the customermay prefer a one-sided lower confidence interval. Since

the exact expression for the confidence intervals is determinedby the estimator,wediscuss the

estimation of several types of parameters next.

Confidence Interval for the Mean

1. Variance known. Suppose that wewant to estimate the mean μ of a product when the

population variance σ2 is known. A random sample of size n is chosen, and the sample mean

X is calculated. From the central limit theorem, we know that the sampling distribution of the

point estimator X is approximately normal with mean μ and variance σ2/n. A

100(1� α)% two-sided confidence interval for μ is given by

σ σ
X � zα=2 p � μ � X � zα=2 p �4-55� 

n n

The value of zα/2 is the standard normal variate such that the right-tail area of

the standardized normal distribution is α/2. Equation (4-55) represents an approximate

100(1� α)% confidence interval for any distribution of a random variableX. However, ifX is

normally distributed, then eq. (4-55) becomes an exact 100(1� α)% confidence interval.

In most applications, the population variance is usually not known. Knowing the

population variance, strictly speaking, amounts to knowing all the values in the population,

which are typically not known. Hence, in realistic cases, the subsequent procedures that deal

with situations when the population variance is unknown are used.

Example 4-30 The output voltage of a power source is known to have a standard deviation

of 10V. Fifty readings are randomly selected, yielding an average of 118V. Find a 95%

confidence interval for the population mean voltage.

Solution For this example, n� 50, σ� 10, X � 118, and 1� α� 0.95. From Appendix

A-3,wehavez.025� 1.96.Hence,a95%confidenceintervalforthepopulationmeanvoltageμ is

�1:96��10� �1:96��10� 
118 � p � μ � 118 � p

50 50

or

115:228 � μ � 120:772

Hence, there is a 95% chance that the population mean voltage falls within this range.

2. Variance unknown. Suppose we have a random variable X that is normally distributed

with unknownmean μ and unknown variance σ2. A random sample of size n is selected, and the

samplemeanX and samplevariance s2 are computed. It is known that the samplingdistributionofp
the quantity �X � μ�=�s= n� iswhat is known as a t-distributionwithn� 1degrees of freedom;

that is,

X � μp ∼tn�1 �4-56� 
s= n

where the symbol “∼” stands for “is distributed as.” The shape of a t-distribution is similar to

that of the standard normal distribution and is shown in Figure 4-25. As the sample size n
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FIGURE 4-25 A t-distribution.

increases, the t-distribution approaches the standard normal distribution. The number of

degrees of freedomof t, in this case (n� 1), is the same as the denominator used to calculate s2

in eq. (4-11) or (4-12). The number of degrees of freedom represents the fact that if we are

given the sample mean X of n observations, then (n� 1) of the observations are free to be any

value. Once these (n� 1) values are found, there is only one value for the nth observation that

will yield a sample mean of X. Hence, one observation is “fixed” and (n� 1) are “free”.

The values of t corresponding to particular right-hand-tail areas and numbers of degrees

of freedom are given in Appendix A-4. For a right-tail area of 0.025 and 10 degrees of freedom,

the t-value is 2.228.As thenumber of degrees of freedom increases for a given right-tail area, the

t-valuedecreases.When the numberof degrees of freedom is large (say, greater than120), notice

that the t-value given in Appendix A-4 is equal to the corresponding z-value given in Appendix

A-3. A 100(1� α)% two-sided confidence interval for the population mean μ is given by

s s
X � tα=2;n�1 p � μ � X � tα=2;n�1 p �4-57� 

n n

where tα/2, n�1 represents the axis point of the t-distributionwhere the right-tail area isα/2 and the
number of degrees of freedom is (n� 1).

Example 4-31 A new process has been developed that transforms ordinary iron into a kind

of superiron called metallic glass. This new product is stronger than steel alloys and is much

more corrosion resistant than steel. However, it has a tendency to become brittle at high

temperatures. It is desired to estimate the mean temperature at which it becomes brittle. A

random sample of 20 pieces ofmetallic glass is selected. The temperature at which brittleness

is first detected is recorded for each piece. The summary results give a sample mean X of

600 °C and a sample standard deviation s of 15 °C. Find a 90% confidence interval for the

mean temperature at which metallic glass becomes brittle.

Solution We have n� 20, X � 600, and s� 15. Using the t-distribution tables in

Appendix A-4, t.05,19� 1.729. A 90% confidence interval for μ is

15 15
600 � �1:729�p � μ � 600 � �1:729�p

20 20

or

594:201 � μ � 605:799
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Example 4-32 Consider the milling operation data on depth of cut shown in Table 4-3.

Figure 4-14 shows theMinitab output on descriptive statistics for this variable. Note the 95%

confidence interval for the mean μ, which is

3:1635 � μ � 3:8915

Confidence Interval for the Difference Between Two Means

1. Variances known. Suppose that we have a randomvariableX1 from afirst population

withmean μ1 and varianceσ
2;X2 represents a randomvariable from a second populationwith1

mean μ2 and variance σ2. Assume that μ1 and μ2 are unknown and σ2 and σ2 are known.2 1 2

Suppose that a sample of size n1 is selected from the first population and an independent

sample of size n2 is selected from the second population.

Let the sample means be denoted by X1 and X2. A 100(1� α)% two-sided confidence

interval for the difference between the two means is given by

σ2 σ2 σ2 σ21 2�X1 � X2� � zα=2 � � μ1 � μ2 � �X1 � X2� � zα=2
1 � 2 �4-58� 

n1 n2 n1 n2

2. Variances unknown. Let’s consider two cases here. The first is the situation where

the unknown variances are equal (or are assumed to be equal)—that is, σ2 � σ2. Suppose that1 2

the random variable X1 is from a normal distribution with mean μ1 and variance

σ2 �i: e:; X1∼N�μ1; σ2�� and the random variable X2 is from N�μ2; σ2�. Using the same1 1 2

notation as before, a 100(1� α)% confidence interval for the difference in the population

means (μ1� μ2) is

1 1 1 1�X1�X2� � tα=2;n1�n2�2 sp � � μ1�μ2 � �X1�X2� � tα=2;n1�n2�2 sp � �4-59� 
n1 n2 n1 n2

where a pooled estimate of the common variance, obtained by combining the information on

the two sample variances, is given by

2 2�n1 � 1�s � �n2 � 1�s2 1 2s � �4-60� p n1 � n2 � 2

The validity of assuming that the population variances are equal �σ2 � σ2� can be tested1 2

using a statistical test, which we discuss later.

In the second case, the population variances are not equal; that is, σ21 �6 σ2 (a situation2

known as the Behrens–Fisher problem). A 100(1� α)% two-sided confidence interval is

2 2 2 2s s s s1 2�X1 � X2� �  tα=2;v � � μ1 � μ2 � �X1 � X2� �  tα=2;v 1 � 2 �4-61� 
n1 n2 n1 n2

where the number of degrees of freedom of t is denoted by ν, which is given by

2 2 2�s1=n1 � s2=n2�ν � �4-62� 
2 2 2 2�s1=n1� =�n1 � 1� � �s2=n2� =�n2 � 1� 
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3. Paired samples. The previous cases have assumed the two samples to be indepen

dent. However, in certain situations, observations in two samples may be paired to reduce the

impact of extraneous factors that are not of interest. In this case the samples are not

independent. Consider, for example, the effect of a drug to reduce blood cholesterol levels in

diabetic patients. By choosing the same patient, before and after administration of the drug, to

observe cholesterol levels, the effect of the patient-related factors on cholesterol levels may

be reduced. Thus, the precision of the experiment could be improved.

Let X1i and X2i, i� 1,2, . . . , n, denote the n-paired observations with their differences

being di�X1i�X2i, i� 1, 2, . . . , n. If the mean and standard deviation of the differences

are represented byd and sd, respectively, the confidence interval for μd� μ1� μ2 is similar

to that of a single population mean with unknown variance and is given by

sd sd
d � tα=2;n�1 p � μd � d � tα=2;n�1 p �4-63� 

n n

The assumption made is that the differences are normally distributed.

Example 4-33 Two operators perform the same machining operation. Their supervisor

wants to estimate the difference in the mean machining times between them. No assumption

can bemade as to whether the variabilities of machining time are the same for both operators.

It can be assumed, however, that the distribution of machining times is normal for each

operator. A random sample of 10 from the first operator gives an average machining time of

4.2 minutes with a standard deviation of 0.5 minute. A random sample of 6 from the second

operator yields an average machining time of 5.1 minutes with a standard deviation of

0.8 minute. Find a 95% confidence interval for the difference in the mean machining times

between the two operators.

Solution We have n1� 10, X1 � 4:2, s1� 0.5, and n2� 6, X2 � 5:1, s2� 0.8. Since the

assumption of equal variances cannot be made, eq. (4-61) must be used. From eq. (4-62), the

number of degrees of freedom of t is

�0:25=10 � 0:64=6�2
v � � 7:393�0:25=10�2=9 � �0:64=6�2=5

As an approximation, using seven degrees of freedom rather than the calculated value of

7.393, AppendixA-4 gives t.025,7= 2.365.A 95%confidence interval for the difference in the

mean machining times is

�4:2 � 5:1� � 2:365
0:25

10
� 0:64

6
� �μ1 � μ2� � �4:2 � 5:1� � 2:365

0:25

10
� 0:64

6

or

�1:758 � �μ1 � μ2� � �0:042

Confidence Interval for a Proportion Now let’s consider the parameter p, the proportion of

successes in a binomial distribution. In statistical quality control, this parameter corresponds

to the proportion of nonconforming items in a process or in a large lot or the proportion of

customers that are satisfied with a product or service. A point estimator of p is p̂, the sample
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proportion of nonconforming items, which is found from p � x=n, where x denotes the

number of nonconforming items and n the number of trials or items sampled.When n is large,

a 100(1� α)% two-sided confidence interval for p is given by

^

p�1 � p� p�1 � p� 
p � zα=2 p � zα=2

n n

For small n, the binomial tables should be used to determine the confidence limits for p.

Whenn is large andp is small (np< 5), thePoisson approximation to the binomial can beused.

^

If n is large and p is neither too small nor too large [np� 5, n(1� p)� 5], the normal

distribution serves as a good approximation to the binomial.

^

^

Confidence Interval for the Difference Between Two Binomial Proportions Suppose that a

sample of sizen1 is selected fromabinomial populationwith parameterp1 and a sample of size

^

is selected from a binomial population with parameter . For large sample sizes of andn p n2 2 1

n2, a 100(1� α)% confidence interval for p1� p2 is

p2� 

^^
^ � p � �4-64� 

^^p̂ �1 1 � p1� p2�1 �p2
n1 n2

� p1 � p2

^�p1^ � � zα=2 � 

^^

^

^^
^

p1�1 � p1� p2�1 � p2� 
p2

n1 n2 �4-65� 
Example 4-34 Two operators perform the same operation of applying a plastic coating to

Plexiglas. We want to estimate the difference in the proportion of nonconforming parts

produced by the two operators. A random sample of 100 parts from the first operator shows

that 6 are nonconforming. A random sample of 200 parts from the second operator shows that

8 are nonconforming. Find a 90% confidence interval for the difference in the proportion of

nonconforming parts produced by the two operators.

Solution We have n1� 100, x1 (number of nonconforming parts produced by the first

operator)� 6, n2� 200, x2� 8, 1� α� 0.90. FromAppendix A-3, using linear interpolation,

p1 � x1=n1 � 6=100 � 0:06,

� �p̂1 � � zα=2 � 

z.05� 1.645 (for the right-tail area of 0.05). So, and

p̂2 � x2=n2 � 8=200 � 0:04. A 90% confidence interval for the difference in the proportion

of nonconforming parts is

�0:06��0:94� �0:04��0:96� �0:06 � 0:04� � 1:645 � 
100 200

� p1 � p2
�0:06��0:94� �0:04��0:96� � �0:06 � 0:04� � 1:645 � 

100 200

or

�0:025 � p1 � p2 � 0:065

Confidence Interval for the Variance Consider a random variable X from a normal

distribution with mean μ and variance σ2 (both unknown). An estimator of σ2 is the
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FIGURE 4-26 Chi-squared distribution.

sample variance s2. We know that the sampling distribution of (n� 1)s2/σ2 is a chi-squared

(χ2) distribution with n� 1 degrees of freedom. Notationally,

�n � 1�s2 � χ2 �4-66� 
σ2 n�1

Achi-squared distribution is skewed to the right as shown inFigure 4-26. It is dependent on

the number of degrees of freedom ν. Appendix A-5 shows the values of χ2 corresponding to

the right-tail area α for various numbers of degrees of freedom ν. A 100(1� α)% two-sided

confidence interval for the population variance σ2 is given by

�n � 1�s2 �n � 1�s2� σ2 � �4-67� 
χ2 χ2
α=2;n�1 1�α=2;n�1

where χ2 denotes the axis point of the chi-squared distribution with n� 1 degrees of
α=2;n�1

freedom and a right-tail area of α/2.

Example 4-35 The time to process customer orders is known to be normally distributed. A

random sample of 20 orders is selected. The average processing timeX is found to be 3.5 days

with a standard deviation s of 0.5 day. Find a 90% confidence interval for the variance σ2 of

the order-processing times.

Solution We have n� 20, X � 3:5, and s� 0.5. From Appendix A-5, χ2 � 30:140:05;19

and χ2 � 10:12. A 90% confidence interval for σ2 is0:95;19

�19��0:5�2 �19��0:5�2� σ2 � 
30:14 10:12

or
0:158 � σ2 � 0:469

Example 4-36 Consider the milling operation data on depth of cut shown in Table 4-3.

Figure 4-14 shows the Minitab output on descriptive statistics for this variable with a 95%

confidence interval for the standard deviation σ as

0:9323 � σ � 1:4614
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So the 95% confidence interval for the variance σ2 is

0:869 � σ2 � 2:136

Confidence Interval for the Ratio of Two Variances Suppose that we have a random

variable X1, from a normal distribution with mean μ1 and variance σ
2, and a random variable1

X2, from a normal distribution with mean μ2 and variance σ
2. A random sample of size n1 is2

chosen from thefirst population, yielding a sample variance s2, and a randomsample of sizen21
2selected from the second population yields a sample variance s2. We know that the ratio

of these statistics, that is, the sample variances divided by the population variance, is an

F-distributionwithn1� 1degrees of freedom in the numerator andn2� 1 in the denominator

(Kendall et al. 1998): that is,

2s1=σ
2
1 ∼Fn1�1;n2�1 �4-68�

2s2=σ
2
2

An F-distribution is skewed to the right, as shown in Figure 4-27. It is dependent on both

the numerator and denominator degrees of freedom. Appendix A-6 shows the axis points

of the F-distribution corresponding to a specified right-tail area α and various numbers

of degrees of freedom of the numerator and denominator (ν1 and ν2), respectively. A

100(1� α)% two-sided confidence interval for σ21=σ
2 is given by2

2 σ2 2s 1 s 11 1 1� � 
s2 σ2 s22 Fα=2;v1;v2 2 2 F1�α=2;v1;v2

The lower-tail F-value, F1�α=2;v1;v2 , can be obtained from the upper-tail F-value using the

following relation:

1
F1�α=2;v1;v2 � �4-69� 

Fα=2;v2;v1

Using eq. (4-69) yields a 100(1� α)% two-sided confidence interval for σ21=σ
2 of2

2 σ2 2s 1 s1 1 1� � Fα=2;v2;v1 �4-70�
2 σ2 s2s Fα=2;v1;v22 2 2

FIGURE 4-27 F-distribution.
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Example 4-37 The chassis assembly time for a television set is observed for two operators.

A random sample of 10 assemblies from the first operator gives an average assembly time of

22 minutes with a standard deviation of 3.5 minutes. A random sample of 8 assemblies from

the second operator gives an average assembly time of 20.4minuteswith a standard deviation

of 2.2 minutes. Find a 95% confidence interval for the ratio of the variances of the operators’

assembly times.

Solution For this problem, n1� 10, X1 � 22, s1� 3.5, n2� 8, X2 � 20:4, and s2� 
2.2. From Appendix A-6,

F0:025;9;7 � 4:82 and F0:025;7;9 � 4:20
Hence, a 95% confidence interval for the ratio of the variances of the assembly times is

σ2 �3:5�2� 1 � �4:20� �3:5�2 1

σ24:82�2:2�2 �2:2�22

or

σ2
0:525 � 1 � 10:630

σ22

Table 4-4 lists the formulas for the various confidence intervals and the assumptions

required for each.

Hypothesis Testing

Concepts Determining whether claims on product or process parameters are valid is the

aim of hypothesis testing. Hypothesis tests are based on sample data. A sample statistic used

to test hypotheses is known as a test statistic. For example, the samplemean length could be a

test statistic. Usually, rather than using a point estimate (like the sample mean, which is an

estimator of the population mean), a standardized quantity based on the point estimate is

found and used as the test statistic. For instance, either the normalized or standardized value of

the samplemean could be used as the test statistic, dependingonwhether or not the population

standard deviation is known.

If the population standard deviation is known, the normalized value of the sample mean is

the z-statistic, given by

x � μ
z � p

σ= n

If the population standard deviation is unknown, the standardized value of the sample

mean is the t-statistic, given by

x � μ
t � p

s= n

Now, howdowe test a hypothesis? Suppose that themean length of a part is expected to be

30mm. We are interested in determining whether, for the month of March, the mean length

differs from 30mm. That is, we need to test this hypothesis. In any hypothesis-testing

problem, there are two hypotheses: the null hypothesis H0 and the alternative hypothesis

Ha. The null hypothesis represents the status quo, or the circumstance being tested (which is

not rejected unless proven incorrect). The alternative hypothesis represents what we wish to





FIGURE 4-28 Sampling distribution of X assuming that μ= 30.
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prove or establish. It is formulated to contradict the null hypothesis. For the situation we have

just described, the hypotheses are

H0: μ � 30; Ha: μ�6 30

where μ represents themean length of the part. This is a two-tailed test; that is, the alternative

hypothesis is designed to detect departures of a parameter from a specified value in both

directions. On the other hand, ifwewere interested in determiningwhether the average length

exceeds 30mm, the hypotheses would be

H0: μ � 30; Ha: μ > 30

This is aone-tailed test; that is, the alternative hypothesis detects departures of a parameter

from a specified value in only one direction. If our objective were to findwhether the average

part length is less than 30mm, the two hypotheses would be

H0 : μ � 30; Ha : μ < 30

This is also a one-tailed test.

In hypothesis testing, the null hypothesis is assumed to be true unless proven otherwise.

Hence, if we wish to establish the validity of a certain claim, that claimmust be formulated as

the alternative hypothesis. If there is statistically significant evidence contradictory to the null

hypothesis, the null hypothesis is rejected; otherwise, it is not rejected. Defining what is

statistically significant will, of course, depend on what the decision maker deems tolerable.

Say we wish to prove that the mean length is less than 30: that is,

H0: μ � 30; Ha: μ < 30

We’ll assume that the population standard deviationσ is 2mm.We take a sample of size 36

and find the sample mean length to be 25mm. Is this difference statistically significant?

Detailed expressions for test statisticswill begiven later, in accordancewith theparameters

for which hypothesis tests are being performed.

Figure4-28shows the samplingdistributionof the samplemeanX under the assumption that

μ� 30. According to the central limit theorem, the distribution of X will be approximately
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normal for large sample sizes,when the population standard deviation is known.The important

question for our scenario is whether the sample mean length of 25mm is significantly less

statistically than the specified value of 30mm. Can we reject the null hypothesis?

To determine this, we need a cutoff point beyond which the null hypothesis will be

rejected. That is, how smallmust the samplemean be for us to conclude that themean length is

less than 30mm? There is a critical value, in this case on the left tail, such that if the sample

mean (or test statistic) falls below it, we will reject the null hypothesis. This value defines the

rejection region of the null hypothesis. If the test statistic does not fall in the rejection region,

wedonot have significant evidence to conclude that the populationmean is less than 30, sowe

will not reject the null hypothesis.

But how is the precise location of the critical value—and hence the rejection region—

selected? How small must the sample mean be to be considered significantly less than 30? The

answer to this question is influenced by the choice of the level of significance of the test. The

rejection region is chosen such that if thenull hypothesis is true, theprobability of the test statistic

falling in that region is small (say, 0.01 or 0.05); this probability is known as the level of

significance and is denoted by α. Hence, the choice of α will dictate the rejection region.

Suppose that for a suitable choice of α (say, 0.05), the critical value is found to be 1:645σ
X

below the population mean of 30. (Details as to how to arrive at an expression for the critical

value are given later.) The rejection region is then the shaded portion under the curve where

the sample mean is at a distance more than 1:645σ
X
from the population mean, as shown in

Figure 4-28. For our scenario, then,

σ 2
σ � p � p � 0:333 mm

X
n 36

So the critical value is 0.548 [(1.645)(0.333)] units below 30, and the rejection region is

X < 29:452 mm. If a smaller valueofαwerechosen, the rejection regionwould shift farther to

the left.

For a given α, once the rejection region is selected, a framework for decision making in

hypothesis testing is defined. Only if the test statistic falls in the rejection region will the null

hypothesis be rejected. In our example, the rejection regionwas found to beX < 29:452 mm,

which is equivalent to Z<�1.645. The sample mean observed is 25mm. The appropriate

decision then is to reject the null hypothesis; that is, conclude that the population mean is less

than 30.

Errors inHypothesis Testing There are two types of errors in hypothesis testing: type I and

type II. In a type I error, the null hypothesis is rejectedwhen it is actually true.Theprobability

of a type I error is indicated by α, the level of significance of the test. Thus, α� P(type I

error)� P(rejectingH0 |H0 is true). For example, in testing (H0: μ� 30) against (Ha: μ< 30),

suppose that a random sample of 36 parts yields a sample average length of 28mmwhen the

true mean length of all parts is really 30mm. If our rejection region is X < 29:542, we must

reject the null hypothesis. The magnitude of such an error can be controlled by selecting an

acceptable level of α.

In a type II error, the null hypothesis is not rejected even though it is false. The

probability of a type II error is denoted by β. Thus, β� P(type II error)� P(not rejecting
H0 |H0 is false). For example, let’s test (H0: μ� 30) against (Ha: μ< 30) with a rejection

region of X < 29:452. Now, suppose that the true population mean length of all parts is

28mm and a sample of 36 parts yields a sample mean of 29.8 mm. In this case, we do
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not reject the null hypothesis (because 29.8 does not lie in the region X < 29:452). This is
a type II error.

Calculating the probability of a type II error requires information about the population

parameter (or at least an assumption about it). In such instances, we predict the probability of a

type II error based on the actual or assumed parameter value; this prediction serves as a

measure of the goodness of the testing procedure and the acceptability of the chosen rejection

region. The values of α and β are inversely related. If all other problem parameters remain the

same,βwill decrease asα increases, andvice versa. Increasing the sample size can reduce both

α and β.

The power of a test is the complement of β and is defined as

power � 1 � β � P�rejectingH0 jH0 is false� 
Thepower is theprobability of correctly rejecting anull hypothesis that is false.Obviously,

tests with high powers are the most desirable.

Steps in Hypothesis Testing In hypothesis testing, different formulas are used with

different parameters (such as the population mean or difference between two population

means). For each situation, the appropriate test statistic is based on an estimator of the

population parameter, and the rejection region is found accordingly. The following steps

summarize the hypothesis-testing procedure:

Step 1: Formulate the null and alternative hypotheses.

Step 2: Determine the test statistic.

Step 3: Determine the rejection region of the null hypothesis based on a chosen level of

significance α.

Step 4: Make the decision. If the test statistic lies in the rejection region, reject the null

hypothesis. Otherwise, do not reject the null hypothesis.

In an alternativeprocedure, the rejection region is not specifically found, although achosen

level of significanceα is given.Upondetermining the test statistic, theprobability of obtaining

that value (or an even more extreme value) for the test statistic, assuming that the null

hypothesis is true, is computed. This is known as the probability value or the p-value

associated with the test statistic. This p-value, also known as the observed level of

significance, is then compared to α, the chosen level of significance. If the p-value is smaller

than α, the null hypothesis is rejected.

Let’s reconsider the mean part length example (see Figure 4-28). Suppose that the

observed sample meanp�X� is 25 for a sample of size 36. The standard deviation of the

sample mean, σ
X
, is 2= 36 � 0:333 mm (assuming a population standard deviation of 2).

The observed samplemean of 25 is 5 less than the populationmean of 30, which corresponds

to (25–30)/0.333��15.015 standard deviations away from the population mean. The

probability of observing a sample mean of 25 or less represents the p-value and is found

using the standard normal table (Appendix A-3):

p-value � P�X � 25� 
� P�Z � �15:015� ' 0:0000

Therefore, if the chosen level of significance α is 0.05, the p-value is essentially zero

(which is less thanα), sowe rejectH0. Thismeans that if the null hypothesis is true, the chance
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of observing a sample average of 25 or something even more extreme is highly unlikely.

Therefore, since we observed a samplemean of 25, wewould be inclined to conclude that the

null hypothesis must not be true, and we would therefore reject it.

Hypothesis Testing of the Mean

1. Variance known. For this situation, we assume that the sample size is large (allowing

the central limit theorem to hold) or that the population distribution is normal. The

appropriate test statistics and rejection regions are as follows:

H0: μ � μ0 H0: μ � μ0 H0: μ� μ0Hypotheses:
Ha: μ�6 μ0 Ha: μ > μ0 Ha: μ < μ0

Rejection region: jz0 j > zα=2 z0 > zα z0 < �zα

X � μ0Test statistic: z0 � p �4-71� 
σ= n

The steps for testing the hypothesis are the same four steps thatwere described previously. Let

α denote the chosen level of significance and zα denote the axis point of the standard normal

distribution such that the right-tail area is α.

2. Variance unknown. In this situation we assume that the population distribution is

normal. If the sample size is large (n� 30), slight departures from normality do not strongly

influence the test. The notation refers to t-distributions as described in the section on interval

estimation.

H0: μ � μ0 H0: μ � μ0 H0: μ � μ0Hypotheses:
Ha: μ�6 μ0 Ha: μ > μ0 Ha: μ < μ0

Rejection region: jt0 j > tα=2;n�1 t0 > tα;n�1 t0 < �tα;n�1
X � μ0Test statistic: t0 � p �4-72� 
s= n

Example 4-38 In Example 4-31, the mean temperature at which metallic glass becomes

brittle was of interest. Now suppose we would like to determine whether this mean

temperature exceeds 595 °C. A random sample of 20 is taken, yielding a sample mean X

of 600 °C and a sample standard deviation s of 15 °C. Use a level of significance α of 0.05.

Solution The hypotheses are

H0 : μ� 595; Ha:μ > 595

The test statistic is

600 � 595
t0 � p � 1:491

15= 20

FromAppendixA-4, t0.05,19� 1.729. The rejection region is therefore t0> 1.729. Since the

test statistic t0 does not lie in the rejection region, we do not reject the null hypothesis. Thus,
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even though the sample mean is 600 °C, the 5% level of significance does not allow us to

conclude that there is statistically significant evidence that the mean temperature exceeds

595 °C.

Hypothesis Testing of the Correlation Coefficient Assume that we have bivariate normal

data on two variablesX and Y and a sample of n observations, (Xi,Yi), i� 1, 2, . . . , n. Let the

population correlation coefficient between X and Y be denoted by ρ, for which an estimator is

the sample correlation coefficient r.

H0: ρ � 0 H0: ρ � 0 H0: ρ � 0
Hypotheses:

Ha: ρ�6 0 Ha: ρ > 0 Ha: ρ < 0

Rejection region: jt0 j > tα=2;n�2 t0 > tα;n�2 t0 <�tα;n�2
p
r n � 2

Test statistic: t0 � p �4-73� 
1 � r2

Hypothesis Testing for the Difference Between Two Means

1. Variances known. In this situation, we assume that the sample sizes are large enough

for the central limit theorem to hold. However, if the population distribution is normal, the

test statistic as shown will be valid for any sample size.

H0: μ1 � μ2 � μ0 H0: μ1 � μ2 � μ0 H0: μ1 � μ2 � μ0Hypotheses:
Ha: μ1 � μ2 �6 μ0 Ha: μ1 � μ2 > μ0 Ha: μ1 � μ2 < μ0

Rejection region: jz0 j > zα=2 z0 > zα z0 < �zα

�X1 � X2� � μ0Test statistic: z0 � p �4-74� 
σ21=n1 � σ22=n2

Example 4-39 The owner of a local logging operation wants to examine the average

unloading time of logs. Twomethods are used for unloading. A random sample of size 40 for

thefirstmethod gives an average unloading timeX1 of 20.5minutes.A random sample of size

50 for the secondmethod yields an average unloading timeX2 of 17.6minutes.We know that

the variance of the unloading times using the first method is 3, while that for the second

method is 4. At a significance level α of 0.05, can we conclude that there is a difference in the

mean unloading times for the two methods?

Solution The hypotheses are

H0: μ1 � μ2 � 0; Ha: μ1 � μ2 �6 0
The test statistic is

�20:5 � 17:6� �  0
z0 � p � 7:366

3=40 � 4=50
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From Appendix A-3, z0.025� 1.96. The critical values are ±1.96, and the rejection

region is |z0|> 1.96. Since the test statistic z0 lies in the rejection region, we reject the null

hypothesis and conclude that there is a difference in the mean unloading times for the two

methods.

2. Variances unknown. Here we assume that each population is normally distributed. If

we assume that the population variances, though unknown, are equal �i:e:; σ2 � σ2�, we get1 2

the following:

H0: μ1 � μ2 � μ0 H0: μ1 � μ2 � μ0 H0: μ1 � μ2 � μ0
Hypotheses:

Ha: μ1 � μ2 �6 μ0 Ha: μ1 � μ2 > μ0 Ha: μ1 � μ2 < μ0

Rejection region: jt0 j > tα=2;n1� t0 > tα;n1�n2�2 t0 < �tα;n1�n2�2n2�2

�X1 � X2� � μ0Test statistic: t0 � p �4-75� 
sp 1=n1 � 1=n2

Note: s2 is given by eq. (4-60).p

If the population variances cannot be assumed to be equal �σ2 �6 σ2�, we have the1 2

following:

H0: μ1 � μ2 � μ0 H0: μ1 � μ2� μ0 H0: μ1 � μ2 � μ0
Hypotheses:

Ha: μ1 � μ2 �6 μ0 Ha: μ1 � μ2 > μ0 Ha: μ1 � μ2 < μ0

Rejection region: jt0 j > tα=2;v t0 > tα;v t0 < �tα;v

�X1 � X2� � μ0Test statistic: t0 � p �4-76� 
2 2s1=n1 � s2=n2

Note: ν is given by eq. (4-62)

Example 4-40 A large corporation is interested in determining whether the average days

of sick leave taken annually is more for night-shift employees than for day-shift employees.

It is assumed that the distribution of the days of sick leave is normal for both shifts and that

the variances of sick leave taken are equal for both shifts. A random sample of 12 employees

from the night shift yields an average sick leaveX1 of 16.4 dayswith a standard deviation s1 of

2.2 days. A random sample of 15 employees from the day shift yields an average sick

leave X2 of 12.3 days with a standard deviation s2 of 3.5 days. At a level of significance α

of 0.05, can we conclude that the average sick leave for the night shift exceeds that in the

day shift?

Solution The hypotheses are

H0: μ1 � μ2� 0; Ha: μ1 � μ2 > 0
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2The pooled estimate of the variance, sp, from eq. (4-60) is

�11��2:2�2 � �14��3:5�2
s2 � � 8:990p 25

p
So sp � 8:990 � 2:998.

The test statistic is

�16:4 � 12:3� �  0
t0 � p � 3:531

2:998 1=12 � 1=15

FromAppendixA-4, t0.05,25� 1.708. Since the test statistic t0 exceeds 1.708 and falls in the
rejection region, we reject the null hypothesis and conclude that the average sick leave for the

night shift exceeds that for the day shift.

Let us now use Minitab to test the hypotheses. Click on Stat>Basic Statistics>

2-Sample t. Since we are not given the individual observations in each sample, select

Summarized data. Assuming theFirst sample corresponds to the night shift and the Second

corresponds to the day shift, input the values ofSample size,Mean, andStandarddeviation

for both samples. Check the box Assume equal variances and click on Options. Input for

Confidence level the value 0.95 and for, Test difference the value 0 and for Alternative

hypothesis select greater than. Click OK.

Figure 4-29 shows the output fromMinitab, with the point estimate of the difference in the

means as 4.1. The test statistic is the t-value of 3.53with 25degrees of freedom, and the pooled

standard deviation is 2.9983. Using the concept of p-value, shown as 0.001, we reject the null

hypothesis since the p-value< α� 0.05.

3. Paired samples. Here, the samples from the two populations are paired and so are not

independent. The differences between the paired observations are assumed to be normally

distributed.

H0: μd � μ1 � μ2� μ0 H0: μd � μ0 H0: μd � μ0Hypotheses:
Ha: μd � μ1 � μ2 �6 μ0 Ha: μd > μ0 Ha: μd < μ0

Rejection region: jt0 j > tα=2;n�1 t0 > tα;n�1 t0 < �tα;n�1
d � μ0Test statistic: t0 � p �4-77� 
sd= n

Hypothesis Testing for a Proportion The assumption here is that the number of trials n

in a binomial experiment is large, thatnp� 5, and thatn(1� p)� 5.This allows the distribution

of the sample proportion of successes (p̂) to approximate a normal distribution.

FIGURE 4-29 Hypothesis testing on difference of means using Minitab.
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H0: p � p0 H0: p � p0 H0: p � p0Hypotheses:
Ha: p�6 p0 Ha: p > p0 Ha: p < p0

Rejection region: jz0 j > zα=2 z0 > zα z0 < �zα
p̂ � p0

Test statistic: z0 � p �4-78� 
p0�1 � p0�=n

Example 4-41 The timeliness with which due dates are met is an important factor in

maintaining customer satisfaction. A medium-sized organization wants to test whether the

proportion of times that it does not meet due dates is less than 6%. Based on a random sample

of 100 customer orders, they found that they missed the due date five times. What is your

conclusion? Test at a level of significance α of 0.05.

Solution The hypotheses are

H0: p � 0:06; Ha: p < 0:06

The test statistic is

0:05 � 0:06
z0 � p � �0:421�0:06��0:94�=100

From Appendix A-3, z0.05� 1.645. Since the test statistic z0 is not less than �1.645, it
does not lie in the rejection region. Hence, we do not reject the null hypothesis. At the 5%

level of significance, we cannot conclude that the proportion of due dates missed is less

than 6%.

Hypothesis Testing for the Difference Between Two Binomial Proportions Here we

assume that the sample sizes are large enough to allow a normal distribution for the difference

between the sample proportions. Also, we consider the case for the null hypothesis,

where the difference between the two proportions is zero. For a treatment of other

cases, such as the hypothesized difference between two proportions being 3%, where

the null hypothesis is given by H0: p1 – p2� 0.03, consult Duncan (1986) and Mendenhall

et al.(1993).

H0: p1 � p2 � 0 H0: p1 � p2 � 0 H0: p1 � p2 � 0
Hypotheses:

Ha: p1 � p2 �6 0 Ha: p1 � p2 > 0 Ha: p1 � p2 < 0

Rejection region: jz0 j > zα=2 z0 > zα z0 < �zα

p̂1 � p̂2Test statistic: z0 � p �4-79� 
p̂�1 � p̂��1=n1 � 1=n2� 

Note: p̂ � �n1p̂1 � n2p̂2�=�n1 � n2� is the pooled estimate of the proportion of nonconforming

items.
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Example 4-42 A company is interested in determining whether the proportion of

nonconforming items is different for two of its vendors. A random sample of 100 items

from thefirst vendor revealed4nonconforming items.A randomsampleof 200 items from the

second vendor showed 10 nonconforming items. What is your conclusion? Test at a level of

significance α of 0.05.

Solution The hypotheses are

H0: p1 � p2 � 0; Ha: p1 � p2 �6 0

The pooled estimate of the proportion of nonconforming items is

�100��0:04� � �200��0:05� 
^ � 0:047p � 

300

The test statistic is

0:04 � 0:05
z0 � p � �0:386�0:047��0:953��1=100 � 1=200� 

From Appendix A-3, z0.025� 1.96. Since the test statistic z0 does not lie in the rejection

region, we do not reject the null hypothesis. We cannot conclude that the proportion of

nonconforming items between the two vendors differs.

Hypothesis Testing for the Variance Assume here that the population distribution is

normal.

H0: σ2 � σ2 H0: σ2� σ2 H0: σ2 � σ20 0 0Hypotheses:
: σ2 � σ2 : σ2 > σ2 : σ2 < σ2Ha 6 Ha Ha0 0 0

χ2 > χ2 χ2 > χ2 χ2 < χ2Rejection region: 0 α=2;n�1 0 α;n�1 0 1�α;n�1
or χ2 < χ20 1�α=2;n�1

�n � 1�s2
Test statistic: χ20 � �4-80� 

σ20

Example 4-43 The variability of the time to be admitted in a health care facility is of

concern. A random sample of 15 patients shows amean time to admissionX of 2.2 hourswith

a standard deviation s of 0.2 hour. Can we conclude that the variance of time to admission is

less is than 0.06? Use a level of significance α of 0.01.

Solution The hypotheses are

H0: σ
2 � 0:06; Ha: σ

2 < 0:06

The test statistic is

�14��0:2�2
χ20 � � 9:333

0:06
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From Appendix A-5, χ2 � 4:66. The test statistic value of 9.333 is not less than 4.660:99;14

and so does not lie in the rejection region. Hence, we do not reject the null hypothesis. At the

1% level of significance,we cannot conclude that the variance of time to admission is less than

0.06.

Hypothesis Testing for the Ratio of Two Variances We assume that both populations are

normally distributed.

H0: σ
2 � σ2 H0: σ

2 � σ2 H0: σ
2 � σ21 2 1 2 1 2

Hypotheses:
Ha: σ

2 �6 σ2 Ha: σ
2 > σ2 Ha: σ

2 < σ22 1 2 1 2

Rejection region: F0 > Fα=2;v1;v2 F0 > Fα;v1;v2 F0 < F1�α;v1;v2
or F0 < F1�α=2;v1;v2

2s1Test statistic: F0 � �4-81�2s2

Example 4-44 The variabilities of the service times of two bank tellers are of interest. Their

supervisor wants to determinewhether the variance of service time for thefirst teller is greater

than that for the second.A randomsampleof 8observations from thefirst teller yields a sample

averageX1 of 3.4minutes with a standard deviation s1 of 1.8minutes. A random sample of 10

observations from the second teller yields a sample averageX2 of 2.5minutes with a standard

deviation of 0.9minute. Canwe conclude that the variance of the service time is greater for the

first teller than for the second? Use a level of significance α of 0.05.

Solution The hypotheses are

H0: σ
2 � σ2; Ha: σ

2 > σ21 2 1 2

The test statistic is

2s �1:8�2
F � 1 � � 4:00

2s �0:9�22

From Appendix A-6, F0.05,7,9� 3.29. The test statistic lies in the rejection region, so we

reject the null hypothesis.

Confidence Interval and Hypothesis Testing of the Poisson Parameter (λ) Suppose that

wehaven independent observationsX1,X2, . . . ,Xn fromaPoissonprocesswithparameter λ.

Each observation represents the observed number of occurrences of the chosen event over the

defined interval. For example, these could be the numberof incomingcalls at a call center in an

hour and λ represents the averagenumber of calls per hour for thedefinedPoissondistribution.

The maximum-likelihood estimate of λ, the mean, is given by

λ̂ � Xi �4-82� 
n

which represents the sample mean of the number of events that occur in the defined interval.

Since the Poisson distribution is a discrete distribution, it is difficult to construct confidence

intervals with an exactly specified level of confidence (1� α). However, the Poisson
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distribution may be approximated by the chi-squared distribution, a continuous distribution,

using the following relation (Johnson, Kemp, and Kotz 2005):

χ2P�X � x� � P� x�1� > 2 λ� �4-83�2�

where X is a Poisson random variable with parameter λ and χ2 x�1� represents a chi-squared2�
random variable with degrees of freedom of 2(x+ 1).

Note thatY � Xi � y has aPoissondistributionwith parameternλ.Utilizing eq. (4-83), the

bounds for a two-sided confidence interval for λ, with a confidence level of 1� α, are given by

1
χ2λL � �4-84�α=2;2y2n

1
χ2λU � �4-85�1�α=2;2�y�1�2n

where y represents the total observednumber of events,n is the sample size, andχ2 represents
α=2;2y

the chi-squared value with a lower-tail area of α/2 and degrees of freedom 2y.

If hypothesis testing is to be conducted on λ based on the formulated null and alternative

hypothesis, rejection regions of the null hypothesis could be identified for a chosen level of

significance, α.

For the hypotheses

H0: λ � λ0; Ha: λ ≠ λ0

implying a two-tailed test, the lower and upper bounds of a two-sided confidence interval

would be found using eqs. (4–84) and (4–85), respectively. If the hypothesized value, λ0, is

contained within the interval, we will not reject the null hypothesis. Alternatively, if λ0 is

either less than λL or greater than λU, we will reject the null hypothesis.

Example 4-45 The number of service disruptions permonth by an Internet service provider

may bemodeled by a Poisson distribution. A sample of 10 randommonths is selected and the

number of disruptions observed in each month are as follows: 1, 0, 0, 3, 2, 0, 2, 1, 1, 1. Find a

95% confidence interval for the mean number of disruptions per month. Can you conclude

that the mean number of disruptions per month is different from 1.5 at a significance level

of 5%?

Solution The observed total number of disruptions is y= 11, and hence a point estimate

of the mean number of disruptions per month is λ̂ � 11=10 � 1:1. The bounds of a 95%

confidence interval are found as

1 1
χ2λL � �10:98� � 0:5490:025;2�11� � 2�10� 20

1 1
χ2λU � �39:36� � 1:9680:975;2�11�1� � 2�10� 20

Since the hypothesized value of the mean number of disruptions per month of 1.5 is

contained within the above interval, at the 5% significance level we do not reject the null

hypothesis of the mean being 1.5.
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SUMMARY

In this chapter we presented the statistical foundations necessary for quality control and

improvement. The procedures for summarizing data that describe product or process

characteristics have beendiscussed.A reviewof commondiscrete and continuous probability

distributions with applications in quality control has been included. We also presented

inferential statistics that can be used for drawing conclusions as to product and process

quality. In particular, the topics of estimation and hypothesis testing have been emphasized.

The variety of statistical procedures presented are meant to serve as an overview. Technical

details have been purposely limited.

APPENDIX: APPROXIMATIONS TO SOME PROBABILITY DISTRIBUTIONS

In some situations, if tables for the needed probability distributions are not available for the

parameter values inquestionor if the calculationsusing the formulabecome tedious andprone

to error due to round-offs, approximations to the probability distribution under consideration

can be considered.

Binomial Approximation to the Hypergeometric

When the ratio of sample size to population size is small—that is, n/N is small (�0.1, as a rule
of thumb)—the binomial distribution serves as a good approximation to the hypergeometric

distribution. The parameter values to be used for the binomial distribution would be the same

value of n as in the hypergeometric distribution, and p�D/N.

Example 4A-1 Consider a lot of 100 parts, of which 6 are nonconforming. If a sample of

4 parts is selected, what is the probability of obtaining 2 nonconforming items? If a binomial

approximation is used, what is the required probability?

Solution Using the hypergeometric distribution, N� 100, D� 6, n� 4, and x� 2, we

have

6 94

2 2
P�X � 2� �  � 0:017

100

4

Note that n/N� 0.04, which is less than 0.1. Using the binomial distribution as an

approximation to the hypergeometric, with p� 6/100� 0.06, yields

4 2
P�X � 2� �  �0:06� �0:94�2 � 0:019

2

Poisson Approximation to the Binomial

In a binomial distribution, if n is large and p is small (p< 0.1) such that np is constant, the

Poisson distribution serves as a good approximation to the binomial. The parameter λ in the

Poisson distribution is used as np. The larger the value of n and the smaller value of p, the

better the approximation. As a rule of thumb, when np< 5, the approximation is acceptable.
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Example 4A-2 A process is known to have a nonconformance rate of 0.02. If a random

sample of 100 items is selected, what is the probability of finding 3 nonconforming items?

Solution Using the binomial distribution, n� 100, p� 0.02, and x� 3, we have

100 3
P�X � 3� �  �0:02� �0:98�97 � 0:182

3

Next, we use the Poisson distribution as an approximation to the binomial. Using

λ� (100)(0.02)� 2 yields

�2 3
e �2�

P�X � 3� �  � 0:180
3!

Normal Approximation to the Binomial

In a binomial distribution, ifn is large andp is close to 0.5, the normal distributionmaybeused

to approximate the binomial. Usually, if p is neither too large nor too small (0.1� p� 0.9), the

normal approximation is acceptable when np� 5. A continuity correction factor is used by

finding an appropriate z-value because the binomial distribution is discrete, whereas the

normal distribution is continuous.

Example 4A-3 Aprocess is known to produce about 6%nonconforming items. If a random

sample of 200 items is chosen, what is the probability of finding between 6 and 8

nonconforming items?

Solution If we decide to use the binomial distribution with n� 200, p� 0.06, we have

P�6 � X � 8� � P X � 6� � P�X � 7� � P�X � 8�� 

� 200

6
�0:06�6�0:94�194 � 200

7
�0:06�7�0:94�193

� 200

8
�0:06�8�0:94�192

� 0:0235 � 0:0416 � 0:0641 � 0:1292

Using the normal distribution to approximate a binomial probability, the mean is given

by np� (200)(0.06)� 12, and the variance is given by np(1� p)� (200)(0.06)×

(1� 0.06)� 11.28. The required probability is

P�6 � X � 8� ' P�5:5 � X � 8:5� 

The 0.5 adjustment is often known as the continuity correction factor. The binomial

random variable is discrete. When using a continuous random variable such as the normal to

approximate it, this adjustment makes the approximation better. In other words, P(X� 8) is

written as P(X� 8.5), while P(X� 6) is written as P(X� 5.5):

5:5 � 12 8:5 � 12
requited probability � P p � z � p

11:28 11:28

� P��1:94 � z ��1:04� 
� 0:1492 � 0:0262 � 0:1230
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FIGURE 4A-1 Necessary conditions for using approximations to distributions.

Normal Approximation to the Poisson

If the mean λ of a Poisson distribution is large (λ� 10), a normal distribution may be used to

approximate it. The parameters of this normal distribution are themeanμ, which is set equal to

λ, and the variance σ2, which is also set equal to λ. As in Example 4A-3, the continuity

correction factor of 0.5 may be used since a discrete random variable is approximated by a

continuous one.

Example 4A-4 The number of small businesses that fail each year is known to have a

Poissondistributionwith ameanof 16. Find the probability that in agivenyear therewill beno

more than 18 small business failures.

Solution Using the Poisson distribution (λ� 16), the required probability is P(X� 18).

From the table inAppendixA-2, this probability is 0.742.When using the normal distribution

as an approximation, the mean and variance are set equal to λ. The 0.5 continuity correction

factor is used in a similar manner as in Example 4A-3.

P�X � 18� '  P�X � 18:5� 
18:5 � 16� P z � p

16

� P�z � 0:625� � 0:7340 �using linear interpolation� 

Figure 4A-1 summarizes the conditions under which the various approximations to these

common distributions may be used.
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KEY TERMS

accuracy

additive law

alternative hypothesis

association, measure of

binomial distribution

calibration

central limit theorem

central tendency, measures of

chi-squared distribution

confidence interval

continuous variable

correlation coefficient

critical value

cumulative distribution function

data collection

degrees of freedom

descriptive statistics

discrete variable

dispersion, measures of

distribution

continuous

discrete

estimation

interval

point

events

complementary

compound

independent

mutually exclusive

simple

expected value

exponential distribution

F-distribution

gamma distribution

gamma function

hypergeometric distribution

hypothesis testing

one-tailed

two-tailed

inferential statistics

interquartile range

interval estimation

kurtosis

kurtosis coefficient

level of significance

lognormal distribution

mean

population

sample

measurement scales

interval

nominal

ordinal

ratio

median

misspecification

mode

multiplicative law

normal distribution

standard normal

null hypothesis

one-tailed test

outlier

p-value

paired samples

parameter

location

scale

shape

point estimation

Poisson distribution

population

power

precision

probability

probability density function

probability distribution function

random variable

range

rejection region

sample

sample space

sampling distribution

skewness coefficient

standard deviation

statistic

statistics

descriptive

inferential
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t-distribution type II error

test statistic unbiased

trimmed mean variance

two-tailed test Weibull distribution

type I error

EXERCISES

Discussion Questions

4-1 The development of new drugs has to undergo stringent regulations resulting in long

lead times and high research and development costs. Suppose that you are in charge of

the federal agency that grants drug approvals and youwish to be convinced that a new

drug is better than an existing one in terms of increasing the average life of patients.

(a) What are appropriate null and alternative hypotheses?

(b) Explain what type I and II errors are in this context and discuss their relative

seriousness.

(c) How might you reduce the chances of these errors?

(d) What assumptions do you need to make to test the hypothesis in part (a)? How

would you test the assumptions? Note that distributional assumptions will be

tested in Chapter 5.

4-2 Customers arrive at a department store randomly and independently.

(a) What is an appropriate distribution for modeling the number of customers that

arrive in a 2-hour period?

(b) Under what situations might the stated assumptions not hold?

(c) What information would you need to collect to estimate the probability

distribution?

(d) Suppose that a new location is being contemplated for the store. Explain how you

would estimate the probability distribution.

4-3 Find an expression for the probability of the union of three events that are mutually

independent of each other.

4-4 Explain the difference between accuracy and precision ofmeasurements. How do you

control for accuracy? What can you do about precision?

4-5 Explain the different types of measurement scales and give examples in the following

situations:

(a) Gallons of water to put out a fire by the fire department

(b) Response time of an ambulance

(c) Test score in an examination

(d) Customer product preference expressed on a scale of 1–5

(e) Categorizing employees in groups based on county of residence

(f) Performance appraisal of employees through placement in categories

(g) Blood pressure of a patient

4-6 Distinguish between the use of the mean, median, and mode in quality control

applications. When do you prefer to use the trimmed mean?
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4-7 State the null and alternative hypotheses in the following situations by defining the

parameters used.Also, state any assumptions that you need tomake to conduct the test:

(a) The Postal Servicewishes to prove that themean delivery time for packages is less

than 5 days.

(b) A financial institution believes that it has an average loan processing time of less

than 10 days.

(c) A marketing firm believes that the average contract for a customer exceeds

$50,000.

(d) AWeb-order companywishes to test if it has improved its efficiency of operations

by reducing its average response time.

(e) Amanufacturer of consumer durables believes that over 70% of its customers are

satisfied with the product.

4-8 Distinguish between a hypergeometric and a binomial random variable.

4-9 A 95% confidence interval for the mean thickness of a part in millimeters is (10.2,

12.9). Interpret this interval.

4-10 Refer to Exercise 4-7. For each situation, define a type I and a type II error in the

appropriate context. Consider the costs of such errors and discuss the implications.

4-11 Consider the price of homes in a large metropolitan area. What kind of distribution

would you expect in terms of skewness and kurtosis? As an index, would the mean or

median price be representative? What would the interquartile range indicate?

4-12 With increased air travel, the trainingof air traffic controllers is vital.However, of those

who enter the program, several drop out, for a variety of reasons. In the past, 70%have

completed the program. A new program is being developed at significant cost.

(a) To test the effectiveness of the new program,what set of hypotheseswould you test?

(b) Discuss type I and II errors and their relative consequences.

(c) Are there other factors to be considered that might improve the outcome? What

data would you collect and analyze to validate your answer?

4-13 For each of the following areas, define appropriate quality characteristic(s) and

parameters and indicate the hypotheses that you would test:

(a) Effectiveness of a hospital in satisfying patients, employees, and shareholders

(note that different hypotheses may apply for each category)

(b) Efficiency of a health care facility

(c) Effectiveness of a call center

(d) New product development time and costs in the semiconductor industry

Problems

4-14 Based on historical data, it is estimated that 12% of new products will obtain a

profitable market share. However, if two products are newly introduced in the same

year, there is only a 5% chance of both products becoming profitable. A company is

planning to market two new products, 1 and 2, this coming year. What is the

probability of

(a) only product 1 becoming profitable?

(b) only product 2 becoming profitable?
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(c) at least one of the products becoming profitable?

(d) neither product becoming profitable?

(e) either product 1 or product 2 (but not both) becoming profitable?

(f) product 2 becoming profitable if product 1 is found to be profitable?

4-15 Two types of defects are observed in the production of integrated circuit boards. It is

estimated that 6% of the boards have solder defects and 3% have some surface-finish

defects. The occurrences of the two types of defects are assumed to be independent of

each other. If a circuit board is randomly selected from the output, find the

probabilities for the following situations:

(a) Either a solder defect or a surface-finish defect or both are found.

(b) Only a solder defect is found.

(c) Both types of defects are found.

(d) The board is free of defects.

(e) If a surface-finish defect is found, what are the chances of also finding a solder

defect?

4-16 The settling of unwanted material in a mold is causing some defects in the output.

Based on recent data, it is estimated that 5% of the output has one or more defects. In

spot checking some parts, an inspector randomly selects two parts. Find the

probabilities that:

(a) the first part is defect free.

(b) the second part is defect free.

(c) both parts are defect free.

(d) one of the parts is acceptable.

(e) at least one part is acceptable.

4-17 The following times (inminutes) to process hot-rolled steel are observed for a random

sample of size 10:

5:4 6:2 7:9 4:8 7:5
6:2 5:5 4:5 7:2 6:2

(a) Find the mean, median, and mode of the processing times. Interpret the differ

ences between them.

(b) Compute the range, variance, and standard deviation of the processing times and

interpret them.

4-18 Apharmaceutical companymaking antibiotics has to abide by certain standards set by

the Food and Drug Administration. The company performs some testing on the

strength of the antibiotic. In a case of 25 bottles, 4 bottles are selected for testing. If

the case actually contains 5 understrength bottles, what is the probability that the

sample chosen will contain no understrength bottles? Exactly 1 understrength bottle?

How many understrength bottles would be expected in the sample? What is the

standard deviation of understrength bottles in the sample?

4-19 A company involved in making solar panels estimates that 3% of its product are

nonconforming. If a random sample of 5 items is selected from the production output,

what is the probability that none are nonconforming? That 2 are nonconforming? The

cost of rectifying a nonconforming panel is estimated to be $5. For a shipment of 1000

panels, what is the expected cost of rectification?
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4-20 A university has purchased a service contract for its computers and pays $20

annually for each computer. Maintenance records show that 8% of the computers

require some sort of servicing during the year. Furthermore, it is estimated that the

average expenses for each repair, had the university not been covered by the

service contract, would be about $200. If the university currently has 20

computers, would you advise buying the service contract? Based on expected

costs, for what annual premium per computer will the university be indifferent to

purchasing the service contract? What is the probability of the university

spending no more than $500 annually on repairs if it does not buy the service

contract?

4-21 The probability of an electronic sensor malfunctioning is known to be 0.10. A random

sample of 12 sensors is chosen. Find the probability that:

(a) at least 3 will malfunction.

(b) no more than 5 will malfunction.

(c) at least 1 but no more than 5 will malfunction.

(d) What is the expected number of sensors that will malfunction?

(e) What is the standard deviation of the number of sensors that will malfunction?

4-22 A process is known to produce 5% nonconforming items. A sample of 40 items is

selected from the process.

(a) What is the distribution of the nonconforming items in the sample?

(b) Find the probability of obtaining no more than 3 nonconforming items in the

sample.

(c) Using the Poisson distribution as an approximation to the binomial, calculate the

probability of the event in part (b).

(d) Compare the answers to parts (b) and (c). What are your observations?

4-23 The guidance system design of a satellite places several components in parallel. The

system will function as long as at least one of the components is operational. In a

particular satellite, 4 such components are placed in parallel. If the probability of a

component operating successfully is 0.9, what is the probability of the system

functioning? What is the probability of the system failing? Assume that the compo

nents operate independently of each other.

4-24 In a lot of 200 electrical fuses, 20 are known to be nonconforming. A sample of 10

fuses is selected.

(a) What is the probability distribution of the number of nonconforming fuses in the

sample? What are its mean and standard deviation?

(b) Using the binomial distribution as an approximation to the hypergeometric, find

the probability of getting 2 nonconforming fuses. What is the probability of

getting at most 2 nonconforming fuses?

4-25 A local hospital estimates that the number of patients admitted daily to the emergency

roomhas a Poisson probability distributionwith amean of 4.0.What is the probability

that on a given day:

(a) only 2 patients will be admitted?

(b) at most 6 patients will be admitted?
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(c) no one will be admitted?

(d) What is the standard deviation of the number of patients admitted?

(e) For each patient admitted, the expected daily operational expenses to the

hospital are $800. If the hospital wants to be 94.9% sure of meeting daily

expenses, how much money should it retain for operational expenses daily?

4-26 In an auto body shop, it is known that the average number of paint blemishes

per car is 3. If 2 cars are randomly chosen for inspection, what is the probability

that:

(a) the first car has no more than 2 blemishes?

(b) each of the cars has no more than 2 blemishes?

(c) the total number of blemishes in both of the cars combined is no more than 2?

4-27 The number of bank failures per year among those insured by the Federal Deposit

Insurance Company has a mean of 7.0. The failures occur independently. What is the

probability that:

(a) there will be at least 4 failures in the coming year?

(b) there will be between 2 and 8 failures, inclusive, in the coming year?

(c) during the next two years there will be at most 8 failures?

4-28 The outside diameter of a part used in a gear assembly is known to be normally

distributed with a mean of 40mm and standard deviation of 2.5mm. The specifica

tions on the diameter are (36, 45), which means that part diameters between 36 and

45mm are considered acceptable. The unit cost of rework is $0.20, while the unit cost

of scrap is $0.50. If the daily production rate is 2000, what is the expected total daily

cost of rework and scrap?

4-29 The breaking strength of a cable is known to be normally distributed with a mean of

4000 kganda standarddeviation of25 kg.Themanufacturer prefers that at least 95%of

itsproductmeet a strength requirementof4050 kg. Is this requirementbeingmet? Ifnot,

by changing the process parameter, what should the process mean target value be?

4-30 The specifications for the thickness of nonferrous washers are 1.0± 0.04mm. From

process data, the distribution of the washer thickness is estimated to be normal with a

mean of 0.98mm and a standard deviation of 0.02mm. The unit cost of rework is

$0.10, and the unit cost of scrap is $0.15. For a daily production of 10,000 items:

(a) What proportion of the washers is conforming? What is the expected total daily

cost of rework and scrap?

(b) In its study of constant improvement, the manufacturer changes the mean setting

of the machine to 1.0mm. If the standard deviation is the same as before, what is

the expected total daily cost of rework and scrap?

(c) The manufacturer is trying to improve the process and reduces its standard

deviation to 0.015mm. If the process mean is maintained at 1.0mm, what is the

percent decrease in the expected total daily cost of rework and scrap compared to

that of part (a)?

4-31 A company has been able to restrict the use of electrical power through energy

conservation measures. The monthly use is known to be normal with a mean of

60,000 kWh (kilowatt-hour) and a standard deviation of 400 kWh.

(a) What is the probability that the monthly consumption will be less than

59,100 kWh?
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(b) What is the probability that themonthly consumptionwill be between 59,000 and

60,300 kWh?

(c) The capacity of the utility that supplies this company is 61,000 kWh. What is the

probability that demand will not exceed supply by more than 100 kWh?

4-32 A component is known to have an exponential time-to-failure distribution with a

mean life of 10,000 hours.

(a) What is the probability of the component lasting at least 8000 hours?

(b) If the component is in operation at 9000 hours, what is the probability that it will

last another 6000 hours?

(c) Two such components are put in parallel, so that the systemwill be in operation if

at least one of the components is operational.What is the probability of the system

being operational for 12,000 hours? Assume that the components operate

independently.

4-33 The time to repair an equipment is known to be exponentially distributed with a mean

of 45min.

(a) What is the probability of the machine being repaired within half an hour?

(b) If the machine breaks down at 3 P.M. and a repairman is available immediately,

what is the probability of the machine being available for production by the start

of the next day? Assume that the repairman is available until 5 P.M.

(c) What is the standard deviation of the repair time?

4-34 A limousine service catering to a large metropolitan area has found that the time for a

trip (from dispatch to return) is exponentially distributed with a mean of 30 minutes.

(a) What is the probability that a trip will take more than an hour?

(b) If a limousine has already been gone for 45 minutes, what is the probability that it

will return within the next 20 minutes?

(c) If two limousines have just been dispatched, what is the probability that both will

not return within the next 45 minutes? Assume that the trips are independent of

each other.

4-35 The time to failure of an electronic component can be described by a Weibull

distribution with γ� 0, β� 0.25, and α� 800 hours.

(a) Find the mean time to failure.

(b) Find the standard deviation of the time to failure.

(c) What is the probability of the component lasting at least 1500 hours?

4-36 The time to failure of a mechanical component under friction may be modeled by a

Weibull distribution with γ� 20 days, β� 0.2, and α� 35 days.

(a) What proportion of these components will fail within 30 days?

(b) What is the expected life of the component?

(c) What is the probability of a component lasting between 40 and 50 days?

4-37 The diameter of bearings is known to have amean of 35mmwith a standard deviation

of 0.5mm. A random sample of 36 bearings is selected. What is the probability that

the average diameter of these selected bearings will be between 34.95 and 35.18mm?

4-38 Refer to Exercise 4-37. Suppose that the machine is considered to be out of statistical

control if the average diameter of a sample of 36 bearings is less than 34.75mm or

greater than 35.25mm.
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(a) If the true mean diameter of all bearings produced is 35mm, what is the

probability of the test indicating that the machine is out of control?

(b) Suppose that the setting of themachine is accidentally changed such that themean

diameter of all bearings produced is 35.05mm.What is the probability of the test

indicating that the machine is in statistical control?

4-39 Vendor quality control is an integral part of a total quality system.A soft drink bottling

company requires its vendors to produce bottles with an internal pressure strength

of at least 300 kg/cm2. A vendor claims that its bottles have a mean strength of

310 kg/cm2 with a standard deviation of 5 kg/cm2. As part of a vendor surveillance

program, the bottling company samples 50 bottles from the production and finds the

average strength to be 308.6 kg/cm2.

(a) What are the chances of getting that sample average that was observed, or even

less, if the assertion by the vendor is correct?

(b) If the standard deviation of the strength of the vendor’s bottles is 8 kg/cm2, with

the mean (as claimed) of 310 kg/cm2, what are the chances of seeing what the

bottling company observed (or an even smaller sample average)?

4-40 An electronic switch has a constant failure rate of 10�3 per hour.
(a) What is the expected life of the switch?

(b) What is the standard deviation of the life of the switch?

(c) Find the probability that the switch will last at least 1200 hours.

(d) What is the probability that the switch will last between 1200 and 1400 hours?

4-41 Refer to the electronic switch in Exercise 4-40. In order to improve the reliability of a

system, three such additional switches are used on a standby basis. This means that

only when a switch fails, another is activated, and so on. The system operates as long

as at least one switch is operational.

(a) What is the mean life of the system?

(b) What is the standard deviation of the system life?

(c) What is the probability that the system will operate for at least 5000 hours?

(d) What is theminimumnumber of additional switches, on a standby basis, needed if

it is desirable for the system to operate at least 3000 hours with a probability of

40%?

4-42 Reinforced concrete beams are used in bridges. However, cracks develop in these

beams and it has an accumulation effect over time. The time to failure of such bridges,

in days, is modeled by a lognormal distribution, where the mean of the natural

logarithm of the failure time is 7.6, with a standard deviation of 2.

(a) Find the mean life of beams.

(b) What is the standard deviation of the life of beams?

(c) Find the probability of a beam lasting more than 4000 days.

4-43 The mean time to assemble a product as found from a sample of size 40 is 10.4

minutes. The standard deviation of the assembly times is known to be 1.2 minutes.

(a) Find a two-sided 90% confidence interval for the mean assembly time and

interpret it.

(b) Find a two-sided 99% confidence interval for the mean assembly time and

interpret it.

(c) What assumptions are needed to answer parts (a) and (b)?
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(d) The manager in charge of the assembly line believes that the mean assembly

time is less than 10.8 min. Can he make this conclusion at a significance level

α of 0.05?

4-44 A company that dumps its industrial waste into a river has to meet certain

restrictions. One particular constraint involves the minimum amount of dissolved

oxygen that is needed to support aquatic life. A random sample of 10 specimens

taken from a given location gives the following results of dissolved oxygen (in parts

per million, ppm):

9:0 8:6 9:2 8:4 8:1

9:5 9:3 8:5 9:0 9:4

(a) Find a two-sided 95% confidence interval for the mean dissolved oxygen and

interpret it.

(b) What assumptions do you need to make to answer part (a)?

(c) Suppose that the environmental standards stipulate a minimum of 9.5 ppm of

average dissolved oxygen. Is the company violating the standard? Test at a level

of significance α of 0.05.

4-45 The Occupational Safety and Health Administration (OSHA) mandates certain

regulations that have to be adopted by corporations. Prior to the implementation of

the OSHA program, a company found that for a sample of 40 randomly selected

months, the mean employee time lost due to job-related accidents was 45 hours. After

implementation of the OSHA program, for a random sample of 45 months, the mean

employee time lost due to job-relatedaccidentswas39hours. It canbeassumed that the

variability of time lost due to accidents is about the same before and after implementa

tion of the OSHA program (with a standard deviation being 3.5 hours).

(a) Find a 90% confidence interval for the difference in the mean time lost due to

accidents.

(b) Test the hypothesis that implementation of the OSHA program has reduced the

mean employee lost time. Use a level of significance of 0.10.

4-46 Refer to Exercise 4-45. Suppose that the standard deviations of the values of lost time

due to accidents before and after use of the OSHA program are unknown but are

assumed to be equal. The first sample of size 40 gave a mean of 45 hours with a

standard deviation of 3.8 hours. Similarly, the second sample of size 45, taken after the

implementation of the OSHA program, yielded a mean of 39 hours with a standard

deviation of 3.5 hours.

(a) Find a 95% confidence interval for the difference in the mean time lost due to job-

related accidents.

(b) What assumptions are needed to answer part (a)?

(c) Can you conclude that the mean employee time lost due to accidents has

decreased due to the OSHA program? Use a level of significance of 0.05.

(d) Howwould you test the assumption of equality of the standard deviations of time

lost due to job-related accidents before and after implementation of the OSHA

program? Use a level of significance of 0.05.

4-47 A company is experimenting with synthetic fibers as a substitute for natural fibers.

The quality characteristic of interest is the breaking strength. A random sample of
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8 natural fibers yields an average breaking strength of 540 kg with a standard

deviation of 55 kg. A random sample of 10 synthetic fibers gives a mean breaking

strength of 610 kg with a standard deviation of 22 kg.

(a) Can you conclude that the variances of the breaking strengths of natural and

synthetic fibers are different? Use a level of significance α of 0.05. What

assumptions are necessary to perform this test?

(b) Based on the conclusions in part (a), test to determine if the mean breaking

strength for synthetic fibers exceeds that for natural fibers. Use a significance

level α of 0.10.

(c) Find a two-sided 95% confidence interval for the ratio of the variances of the

breaking strengths of natural and synthetic fibers.

(d) Find a two-sided 90% confidence interval for the difference in the mean breaking

strength for synthetic and natural fibers.

4-48 Consider the data in Exercise 4-17 on the time (in minutes) to process hot-rolled steel

for a sample of size 10.

(a) Find a 98% confidence interval for themean time to process hot-rolled steel.What

assumptions do you have to make to solve this problem?

(b) Find a 95% confidence interval for the variance.

(c) Test the hypothesis that the process variability, as measured by the variance,

exceeds 0.80. Use α� 0.05.
4-49 Price deregulation in the airline industry has promoted competition and a variety of

fare structures. Prior to deciding on a price change, a particular airline is interested in

obtaining an estimate of the proportion of the market that it presently captures for a

certain region. A random sample of 300 passengers indicates that 80 used that airline.

(a) Find a point estimate of the proportion of themarket that uses this particular airline.

(b) Find a 95% confidence interval for the proportion that uses this airline.

(c) Can the airline conclude that its market share is more than 25%? Use a level of

significance of 0.01.

4-50 An advertising agency is judged by the increase in the proportion of people who buy a

particular product after the advertising campaign is conducted. In a random sample of

200 people prior to the campaign, 40 said that they prefer the product in question.

After the advertising campaign, out of a random sample of 300, 80 say they prefer the

product.

(a) Find a 90% confidence interval for the difference in the proportion of people who

prefer the stipulated product before and after the advertising campaign.

(b) Can you conclude that the advertising campaign has been successful in

increasing the proportion of people who prefer the product? Use a level of

significance of 0.10.

4-51 Two machines used in the same operation are to be compared. A random sample of

80 parts from the first machine yields 6 nonconforming ones. A random sample of

120 parts from the second machine shows 14 nonconforming ones.

(a) Can we conclude that there is a difference in the output of the machines? Use a

level of significance of 0.10.

(b) Find a 95% confidence interval for difference in the proportion of nonconforming

parts between the two machines.
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4-52 The precision of equipment and instruments is measured by the variability of their

operation under repeated conditions. The output from an automatic lathe producing

the diameter (in millimeters) of a part gave the following readings for a random

sample of size 10:

10:3 9:7 9:6 9:5 9:9

10:2 9:8 10:1 10:2 9:8

(a) Find a 90% confidence interval for the variance of the diameters.

(b) Find a 90% confidence interval for the standard deviation of the diameters.

(c) Test the null hypothesis that the variance of the diameters does not exceed

0.05mm2. Use a significance level of 0.10.

(d) Does the mean setting for the machine need adjustment? Is it significantly

different from 9.5mm? Test at a significance level of 0.10.

4-53 A company is investigating two potential vendors on the timeliness of their deliveries. A

randomsampleofsize10 fromthefirstvendorproducedanaveragedelaytimeof4.5days

witha standarddeviationof2.3days.A randomsampleof size12 fromthe secondvendor

yielded an average delay time of 3.4 days with a standard deviation of 6.2 days.

(a) Find a 90% confidence interval for the ratio of the variances of the delay times for

the two vendors.

(b) What assumptions are needed to solve part (a)?

(c) Can we conclude that the first vendor has a smaller variability regarding delay

times than that of the second? Use a significance level of 0.05.

(d) Which vendor would you select and why?

4-54 Twenty-five patients of a certain diagnosis-related group were randomly selected,

and their systolic blood pressure, blood glucose level, and total cholesterol level

were measured. Upon administration of a certain drug, after 6 months the same

characteristics were measured for the selected patients. The data are shown in

Table 4-5.

(a) Find the mean, standard deviation, skewness coefficient, kurtosis coefficient, and

interquartile range of systolic blood pressure before the drug was administered

and comment on the values.

(b) Find the mean, standard deviation, skewness coefficient, kurtosis coefficient, and

interquartile range of systolic blood pressure after the drug was administered and

comment on the values.

(c) Can we conclude that the mean systolic blood pressure before the drug was

administered exceeds 125? Use α� 0.05. What is the p-value?

(d) Can we conclude that the drug was effective in reducing mean systolic blood

pressure? Use α� 0.05. What is the p-value? Explain this p-value.

(e) Did the drug have a significant impact on reducing the average cholesterol level?

Use α� 0.05. What is the p-value?

(f) Construct descriptive statistics for blood glucose level before the drug was

administered and comment.

(g) What is the correlation between blood glucose levels before and after adminis

tration of the drug? Test whether the correlation differs from zero. Use α� 0.05.
(h) Construct a 98% confidence interval for the variance of systolic blood pressure

after administration of the drug.
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TABLE 4-5

Before After

Patient Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Blood

Pressure

145

162

128

116

130

132

110

125

139

142

154

124

114

136

150

133

129

108

112

146

153

145

126

138

129

Blood

Glucose

186

142

122

124

121

116

105

119

115

132

152

120

118

131

220

135

119

106

117

122

204

182

140

180

135

Total

Cholesterol

240

235

203

222

219

205

195

216

226

231

255

235

212

238

255

232

220

234

194

225

256

248

229

240

218

Blood

Pressure

138

143

125

118

121

134

112

122

125

130

140

125

112

122

144

126

123

114

111

130

132

134

120

124

120

Blood

Glucose

183

150

119

126

132

108

102

107

105

133

150

122

113

126

180

130

109

103

108

117

196

175

135

172

133

Total

Cholesterol

233

246

218

230

215

183

192

204

215

225

233

222

214

230

250

224

231

238

204

220

242

240

206

231

204

4-55 Management is interested in increasing the efficiency of processing purchase orders.

The time to process purchase orders, in days, was observed for 31 randomly selected

customers and is shown in Table 4-6. Following a detailed study of the process,

certain recommendations were adopted. Twenty-six customers were randomly

selected and their purchase order processing times are shown after the process

improvement changes.

(a) Find the mean, standard deviation, skewness coefficient, kurtosis coefficient, and

interquartile range of the processing time prior to process changes and comment

on the values.

(b) Find the mean, standard deviation, skewness coefficient, kurtosis coefficient, and

interquartile range of the processing time after the process changes and comment

on the values.

(c) Find a 95% confidence interval for the mean processing time prior to process

changes.

(d) Can we conclude that the mean processing time, before the process changes, is

less than 10.5 days? Use α� 0.02. What is the p-value? If α� 0.10, what is your
decision? What does this imply?
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TABLE 4-6

Before Change After Change

Customer Processing Time Customer Processing Time

1 9.7 1 7.6

2 11.2 2 8.3

3 10.5 3 7.9

4 8.3 4 8.6

5 9.2 5 8.3

6 8.8 6 6.2

7 10.4 7 9.1

8 11.6 8 8.8

9 10.1 9 8.4

10 9.6 10 7.5

11 8.8 11 9.4

12 12.3 12 6.8

13 10.9 13 8.1

14 11.1 14 9.7

15 8.5 15 7.4

16 11.6 16 9.2

17 12.3 17 8.3

18 10.2 18 8.5

19 10.7 19 6.8

20 11.3 20 7.5

21 9.1 21 7.2

22 9.9 22 9.2

23 10.5 23 8.1

24 11.4 24 7.3

25 8.3 25 7.7

26 8.7 26 8.1

27 9.4

28 10.3

29 11.4

30 8.8

31 10.2

(e) Can we conclude that the mean processing time, after the process changes, is less

than 8.5 days? Use α� 0.05. What is the p-value? Explain.

(f) Is there a difference in the variabilities of processing times before and after process

changes? Use α� 0.05.
(g) Can we conclude that the process changes have been effective in reducing the

mean processing time? Use α� 0.05. What assumptions do you need to make for

conducting the test?

4-56 An insurance company wants to estimate the premium to be charged for a $200,000

homeowner’s policy that covers fire, theft, vandalism, and natural calamities. Flood

and earthquakes are not covered. The company has estimated from historical data that

a total loss may happen with a probability of 0.0005, a 50% loss with a probability of

0.001, and a 25% loss with a probability of 0.01. Ignoring all other losses, what
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premium should the company charge to make an average net profit of 1.5% of the

policy’s face value?

4-57 An insertion machine in printed circuit board manufacturing has an insertion rate of

5000 parts per hour. From historical data, it is known that the error rate is 300 parts per

million parts inserted. The errors occur randomly and independently.

(a) What is the probability of observing nomore than 5 errors in 2 hours of operation?

(b) What is the probability of an error-free insertion (rolled throughput yield) in

2 hours of operation? In 3 hours of operation?

(c) Suppose that the desired probability of an error-free insertion in 2 hours of

operation is 0.001. What must be the hourly error rate of the insertion machine to

accomplish this?

4-58 A wave soldering process is used in printed circuit boards. It is known that the error

rate is 200 per million solders, where errors occur randomly and independently. A

given board requires 5000 solders.

(a) What is the probability of 3 or more errors in a circuit board?

(b) Find the probability of a board having no solder errors.

(c) If a newdesign requires 2000 solders per board, what is the probability of an error-

free board?

(d) The cost of rectification of a defective solder is $0.05, and themonthly production

rate is 1 million boards. What is the expected cost reduction per month?

4-59 The number of times aWeb server is accessed perminute is known to follow aPoisson

distribution. A random sample of size 8, each over a minute, shows the number of

times that the server is accessed as follows: 5, 3, 2, 0, 6, 1, 1, 2. Find a 90% confidence

interval for the mean number of times that theWeb server is accessed per minute. Can

we conclude that the mean number of times that the server is accessed per minute is

different from 4 at the 10% level of significance?
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5
DATA ANALYSES AND SAMPLING

5-1 Introduction and chapter objectives

5-2 Empirical distribution plots

5-3 Randomness of a sequence

5-4 Validating distributional assumptions

5-5 Transformations to achieve normality

5-6 Analysis of count data

5-7 Analysis of customer satisfaction data

5-8 Concepts in sampling

Summary

Symbols

X Sample average

s Sample standard deviation

n Sample size

Xi ith observation in a sample

sm Standard deviation of the sample median

F(x) Cumulative distribution function

M Median

Q1 First quartile

Q3 Third quartile

IQR Interquartile range

5-1 INTRODUCTION AND CHAPTER OBJECTIVES

In this chapter we continue to expand on the various descriptive and inferential statistical

procedures described in Chapter 4. Our objective is to analyze empirical data graphically

since theyprovide comprehensive information andare aviable tool for analysis of product and

process data. The information they provide on existing product or process characteristics

helps us determine whether these characteristics are close to the desired norm. A second

objective is to test for distributional assumptions. Recall that in Chapter 4, for testing

hypothesis on various parameters such as the populationmean or variance, the assumption of

normality was made. We present a method for testing the validity of such an assumption.

Fundamentals of Quality Control and Improvement, Fourth Edition. Amitava Mitra
 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com\go\mitra\QualityControl4e
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Further, we discuss some transformations to achieve normality for variables that are

nonnormal. A third objective involves analyzing qualitative data. Such information is

typically frequency-type data obtained from product surveys. A fourth abjective is to

visualize information from surveys and conduct appropriate analyses. Finally, we include

a discussion of various sampling techniques. The issue of determination of sample size is of

paramount importance in quality. Based on the degree of acceptable risks, expressions are

presented for the required sample size.

5-2 EMPIRICAL DISTRIBUTION PLOTS

Histograms

Distribution plots are applicable to quantitative data. In such instances, the quality char

acteristic values are obtained on a measurable scale. Seldom do we get an idea of process

characteristics just by looking at the individual data values gathered from the process. Such

data are often voluminous. Frequency distributions and histograms summarize such infor

mation and present it in a format that allows us to draw conclusions regarding the process

condition.

A frequencydistribution is a rearrangement of rawdata in ascending or descending order

of magnitude such that the quality characteristic is subdivided into classes and the number of

occurrences in each class is presented.

Table 5-1 shows the inside diameter (in millimeters) of metal sleeves produced in

a machine shop for 100 randomly selected parts. Twenty samples, each of size 5, were

taken. Simply looking at the data in Table 5-1 provides little insight about the process. Even

though we know that there is variability in the sleeve diameters, we can hardly identify a

TABLE 5-1 Inside Diameter (in mm) of Metal Sleeves

Sample Observations X (Five per Sample)

1 50.05 50.03 50.02 50.00 49.94

2 49.96 49.99 50.03 50.01 49.98

3 50.01 50.01 50.01 50.00 49.92

4 49.95 49.97 50.02 50.10 50.02

5 50.00 50.01 50.00 50.00 50.09

6 50.02 50.05 49.97 50.02 50.09

7 50.01 49.99 49.96 49.99 50.00

8 50.02 50.00 50.04 50.02 50.00

9 50.06 49.93 49.99 49.99 49.95

10 49.96 49.93 50.08 49.92 50.03

11 50.01 49.96 49.98 50.00 50.02

12 50.04 49.94 50.00 50.03 49.92

13 49.97 49.90 49.98 50.01 49.95

14 50.00 50.01 49.95 49.97 49.94

15 49.97 49.98 50.03 50.08 49.96

16 49.98 50.00 49.97 49.96 49.97

17 50.03 50.04 50.03 50.01 50.01

18 49.98 49.98 49.99 50.05 50.00

19 50.07 50.00 50.02 49.99 49.93

20 49.99 50.06 49.95 49.99 50.02
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FIGURE 5-1 Frequency histogram of sleeve diameters using Minitab.

pattern in thedata (what is thedegree of variability?) or comment about the central tendencyof

the process (about which value are most of the observations concentrated?).

A histogram is a graphical display of data such that the characteristic is subdivided into

classes, or cells. In a frequency histogram, the vertical axis usually represents the number of

observations in each class. An alternative representation of the vertical axis could be the

percentage.

Example 5-1 For the data in Table 5-1, let us useMinitab to construct a histogram. Choose

Graph>Histogram> Simple. Click OK. Under Graph variables, input the column

number or name of the variable, in this case Diameter. Click OK.

Minitab produces the frequency histogram shown in Figure 5-1. The histogram provides

us with a sense of the distribution of the 100 values, where classes of equal width have been

created. The midpoints of the classes are 49.00, 49.92, and so on. A majority of the values

are clustered between 49.96 and 50.04. The shape of the distribution resembles a bell-shaped

distribution. We will, however, demonstrate a test for normality later in the chapter.

Stem-and-Leaf Plots

Stem-and-leaf plots are another graphical approach to plotting observations and interpreting

process characteristics. With frequency histograms, the identities of the individual observa

tions are lost in the process of plotting. In the stem-and-leaf plot, however, individual

numerical values are retained. Let’s construct a stem-and-leaf plot using themetal sleeves data

from Table 5-1.

Example 5-2 Using Minitab, click on Graph> Stem-and-leaf. Under Graph variables,

enter the columnnumber or nameof the variable, in this caseDiameter.ClickOK. The output

from Minitab is shown in Figure 5-2.

Each data value is split into two parts, the stem and the leaf. For example, the data value

49.90 is displayedwith the stempart as 499 and the leaf part as 0.Notice that the decimal point

is implicit to the left of the rightmost digit in the stem. The digit in the leaf portion represents

hundredths. The leftmost column in Figure 5-2 represents the cumulative frequency, from the
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FIGURE 5-2 Stem-and-leaf plot for the inside diameter of metal sleeves.

corresponding end, depending on the location of the stem relative to the median. Thus, the

value “7” in the second rowof the stem “499” tells us that there are sevenvalues�49.93,while
the value “5” in the next to last row of the stem “500” indicates there are five values �50.08.
Thevalue in parentheses, “(25)”, indicates themedian class, andonly for this class the number

“25” indicates that there are 25 values in this median class (i.e., between 50.00 and 50.01).

Box Plots

Box plots graphically depict data and also display summary measures (Chambers 1977;

Chambers et al. 1983). A box plot shows the central tendency and dispersion of a data set and

indicates the skewness (deviation from symmetry) and kurtosis (measure of tail length). The

plot also shows outliers.

There are several features of a boxplot. Thebox is bounded byQ1 andQ3, thefirst and third

quartiles, respectively,with a line drawnat themedian.Hence, the lengthof the box represents

the interquartile range (IQR). Depending on the location of themedian relative to the edges of

the box, inferences are drawn on the symmetry of the distribution. For a symmetric

distribution, the median would be located midway between the edges of the box:that is,

at a value (Q1+Q3)/2. If themedian is closer toQ3, the data distribution is negatively skewed.

Conversely, if the median is closer to Q1, the distribution is positively skewed. Two lines,

known aswhiskers, are drawn outward from the box. One line extends from the top edge of

the box at Q3 to themaximumdata value that is less than or equal toQ3+ 1.5(IQR). Similarly,

a line from the bottom edge of the box at Q1 extends downward to the minimum value that is

greater than or equal to Q1� 1.5(IQR). The endpoints of the whiskers are known as the upper

and lower adjacent values. The length of the whiskers indicates the tail lengths. Values that

fall outside the adjacent values are candidates for consideration as outliers. They are plotted

as asterisks (∗).

Example 5-3 Aprivate company by the name ofQuickDock operates an unloading facility

for supertankers in the port of Singapore. A random sample of size 30 that shows the

unloading times (in hours) was collected. To improve the efficiency of unloading, a process

study was conducted. Using the changes recommended, the process was modified and a

subsequent random sample of size 30 was collected. Both sets of observations are shown in

Table 5-2.
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TABLE 5-2 Unloading Times (hours) of Supertankers

Before Changes After Changes

Sample Number Time Sample Number Time Sample Number Time Sample Number Time

1 9.4 16 1.2 1 2.7 16 4.6

2 1.5 17 2.6 2 14.4 17 0.9

3 14.6 18 7.5 3 3.2 18 2.5

4 10.8 19 19.2 4 17.0 19 1.2

5 18.2 20 1.8 5 1.0 20 14.9

6 19.8 21 34.2 6 12.7 21 1.4

7 23.5 22 18.1 7 4.6 22 7.3

8 5.2 23 7.5 8 6.8 23 4.6

9 9.3 24 3.4 9 22.7 24 6.6

10 9.1 25 12.4 10 2.3 25 4.9

11 13.3 26 30.8 11 8.3 26 2.0

12 26.1 27 5.3 12 2.6 27 4.9

13 2.3 28 39.5 13 7.7 28 9.6

14 30.7 29 4.2 14 21.4 29 1.1

15 22.5 30 2.5 15 1.7 30 1.2

(a) Construct a box plot for unloading times prior to process changes and comment on the

process.

Solution Using Minitab, first create a worksheet with two variables, unloading times

before and after process changes. Click on Graph>Boxplot. Select One Y – Simple. In

Variables, enter the column number or variable name,Unloading-Before in this case. Click

OK. Figure 5-3 shows the box plot.

Several insights can be gained from the box plot. The box itself, extending from 4.0 to

20.475, contains 50%of the observations. Themedian, indicated by the linewithin the box, is

at 10.1 and is closer to the bottom edge (Q1) of the box. So, the distribution is positively

FIGURE 5-3 Box plot of unloading times before process changes.
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FIGURE 5-4 Box plot of unloading times before and after process changes.

skewed. The length of the top whisker is much longer than that of the bottom whisker,

indicating a much longer right tail. There are no outliers.

(b) Construct side-by-side box plots for unloading times before and after process

changes. Comment on process improvements.

Solution Click onGraph>Boxplot. SelectMultipleY’s –Simple. InVariables, enter

the column numbers or variable names of both,Unloading-Before andUnloading-After, in

this case. Click OK. Figure 5-4 shows this box plot.

The box plot of the unloading times, after process changes, is quite different from that

of unloading times before the process changes. Note that the box extends from 1.925 to

8.625, a much more compact box than before, containing 50% of the observations. The

new median is at 4.6, quite a bit below the previous median. The new unloading time

distribution is also positively skewed, however, the median and variability are much

lower. A longer right tail is indicated, as before, but with a shorter tail length. There are

two extreme values or outliers on the right tail indicated by the asterisk. These could

represent unusually long unloading times, for which, perhaps, special causes could be

identified to improve the process further.

Variations of the Basic Box Plot

One variation of the basic form of the box plot is the notched box plot. A notch, the width of

whichcorresponds to the lengthof the confidence interval for themedian, is constructedon the

box around the median. Assuming that the data values are normally distributed, the standard

deviation of the median is given by Kendall et al. (1998) as

1:25�IQR� 
sm � p �5-1� 

1:35 n

The notch around the median M should start at values of

M � Csm �5-2� 



RANDOMNESS OF A SEQUENCE 235

where C is a constant representing the level of confidence. For a level of confidence of 95%,

C= 1.96 can be used. For further details, consult McGill et al. (1978).

Notched box plots are used to determinewhether there are significant differences between

themediansof thequality characteristic of twoplots. If there is nooverlapbetween the notches

of two box plots, we can conclude that there is a significant difference between the two

medians. This may indicate that the actions taken have changed the process parameter

conditions significantly.

5-3 RANDOMNESS OF A SEQUENCE

In this sectionwe present a technique to determine if the sequence of observations collected in

a sample, usually as a function of time, is random in nature. If the sequence is nonrandom, it

may indicate the existence of special causes. A cause-and-effect analysis may then indicate

possible process changes to undertake. On the other hand, if the sequence is deemed to be

random, it may imply the presence of common causes, which lead to variability in the

characteristic observed. In this case, systemic changes are necessary to create process

improvement.

Run Chart

A run chart is a plot of the quality characteristic as a function of the order (or usually time) in

which the observations are collected. They provide an idea of the clustering of the data or

whether the data are fromamixture of, say, twopopulations. These inferences are basedon the

number of runs about the median.

A run (about themedian) is defined as one ormore consecutive data points on the same side

(of themedian).When counting runs, points that fall exactly on the reference line (median) are

ignored. If the pattern is random, the actual number of runs should be close to the number of

runs expected, based on the assumption of randomness of the pattern. So,when the number of

runs observed is much greater than the number of runs expected, it implies the possibility of

the data being from a mixture pattern (say, two populations), causing frequent fluctuations

about themedian. Similarly, when the number of runs observed is much less than the number

of runs expected, it may indicate the possibility of clustering of the data (a nonrandom

behavior). We test these situations through the procedure of hypothesis testing and use the

p-value approach, described in Chapter 4.

Another pair of situations involves testing for the presence of a trend or oscillation, both

examples of nonrandomness. These tests are conducted by using the number of runs up or

down. A trend is an unusually long series of consecutive increases or decreases in the data. In

counting the run length, we ignore points that repeat the preceding value. A pattern of

oscillation is indicated if the number of runs up or down observed is much greater than the

number of runs expected. Similarly, a trend in the data is inferred when the number of runs up

or down observed is much less than the number of runs expected. A long run length about the

median may also indicate a shift in the data.

Example 5-4 The hemoglobin A1C value is a measure of blood glucose level over a period

of about three months. Table 5-3 shows hemoglobin A1C values for a diabetic patient taken

every three months. Construct a run chart and comment on whether the process shows

commonor special causes of variation. Has there been a significant trend?Test at the 5% level

of significance.
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TABLE 5-3 Hemoglobin A1C Values for a Diabetic Patient

Observation A1C Observation A1C Observation A1C

1 8.3 11 7.9 21 6.7

2 6.5 12 8.4 22 6.6

3 7.2 13 8.2 23 7.6

4 7.0 14 8.6 24 7.4

5 8.1 15 8.8 25 7.8

6 6.8 16 7.8 26 8.0

7 7.1 17 7.4 27 7.7

8 6.6 18 7.2 28 7.6

9 7.3 19 7.1 29 7.8

10 7.5 20 6.8 30 7.5

Solution Using Minitab, first create a worksheet with the variable A1C Values con

sisting of 30 observations. Click on Stat>Quality Tools>Run Chart. Since the A1C

values are entered as a single column in the worksheet, select Single column, and enter the

column number or name. Under Subgroup size, enter the value 1. Click OK.

Figure 5-5 shows the run chart of hemoglobin A1C values. Note that the number of runs

about themedian is 10,while the number of runs expected, if the data are from a distribution of

a random sequence, is 15.933. Also, the number of runs up or down observed is 17, while the

number of runs expected under the null hypothesis of a random sequence, is 19.667. Let us

now test for the presence of clustering or mixtures. Note that the p-value for clustering is

0.01338< α= 0.05. Hence, we reject the null hypothesis of a random sequence and conclude

that there is significant clustering. The number of runs about the median observed is sig

nificantly less than that expected under the assumption of a random sequence.We find that the

p-value for testing the presence of a mixture is 0.98662 (the complement of 0.01338),

indicating, obviously, that we cannot conclude the presence of a mixture pattern. Hence, a

special cause of variation exists due to clustering of the observations. As a follow-upmeasure,

one could investigate if there were certain traits or patient habits that led to clustering.

FIGURE 5-5 Run chart of hemoglobin A1C values.
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In testing for the presence of significant trend or oscillation, we consider theMinitab output

in Figure 5-5. The p-value for testing trends is 0.11678> α= 0.05, and similarly, the p-value

for testing oscillations is 0.88322 (the complement of 0.116678).Hence, no significant trend or

oscillations can be concluded. From the plot, observe that the longest run down has a length of

7, which might seem to indicate that there had been a significant declining trend. However, in

actually testing a hypothesis on the presence of a trend, it was not found to be significant.

5-4 VALIDATING DISTRIBUTIONAL ASSUMPTIONS

In many statistical techniques, the population fromwhich the sample data is drawn is assumed

to have a certain specified distribution so that appropriate inferences can be made about the

quality characteristic. Statistical procedures known as goodness-of-fit tests are used for testing

the information from the empirical cumulative distribution function (cdf) obtained from the

sample versus the theoretical cumulative distribution function based on the hypothesized

distribution. Moreover, parameters of the hypothesized distribution may be specified or

estimated from the data. The test statistic could be a function of the difference between the

frequency observed and that expected, as determined on the basis of the distribution that is

hypothesized. Goodness-of-fit tests may include chi-squared tests (Duncan 1986), Kolmogor

ov–Smirnov tests (Massey 1951), or the Anderson–Darling test (Stephens 1974), among

others. Graphical methods such as probability plotting may be used along with such tests.

Probability Plotting

In probability plotting, the sample observations are ranked in ascendingorder fromsmallest to

largest. Thus, the observations x1, x2, . . . , xn are ordered as x(1), x(2), . . . , x(n), where x(1)
denotes the smallest observation and so on. The empirical cdf of the ith ranked observation,

x(i), is given by

i � 0:5
Fi � �5-3� 

n

The theoretical cdf, based on the hypothesized distribution, at x(i), is given by G(x(i)),

where G(�) is calculated using specified parameters or estimates from the sample. A

probability plot displays the plot of x(i), on the horizontal axis, versus Fi and G(x(i)) on the

vertical axis. The vertical axis is scaled such that if the data are from the hypothesized

distribution, the plot of x(i) versusG(x(i)) will be a straight line. Thus, departures of F(�) from
G(�) are visually easy to detect. The closer the plotted values of F(�) are to the fitted line,G(�),
the stronger the support for the null hypothesis. A test statistic is calculated where large

deviations between F(�) and G(�) lead to large values of the test statistic or, alternatively,

small p-values. Hence, if the observed p-value is less than α, the chosen level of significance,

the null hypothesis representing the hypothesized distribution is rejected.

In a normal probability plot, suppose that we are testing the null hypothesis that the data

are from a normal distribution, with mean and standard deviation not specified. Then G(x(i))

will beΦ((x(i)��x)/s),whereΦ(�) represents the cdf of a standardnormal distribution and�x and

s are sample estimates of the mean and standard deviation, respectively.

Minitab allows probability plotting based on a variety of distributions, such as normal,

lognormal, exponential, gamma, Weibull, logistic, or loglogistic. A common test statistic

used for such tests is theAnderson–Darling statistic, which measures the area between the
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FIGURE 5-6 Normal probability plot of coil resistance.

fitted line (based on the hypothesized distribution) and the empirical cdf. This statistic is a

squareddistance that isweightedmoreheavily in the tails of the distribution. Smaller values of

this statistic lead to the nonrejection of the null hypothesis and we confirm validity of the

observations being likely from the hypothesized distribution.

Example 5-5 Asample of 50 coils to be used in an electrical circuit is selected randomly and

their resistances measured in ohms (Ω). The data values are shown in Table 4-2. A normal

probability plot is constructed usingMinitab. First, a worksheet consisting of the data values

on coil resistance is created. ChooseGraph>Probability Plot. Select Single and clickOK.

InGraph variable, input the name of the variable, say Resistance, and clickOK. Click on

Distribution and in the drop-down menu, select Normal. Click OK. The resulting normal

probability plot is shown inFigure 5-6,where a straight line isfitted through thepoints plotted.

Observe that amajority of the points are in close proximity to the straight line.A fewpoints on

the extremes deviate from the line.

Minitab also displays 95% confidence intervals for the fitted distribution (as hypothesized

in the null hypothesis) on a pointwise basis. Usually, points may fall outside the confidence

intervals near the tails. In the lower half of the plot, points to the right of the confidence band

indicate that there are fewer data in the left tail relative to what is expected based on the

hypothesized distribution. Conversely, in the upper half, points to the right of the confidence

band indicate that there are more data in the right tail relative to what is expected. Here,

the points plotted seem fairly close to the fitted line, supporting the null hypothesis that

the data are from a normal distribution. Further, the Anderson–Darling test statistic is shown

to be 0.310, with a p-value of 0.543. With this large p-value, for any reasonable level of

significance (α), we do not reject the null hypothesis of normality.

With the validation of the assumption of normality, we can make several inferences from

Figure 5-6. First,we can estimate the populationmean by reading the valueof the 50th percentile

off the fitted straight line; it appears to be approximately 30.0Ω. Second, we can estimate the

population standard deviation as the difference between the 84th and50th percentile data values.

This is because the 84th percentile of a normal distribution is approximately one standard
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deviation away from the mean (the 50th percentile). From Figure 5-6, the population standard

deviation is estimated to be (34.5� 30.0)Ω= 4.5Ω. Third, we can estimate the proportion of a

process output that does not meet certain specification limits. For example, if the lower

specification limit of the resistance of cables is 25Ω, from the figure we estimate that

approximately 10% of the output is less than the limit specified.

Example 5-6 Consider the data in Table 5-2 on the unloading times of supertankers after

changes have been made in improving the process. Can you conclude that the distribution of

unloading times is normal? Use α= 0.05. If the distribution is deemed not normal, can you

conclude if it is exponential? Estimate the parameter of the exponential distribution.

Solution Using Minitab, select Stat>Quality Tools> Individual Distribution Iden

tification. Select Single column, and input the column number or name of the variable,

Unloading-After. Minitab provides the option of checking against hypothesized distribu

tions such as normal, exponential, lognormal, gamma, Weibull, logistic, or extreme values

(smallest or largest). Here, rather than validate with all distributions, we select two distribu

tions: Normal and Exponential. Click OK.

Figure 5-7 shows theMinitaboutputwithprobability plots of unloading times after process

changes using the normal and the exponential as hypothesized distributions. Note that for the

normal probability plot the values plotted are systematically away from thefitted straight line.

The value of theAnderson–Darling statistic is 1.822with a p-value< 0.005. Hence, we reject

the null hypothesis of normality of the distribution of unloading times.When considering the

exponential probability plot, themajority of the observations arewithin a narrowband around

the fitted line, with the exception of three observations that are unusually small. The

Anderson–Darling statistic is 0.456 with a p-value of 0.535. So, for α= 0.05, we do not

reject the null hypothesis of the distribution of unloading times being exponential. Also, a

separate part of the output from Minitab gives an estimate of the scale parameter for the

exponential distribution to be 6.56, which is also the estimate of the mean.

FIGURE 5-7 Normal and exponential probability plots of unloading times.
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5-5 TRANSFORMATIONS TO ACHIEVE NORMALITY

Inferences on population parameters typically require distributional assumptions on the

quality characteristic. Recall from Chapter 4 that confidence intervals and hypothesis testing

on parameters such as the population mean (with unknown standard deviation), difference in

themeansof twopopulations (with unknownstandarddeviations), populationvariance, or the

ratio of two population variances require the assumption of normality of the quality

characteristic. Hence, for proper use of these inferential methods, if the characteristic is

inherently not distributed normally, we investigate procedures to transform the original

variable such that the transformed variable satisfies the assumption of normality.

Some Common Transformations

Based on the shape of the distribution and characteristics associated with the data, guidelines

on some commonly used transformations are shown in Table 5-4, where Y represents the

original variable and YT the transformed variable.

Power Transformations

These transformations are of the type

�Yq�; q > 0

YT � ��Yq�; q < 0 �5-4� 
ln�Y�; q � 0

The impact of such transformations is on changing the distributional shape. Values of the

power coefficient, q> 1, shift weight to the upper tail of the distribution and reduce negative

skewness. The higher the power, the stronger the effect. Figure 5-8 demonstrates the effect of

q on a negatively skewed variable. Similarly, values of q< 1 pull in the upper tail and reduce

positive skewness. The lower the power, the stronger the effect. To preserve the order of the

data values, aminus sign is added to the transformed variable after raising to powers less than

zero. Figure 5-9 shows the effect of q on a positively skewed variable.

TABLE 5-4 Guidelines on Common Transformations

Data Characteristics Type of Transformation

Right-skewed data; nonconstant variance across different values; 1
YT � 

standard deviation proportional to the square of the mean Y
1

Right-skewed data; quite concentrated YT � p
Y

Right-skewed data with nonnegative values; YT � ln�Y� 
standard deviation proportional to the mean p

Poisson data; discrete count data; standard deviation YT � Y
proportional to square root of mean

pBinomial data, consisting of proportion of successes (p) YT � arcsin p

or
p

YT � ln
1 � p
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FIGURE 5-8 Impact of q on a negatively skewed variable.

Johnson Transformation

Johnson 1949 developed three families of distributions of a variable, Y, that are easily

transformed to a standard normal distribution. These are labeled SB, SL, and SU, where the

subscriptsB,L, andU refer to the variable being bounded, bounded frombelow or lognormal,

and unbounded, respectively. Table 5-5 shows the Johnson family of distributions alongwith

the transformation function and conditions on the parameters.

FIGURE 5-9 Impact of q on a positively skewed variable.
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TABLE 5-5 Transformation for Johnson System of Distributions

Johnson Family Transformation Function Parameter Conditions

SB z � γ � η ln Y � ε
λ � ε � Y

η, λ� 0, �1 < γ<1 
�1 < ε<1, ε<Y< ε+ λ

SL

SU

z � γ � η ln�Y � ε� 

z � γ � η sinh�1 Y � ε
λ

;

where sinh�1�Y� �  ln�Y � 1 � Y 2
p 

� 

η> 0, �1 < γ<1,

�1 < ε<1, Y> ε

η, λ� 0, �1 < γ<1 
�1 < ε<1, �1 <Y<1 

To fit a nonnormal data set using a Johnson distribution, algorithms have been developed

that consider almost all potential transformation functions from the Johnson system, with the

parameters being estimated from the data set (Chou et al. 1998). One approach uses a set of

four sample percentiles to choose the family and estimate the unknown parameters. For some

constant s> 1, let four symmetric standardnormal deviates be denotedby�sz,�z, z, and sz for
any constant z> 0. Let the cumulative distribution functions (cdf) at these points be denoted

by q1, q2, q3, and q4, where, for example, q1=Φ(�sz), where Φ(�) represents the cdf of

a standard normal variate. Further, let Yi denote the qith quantile of the distribution of Y,

i= 1, 2, 3, 4. The quantile ratio is defined as

�Y4 � Y3��Y2 � Y1� 
QR � �5-5� �Y3 � Y2�2

In practice, QR is estimated byQR based on estimates Ŷ i, i= 1, 2, 3, 4. Slifker and Shapiro

(1980) have shown that, for s= 3, QR can be used to discriminate among the three families of

Johnson distributions as follows:

• Y has an SB distribution, yields QR< 1.

• Y has an SL distribution, yields QR= 1.

• Y has an SU distribution, yields QR> 1.

Minitab considers all potential transformations, with the parameters being estimated, for a

given value of z. It transforms the data and checks for normality using the Anderson–Darling

test and the corresponding p-value. The routine selects the transformation function that yields

the largest p-value that is greater than a default value (0.10). Selecting the transformationwith

the largest p-value ensures that the transformation selected provides the “most conformance”

to normality. If the p-value is not found to be greater than the default value, no transformation

is appropriate.

Example 5-7 Consider the data on the unloading time of supertankers, before process

changes, in Table 5-2. Select a suitable transformation in case the distribution does not pass

the test for normality using an α= 0.05. Check for normality of the transformed variable.

Explore using Johnson transformation and comment.

Solution Using Minitab, we first display a graphical summary of the unloading times

before process changes. SelectStat>Basic Statistics>Graphical Summary. In thewindow

forVariables, input the columnnumberornameof thevariable,Unloading-Before.ClickOK.

Figure 5-10 shows the graphical summary. The distribution of unloading times is somewhat
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FIGURE 5-10 Graphical summary of unloading times before process changes.

skewed to the right (skewness coefficient 0.802). Using the Anderson–Darling normality test,

we reject the null hypothesis of normality (p-value= 0.023< α= 0.05).

With the distribution being right-skewed and consisting of nonnegative values, we

consider the natural logarithm transform. Use Calc>Calculator. Indicate a column

number to store the transformed variable. Under Expression, type in Loge(Unloading-

Before). Alternatively, one may use the drop-down menu of stored functions that are

available. Click OK. Now, construct a normal probability plot of the transformed variable,

using commands described previously. Figure 5-11 shows the normal probability plot of

ln(Unloading-Before). Note that the p-value associated with the Anderson–Darling test for

FIGURE 5-11 Normal probability plot of the natural log of unloading times before process changes.
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FIGURE 5-12 Johnson transformation of unloading times before process changes.

normality is 0.175> α= 0.05. So we do not reject the null hypothesis of normality for this

transformed variable.

Let us now use the Johnson transformation on the original unloading times before

process changes and explore. Click on Stat>Quality Tools> JohnsonTransformation.

With the data being arranged as a Single column, select this, and input the column number

or name of the variable, Unloading-Before. For Store transformed data in, input the

column number. ClickOK. Figure 5-12 shows the output of using Johnson transformation.

The transformed data passes the Anderson–Darling normality test with flying colors

(p-value= 0.991). The identified distribution is of type SB, bounded, with the equation of

transformation function shown. The output shows normal probability plots for the original

and the transformed variables.

5-6 ANALYSIS OF COUNT DATA

Inmany quality improvement projects, the type of data available is of count or frequency type

rather than a physical measurement of a variable. An example could be the number of minor,

major, or fatal accidents in a chemical company. Here, we could be interested in testing a

hypothesis on the proportion of accidents of each type. A second application involves the

categorization of the count data by two or more categories. For example, we could have data

on the number ofminor, major, or fatal accidents categorized by the size of the company: say,

small, medium, or large. The objective is to test if the classification variables, type of accident

and size of company, are independent. Such a procedure is known as contingency tables

analysis.

Hypothesis Test on Cell Probabilities

Consider an extension of the binomial experiment,where each independent trialmay result in

one of k classes or cells. When k= 2, we have the binomial situation. Let pi, i= 1, 2, . . . , k,

denote the hypothesized probability of the outcome being in cell i. If the number of outcomes
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observed in cell i is denoted by ni, i= 1, 2, . . . , k, we have

n1 � n2 � ∙ ∙ ∙ � nk � n and p1 � p2 � ∙ ∙ ∙ � pk � 1

where n represents the total number of trials. This is known as amultinomial experiment.

The expected frequency in cell i is given by

E�ni� �  npi �5-6� 

Atest statistic is a function of the squared difference between the frequencies observed and

expected for each cell and is expressed as

k k �2�ni � E�ni��2 �ni � npiX2 � � �5-7� 
npiE�ni� i�1 i�1

It is known that when n is large, X2 has a chi-squared distribution with k� 1 degrees of

freedom. Thus, critical values may be found from Appendix A-5 for a chosen level of

significance (α). Large values ofX2 will lead to rejection of the null hypothesis, which makes

an assertion about the values of the cell probabilities. As a rule of thumb, for the chi-squared

approximation to hold, the expected frequency for each cell should be at least 5.

Example 5-8 A marketing company is attempting to determine consumer preference

among three brands of a product. Each customer is asked to indicate his or her preference

fromamong the three brands presented (A,B, andC). Following is the summarized frequency

response from 300 consumers:

Is there a brand preference? Test using α= 0.05.

Brand A B C

Frequency 70 140 90

Solution The hypotheses are:

H0 : pA � pB � pC � 1=3 �i:e:; no brand preference� 
Ha : At least one pi is different from 1=3

The test statistic is calculated as

�70 � 100�2 �140 � 100�2 �90 � 100�2
X2 � � � � 26

100 100 100

From thechi-squared tables, χ2 � 5:99.Since the test statistic exceeds5.99,we reject the0:05;2

null hypothesis and conclude that consumers have a brand preference for the product.

Contingency Tables

In contingency tables analysis, we test if the classification variables are independent of each

other, based on count data for each cell. Further, for categorical variables, measures of

association may also be found. For simplicity, we present our discussion for two-way tables,

even though the concepts extend to the more general situation.
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Let us define the following notation:

i: row number, i= 1, 2, . . ., r

j: column number, j= 1, 2, . . ., c

nij: observed frequency in cell (i, j)

E(nij): expected frequency in cell (i, j)

ri: row total for row i, i= 1, 2, . . ., r

cj: column total for column j, j= 1, 2, . . ., c
r c

n: total number of observations= j�1 niji�1
Under the null hypothesis of independence of the classification variables, the expected

frequencies are given by

ricj
E�nij� �  �5-8� 

n

The test statistic is derived as a function of the squared difference between the observed

and expected frequencies for each cell and is given by

r c �nij � E�nij��2
X2 � �5-9� 

E�nij� i�1 j�1

The test statistic, given by eq. (5-9), has approximately a chi-squared distribution with

degrees of freedom of (r� 1)(c� 1). As a rule of thumb, for the chi-squared approximation to

hold, the expected frequency should be at least 5 for each cell.

Example 5-9 A company in the hospitality industry owns hotels in six geographically

dispersed locations. Normally, on completion of a stay, the customer is asked to complete a

satisfaction survey,where the responses are on an ordinal scale (say, 1 – 5)with the following

implications: 1, poor; 2, below average; 3, above average; 4, good; 5, excellent. Table 5-6

shows the responses tallied for each cell. Can we conclude that the degree of customer

satisfaction is independent of the location of the facility? Use α= 0.05.

Solution Using Minitab, first create a worksheet with the following variables: Rating

(stands for the rating score labels), Location (representing the six locations), and

Frequency (indicating the count observed for the corresponding cell). Click on Stat>

Tables>Cross Tabulation and Chi-Square. Select the option Raw data (categorical

variables). In the window on Rows, input Rating; for Columns, input Location; for

Frequencies, input Frequency. Click on Chi-Square button, check Chi-squared test.

Under Statistics to display for each cell, select desired output, for example, Expected

cell counts. Click OK. The output from Minitab is shown in Figure 5-13. Note that for

TABLE 5-6 Customer Satisfaction Data in the Hospitality Industry

Location
Degree of

Satisfaction Rating 1 2 3 4 5 6

1 20 15 20 15 10 30

2 30 25 30 10 25 20

3 40 40 25 25 40 25

4 30 60 40 35 30 20

5 40 30 50 45 25 30
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FIGURE 5-13 Contingency table analysis of customer data in the hospitality industry.

each cell the observed and expected counts are displayed. The test statistic value is 61.515

with 20 degrees of freedom and a p-value of 0.000. Thus, we reject the null hypothesis of

independence of location versus degree of customer satisfaction. From the analysis we

conclude that degree of customer satisfaction is influenced by the location of the facility.

A follow-up analysis may involve determining the facilities that do not meet customer

expectations and identifying remedial measures.

Measures of Association

In contingency tables, measures of association between the categorical variables are based on

the values of the test statistic, X2, given by eq. (5-9). When X2
= 0, there is exact agree

ment between the cell frequencies observed and expected under the null hypothesis of

independence. As the values of X2 increase, they imply dependence between the categorical

variables.

One measure is the mean-squared contingency, given by

X2

Φ2 � �5-10� 
n

p The maximum value of X2 is n(q� 1), where q=min(r, c). So the maximum value ofΦ is

q � 1. For a 2× 2 table, Φ lies between 0 and 1.

Another measure is Cramer’s V, given by

X2

V � �5-11� 
n�q � 1� 

This measure lies between 0 and 1. If the calculated test statistic, X2, is significant, as

determined from the chi-squared test, each of the measures Φ and V will be considered as

significantly different from zero.
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5-7 ANALYSES OF CUSTOMER SATISFACTION DATA

Information on products and services from a customer perspective is often obtained through

questionnaires and surveys of relevant customers. As discussed in previous chapters, one of

our major goals is to improve customer satisfaction, which in turn has the ability to increase

market share. In this section we focus on the various types of analyses that may be conducted

on questionnaire data obtained from customers.While the general principles of such analyses

may apply to the manufacturing and service sector, we highlight our discussion to applica

tions in the field of health care for a variety of reasons. First, in the United States and other

countries, health care costs constitute a major segment of the gross domestic product, which

mandates a careful investigation of the quality of health care. Second, in the twenty-first

century, along with the aging population, it will continue to be a dominant sector of the

economy. Third, in theUnited States, spiraling costs in this sector demand critical attention to

measures that will reduce costs but not sacrifice the quality of health care.

Customer Needs and Their Level of Satisfaction

The field of health care is unique in the sense that a variety of customers exist. The primary

customer is the patient, whose concerns involve those dealingwith outcomes associated with

the treatment that the patient has undergone. A second category of needs may deal with the

delivery of the service, for example, the level of satisfaction in the various operational steps

that the patient has encountered. These could, for instance, be the level of satisfaction in the

interaction with the physician and hospital employees. Physicians could also be another

category of customers of the health care facility with their needs consisting of the availability

of adequate facilities and support staff, a reasonable schedule, and adequate compensation.

Support staff, such as nurses, constitute a third category of customers. Their needs may

encompass a desirable work schedule that does not force them to extended hours at night or

weekends. Hence, when customer satisfaction data are sought by the health care facility, it

may encompass patients, physicians, nurses, support staff, and laboratory technicians. In this

section, we focus on the primary customer—the patient.

As we have seen in a previous chapter, customer needs are not all of the same degree of

importance. The Kano model categorized customer needs into basic needs, performance

needs, and excitement needs. While satisfaction of basic needs may not improve customer

satisfaction, not satisfying them increases customer dissatisfaction. Excitement needs, not

usually identified from customer surveys, delight the customer if satisfied. Most customer

surveys dwell on the performance needs since the higher the degree of satisfaction of these

needs, the higher the level of customer satisfaction.

Typically, patient satisfaction survey forms are based on a five- or seven-point ordinal

scale, referred to as aLikert scale (Likert 1932). The items on the questionnaire may relate to

various categories associated with the exposure of the patient to different entities during the

period of treatment in a health care facility. The patient is usually asked to rate the level of

satisfaction on the particular item on an ordinal scale that may be represented as follows:

1� very dissatisfied; 2� dissatisfied; 3� neutral; 4� satisfied; and 5� very satisfied. A

seven-point Likert scale is formulated accordingly with seven ordinal levels. Table 5-7 lists

somepossible questions on apatient satisfaction survey form.While health care facilitiesmay

design their own questionnaires, based on their specific items of interest, several agencies

such as the National Committee for Quality Assurance (NCQA 2015) and the Center

for Medicare and Medicaid Services (CMS 2015) recommend using pre-developed
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TABLE 5-7

Items

Patient Satisfaction Survey Items

1 2

Rating

3 4 5

Facility related

1. Cleanliness of room

2. Bed and other furniture

3. Climate control

4. Noise level during night

5. Linen service

6. Ease of viewing TV

7. Taste and temperature of meals

Timeliness of operations

8. Waiting time at registration

9. Time to occupy bed

10. Waiting time prior to being seen by a physician

11. Timeliness of nurse visits

12. Waiting time to be checked out

Service nonconformities

13. Errors in billing statements

14. Incorrect medication

15. Untimely medication

16. Pain management

Behavioral characteristics

17. Responsiveness of physicians

18. Empathy of physician

19. Physician communication clarity

20. Friendliness of staff

21. Patience of staff

22. Cheerfulness of staff

questionnaires based on the type of patient (diagnosis-related category) and the type of

subunit (such as the emergency department) in the health care facility onwhich information is

to be collected. One such source of questionnaires is the Press-Ganey Survey form available

through Press-Ganey Associates, Inc. (2015).

The sample patient satisfaction survey form shown inTable 5-7 or the standardized patient

satisfaction forms developed by Press-Ganey Associates or the Myers Group (2015) or the

National Research Corporation (2015) are usually administered to patients only to obtain

some feedback on their level of satisfaction during their stay at the health care facility. We

believe that, while feedback on patient satisfaction is important, a critical component on

feedback from patients is missing in order to assist management in making strategic and

operational decisions. This is linked to the importance that the patient assigns to the various
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items in the survey. Obviously, not all items are of equal importance to the patient. Following

the concept of theKanomodel, dealingwith the items that are of high importance to the patient

will result in higher achieved levels of satisfaction. For senior andmiddle management of the

health care organization, the combined information onwhich items are of high importance as

well as which items are perceived to be of high satisfaction will be valuable in creating a

strategic plan. This, we believe, is currently lacking.

In order to obtain such joint information on the importance as well as the perceived level

of satisfaction for each item in the survey, using, for example, the same items as shown in

Table 5-7, the following is desirable: For each item, the patient could be asked to rank, on an

ordinal scale, the importance of each item. A five-point Likert scale, as before, could be used

with the followingnomenclature: 1� not important at all; 2� not quite important; 3� neutral;

4� quite important; and 5� very important. From the completed surveys, for each item or

question, two scores may now be obtained: the median score on the perceived level of

satisfaction for that item and the median score on the importance of that item. Now, based on

the overallmedian score of all items,wemaypartition the perceived level of satisfaction of the

items into two groups, low and high, based onwhether themedian score of the particular item

falls below or above the overall median score of all items, respectively. A similar partitioning

schememaybe adopted for the perceived importance of the items. For each item, its perceived

importance is categorized into two groups, low and high, depending on whether its median

score is below or above the overall median score on the importance of all items, respectively.

Such a two-way classification of each item, based on its perceived importance and its

perceived level of satisfaction, will assist management in determining the areas to focus on as

it strives to improve customer satisfaction.

Figure 5-14 demonstrates a categorization scheme of questionnaire items from a survey

based on importance and the perceived level of satisfaction. Each item, using summary data,

will fall in one of the four depicted quadrants. Depending on this outcome, management will

have to decide where to direct its focus and identify possible areas of resource allocation. The

items that are in the quadrant labeled asKey vulnerability are of high importance to customers

but the current perceived level of satisfaction is low. Immediate attention is needed to improve

FIGURE 5-14 Aggregate analysis of survey items.
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the level of satisfaction in these areas. If not addressed, it may result in a loss of market share.

For the items that are in the Potential vulnerability quadrant, both the importance and the

perceived level of satisfaction are low. Management should strive to identify root causes

associated with low levels of operational performance and thereby adopt some remedial

action plans. The items that are placed in the Strategic advantage quadrant are both of high

importance and of high perceived level of satisfaction. Hence, the current focus of the health

care facility is in the right direction and superior performance levels may increase market

share. Management should continue to monitor customer feedback in order to determine

changes in customer preferences and take appropriate action promptly, if necessary. Items in

the quadrant labeled as Potential advantage are considered by the customers to be of low

importance but the perceived level of satisfaction is high. The health care facility is doingwell

in maintaining a high level of satisfaction on items, which may contribute to a potential

advantage. Continual customer feedback is necessary to determine changes in customer

preferences.

Example 5-10 Consider the 22 listed items on a patient satisfaction survey shown in

Table 5-7. Patients were asked to rate their level of satisfaction, on each item, on a five-point

Likert scale as shown. Additionally, patients were also asked to rate the importance of each item

on a five-point Likert scale, ranging from 1 to 5, using the previously defined nomenclature:

1� not important at all to 5� very important. The median rating score for each of the 22 items,

for both perceived satisfaction and importance, are shown in Table 5-8. Conduct an overall

analysis for management to decide on strategic plans for quality improvement.

Solution Using the reported median scores on satisfaction rating for all 22 items, the overall

median of these median scores is 3.75. Similarly, using the reported median scores on the

importance rating for all 22 items, the overall median of these median scores is 4.0. These two

values somewhat define our boundaries for categorizing satisfaction scores into the two levels of

low and high, as well as the importance scores into the two levels, low and high. Figure 5-15

shows a classification of the survey items based on perceived satisfaction and importance.

First, let us consider the items that create a strategic advantage for the organization. Items,

1, 14, 15, 16, 17, 18, and 19 fall in this quadrant. Note that most of the items are from the

categories of service nonconformities and behavioral characteristics. Patients believe that it is

very important to not administer incorrect medication and/or administer in an untimely

fashion. Pain management is quite important too. Currently, patients are very satisfied with

the physician and nurses in meeting these needs. Behavioral traits such as responsiveness,

empathy, and communication clarity of the physician are considered very important and the

patients are very satisfied with the physician in their experiences. The only facility-related

item that is very important is cleanliness of the room and the health care facility is currently

doing an excellent job in meeting patient needs. All of these are current strengths of the

organization. Patientwordofmouth on these items could help in attracting newcustomers and

increase market share.

TABLE 5-8 Median Patient Satisfaction and Importance Rating Scores for Survey Items

Item Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Median satisfaction 4 2 4 5 3 2 3 4.5 4.5 2 1.5 2 2 5 4.5 4 4.5 4 4.5 3.5 3 3

rating

Median importance 5 3 3 3 2 2 5 3 3 4.5 4.5 4 4 5 5 4.5 5 5 4.5 4 4 4

rating
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FIGURE 5-15 Classification of survey items based on satisfaction and importance.

Next, let us look at areas of key vulnerability. Items 7, 10, 11, 12, 13, 20, 21, and 22 fall in

this quadrant.Manyof these are from the categories of timeliness of operations andbehavioral

characteristics. Taste and temperature of meals from the facility-related category as well as

billing errors from the service nonconformity category are considered very important too.The

health care facility is failing tomeet the expectations of the patient for these items. Since three

of the itemsdealwith the timeliness of operations concerning longwaiting timesprior to being

seen by a physician, untimely nurse visits, and long waiting times to be checked out,

management could perhaps considerways of streamlining these processes. If the longwaiting

times for a physician couldbe solved throughabetter scheduling system, it could be anoption.

On the other hand, if this is due to a shortage of physicians on duty, a different approach that

increases the pool of available physicians would need to be pursued. It is important for

management to address these critical issues urgently since, if not dealt with, dissatisfied

patients could go elsewhere, leading to a loss in market share.

Now, let us consider the areas of potential advantage. Items 3, 4, 8, and 9 fall in this

quadrant. On climate control and noise level during the night, even though not considered

very important by the patient, the facility is providing a high level of satisfaction. Similarly,

for the items waiting time at registration and time to occupy bed, the service provided by the

facility is very satisfactory to the patient even though not considered very important.

Maintaining the current achievement levels of these items could be an avenue that provides

a potential advantage relative to competitors. Note that while patients do not consider long

waiting time at registration or for being placed at a bed very important, an area where the

facility is doing quite well, they do consider waiting time prior to being seen by a physician,

timely nurse visits, and processing time to check out as very important. The facility presently

is not doing a great job in the latter areas.

Finally, let us explore the areas of potential vulnerability. Items 2, 5, and 6 fall in this

quadrant. All of these items are from the facility-related category. Bed, linen service, and ease

of viewing television are not considered very important, relatively speaking, and the facility is
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not currently providing outstanding service in these areas as well. Since they are all facility

related rather than related to the behavioral traits of the physician, nurse, or support staff, it

might be easier for management to come up with remedial action plans. Providing a better

mattress support or a faster/convenient linen change schedule and adjusting the location of the

television are issues for which feasible solutions are more readily identifiable.

Displaying Survey Results

Visualization is an effective means of displaying a summary of the results from a survey

(Robbins and Heiberger 2011). This pertains to the perceived level of satisfaction for an item

or the perceived importance of that item. For each item on the questionnaire, suppose that

patient satisfaction is rated on a five-point ordinal Likert scale with the following nomencla

ture: 1� very dissatisfied; 2� dissatisfied; 3� neutral; 4� satisfied; and 5� very satisfied.

One form of summarization could be to find the median score for each item. A display of the

median scores would indicate the relative degree of satisfaction with the particular item as

posed in the question. Higher values of the median score would represent a higher level of

satisfaction. Similarly, for the perceived importance of the item, a median score could be

found from the responses, where a five-point ordinal Likert scale could have been used with

the following nomenclature: 1� not important at all; 2� not quite important; 3� neutral;

4� quite important; and 5� very important. Higher values of the median score would

represent a higher level of importance for the particular item.

Stacked Bar Charts Sometimes, a little more information beyond the reporting of just the

median associatedwith an item is of interest.A stackedbar charthas the ability to display the

proportion of responses in each category, for example, “Very satisfied,” “Satisfied,” and so

on, for each item in the questionnaire. Such a visual depiction conveys the relative levels of

satisfaction, whether strong or weak, for each item. It may also be used to display the relative

levels of importance as summarized by the various categories for each item as well.

Example 5-11 Consider the first seven facility-related items in a questionnaire as shown

in Table 5-7. A summary of the responses for each item, by the rating category, is shown in

Table 5-9 based on a total of 100 responses. Create a stacked bar chart and discuss patient

satisfaction on the related items.

Solution The data in Table 5-9 is input into a Minitab worksheet by using two categorical

variables, say Items andRating categories. Under Items, the abbreviated form of the questions

TABLE 5-9 Patient Satisfaction Data on Facility-Related Items

Rating

Items 1 2 3 4 5

Facility related

1. Cleanliness of room 5 5 10 70 10

2. Bed and other furniture 0 5 5 60 30

3. Climate control 10 10 20 50 10

4. Noise level during night 10 20 10 60 0

5. Linen service 0 10 10 60 20

6. Ease of viewing TV 0 10 20 40 30

7. Taste and temperature of meals 15 20 15 40 10
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FIGURE 5-16 Stacked bar chart of patient satisfaction data on facility-related items.

are listed, while under Rating categories, labels such as “1. Very dissatisfied” and “2.

Dissatisfied” are input. For each combination of these two categorical variables, the percentage

of responses is input as a quantitative variable named Percentage. Click on Graph>Bar

Chart. In the window, under the options for Bars represent, select Values from a table and

then select Stack and clickOK. In the window, underGraph variables input Percentage, and

under categorical variables, list the outermost first, in this case Items, and then list Rating

categories. This is because we are categorizing each item into the five rating categories and

showing the percentage in each. ClickOK. Figure 5-16 shows the stacked bar chart on patient

satisfaction data. For each item, the percentage of responses in the various rating categories are

depicted. If we were to aggregate the top two rating levels of satisfaction, that is, rating levels 4

and 5, as ameasure of the relative proportion of satisfiedpatients, the satisfaction level of the item

“Bed and other furniture” is the highest followed by the items “Cleanliness of room” and “Linen

service.” The latter two items are tied at an aggregate satisfaction level of 80% each. Since the

items on a patient satisfaction survey are usually of the type that are classified as meeting

performance needs, as based on the Kano model, reducing levels of poor performance will

typically cause satisfaction levels to increase. In this example, if we consider the aggregate of the

two categories of dissatisfaction, that is, rating levels 1 and 2, as an overall measure of

dissatisfaction, the items listed as “Taste and temperature of meals” followed by “Noise level

duringnight”woulddemand attention.Management should identify remedialmeasures for these

items in order to improve overall patient satisfaction.

Run Chart of Time Series Data Patient satisfaction data are often collected from

questionnaires that are administered over time. In this situation, the health care facility

may be interested in identifying trends, if any, in the performance levels of the various items

over time. For example, on an annual basis, datamay be aggregated on each item dealingwith

the timeliness of operations, as indicatedby items8–12 inTable 5-7. So, for itemson “Waiting
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time at registration,” aggregating the data over the year using the rating scales, the median

rating would be obtained. Such a median rating for that item would then be plotted utilizing

annual data using a run chart over time. Plotting of the run chart has been previously described

in this chapter. This run chart could then be used to identify specific trends or patterns, if any.

In the quest for quality improvement, the run chart provides a visual means of comparing

performance of an item over a period of time.

Analysis of Survey Results

Thedesired type of inquirywill influence the selection of the appropriate statistical technique.

Since survey data using questionnaires is a form of count data, methods of analysis of count

data described previously in the chaptermay apply. For a given period, count in this casemay

refer to the number of people who responded to a given rating category.

Comparison of Rating Proportions for an Item Suppose that for the items in a survey a

five-point ordinal Likert scale rating system is used with the nomenclature as defined

previously. It may be of interest to test beliefs, based on prior observations or studies, on

the proportion of customers who subscribe to each rating category, that is, who are “very

satisfied” or “satisfied” or “neutral” or “dissatisfied” or “very dissatisfied” about the issue

pertaining to that item. A chi-squared goodness of fit test may be appropriate in this situation.

Example 5-12 Consider item 7, related to “taste and temperature ofmeals,” in Table 5-7 and

the associated summarized response in Table 5-9. Assume the rating categories are labeled 1–

5, with the same definition as previously presented: 1� very dissatisfied to 5� very satisfied.

Let pi represent the proportion of customers who assign a rating of i, according to manage

ment’s prior belief. If management believes that all customers are equally likely to choose any

of the rating categories, the null and alternative hypothesis would be

1
H0 : p1 � p2 � p3 � p4 � p5 � 5

1
Ha : At least one pi is different from 5

Rather than assign equal probabilities to each category, management may have a different

set of beliefs. Based on the quality of their meal service, they may believe that only 5% of the

customerswill be very dissatisfied and another 5%will be dissatisfied. Furthermore, theymay

believe that 10%will be “neutral,” 60%will be “satisfied,” and 20%will be “very satisfied.”

The null and alternative hypothesis in this context are

H0 : p1 � 0:05; p2 � 0:05; p3 � 0:10; p4 � 0:60; p5 � 0:20
Ha : At least one pi is different from the specified value

The observed frequencies of customers who responded in each category are shown in

Table 5-9. The expected frequencies, under the assumption of the null hypothesis being true,

are given by eq. 5-6 and are as follows:

E1 � 100�0:05� � 5; E2 � 100�0:05� � 5; E3 � 100�0:10� � 10

E4 � 100�0:6� � 60; E5 � 100�0:2� � 20

The chi-squared test statistic, given by eq. 5-7, is obtained as

2 2 2 2 2�15 � 5� �20 � 5� �15 � 10� �40 � 60� �10 � 20�
χ2 � � � � � � 79:17

5 5 10 60 20
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The critical value of χ2 with four degrees of freedom and a chosen level of significance of

0.05, say, is χ2 � 9:49. Since the test statistic exceeds 9.49, we reject the null hypothesis0:05;4

and conclude that this evidence does not support management’s belief on the proportion of

customers in their relative degree of satisfaction with meals.

Comparison of Rating Proportions in Two Categories or Time Lines Sometimes, rather

than compare the rating proportions in all categories, as in the previous example, one may be

interested in comparing the proportions in two chosen categories. For example, for the item

concerning the taste and temperature of meals, we may want to determine if there is a

significant difference between the proportions of customers who are satisfied and those who

are very satisfied. The null and alternative hypotheses are

H0 : p4 � p5; Ha : p4 ≠ p5

For large sample sizes, the z-test for comparing two proportions as described in Chapter 4

may be used. The test statistic is given by eq. (4-79). Alternatively, we may want to know if

there is a significant difference between the proportion of customerswho are satisfiedwith the

meal service in two consecutive years. This will enable management to gauge the impact of

any remedial actions they took to improve the quality of meal service.

Example 5-13 Refer to thepatient satisfactiondata inTable5-9on facility-related items,which

summarizedthedata for thepastyear.Focusingonitem7,dealingwith the tasteandtemperatureof

meals, in order to improve patient satisfaction, management has decided to take some remedial

actions. Theyhavehired a newchef andhave also takenmeasures to speed up the delivery time in

gettingmeals from thekitchen to thevariouswards.Summarydata for the current year yielded the

following numbers in each rating category, based on a total of 200 responses: rating 1–10; rating

2–10;rating3–5;rating4–150;rating5–25.Determineif therehasbeenasignificant increaseinthe

proportion of patients who are satisfied from the past year to the current year.

Solution Let us denote p41 and p42 to be the proportion of patients in the “satisfied” rating

category in year 1 (past year) and year 2 (current year), respectively. The null and alternative

hypothesis are

H0 : p41 � p42; Ha : p41 < p42

We have ^ � 40=100 � 0:4; ^ � 150=200 � 0:75. The pooled estimate is given byp41 p42

100�0:4� �  200�0:75� 
p̂ � 

100 � 200
� 0:633

The test statistic is computed as

z0 � �0:633��
p 0:40 � 0:75

0:367��1=100 � 1=200� � �5:929

Using a chosen level of significance (α) of 0.05, the critical value from the standard normal

distribution table is z0.05 =�1.645, we reject the null hypothesis and conclude that, based on
the evidence, a significant improvement has taken place.

Analysis of Association Between Ratings in Customer Satisfaction and Importance It

may be desirable, sometimes, to determine the degree of association between the ratings

assigned to customer satisfaction for a chosen item and the ratings assigned to the importance

of the item. Hence, we have data classified according to two categorical variables. The null

hypothesis assumes that the ratings assigned to each category are independent of each other.
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TABLE 5-10 Patient Satisfaction and Importance Rating for Meals

Importance Rating

Satisfaction Rating 1 2 3 4 5

1 5 10 5 14 6

2 6 8 6 30 10

3 4 7 5 16 8

4 8 8 10 64 30

5 6 5 8 55 6

The analysis utilizes the approach previously demonstrated for a two-way contingency table.

Under the null hypothesis of independence of the categorical variables of rating in satisfaction

and rating in importance, the expected frequencies are givenby eq. (5-8) and the test statistic is

given by eq. (5-9). The critical value of the chi-squared statistic is found for a chosen level of

significance and degrees of freedomgiven by (r� 1) (c� 1),where r represents the number of

categories for one of the categorical variables and c represents the number of categories for the

second categorical value. For the situation where customer satisfaction and item importance

are each rated on a five-point scale, we have r= 5 and c= 5.

Example 5-14 Table 5-10 shows summary data on perceived patient satisfaction and

importance of the questionnaire item “taste and temperature ofmeals.”Perceived satisfaction

ratings were on a Likert scale from 1 to 5, while importance of the item was also rated on a

Likert scale from 1 to 5. These rating scales conform to the prior nomenclature. Determine if

the categorical variables “Satisfaction Rating” and “Importance Rating” are independent

using a level of significance of 5%.

Solution The summary data are input to aMinitab worksheet where the columns, with the

numerical count totals, are labeled as Importance-1 to Importance-5, respectively. Labels

for the rows are in a column listed as Satisfaction Rating. The corresponding levels for

Satisfaction Rating are listed as Rating-1 to Rating-5. Using the Minitab commands

Stat>Tables>Cross-Tabulation and Chi-Square, in the displayed window, we select

Summarized data in a two-way table. In the window for columns containing the table, we

list Importance-1 to Importance-5. In the window on labels for the table, for Rows, we

specify Satisfaction Rating. The chi-squared test is selected.

Thevalue of the test statistic, givenbyeq. (5-9), is reported byMinitab to be 31.128with 16

degrees of freedom and a p-value = 0.013. Note that there are six cells that have expected

frequency counts of less than 5, theminimum that is preferred for this test. The critical value of

χ2 is obtained asχ2 � 26:30.Since the test statistic exceeds the critical value,we reject the0:05;16

null hypothesis and conclude that the evidence suggests that the ratings assigned to the

satisfaction category are not necessarily independent of the ratings assigned to the importance

category and vice versa.

5-8 CONCEPTS IN SAMPLING

In quality control it is often not feasible, due to a lack of time and resources, to obtain data

regarding a certain quality characteristic for each item in a population. Furthermore, sample

data provide adequate information about a product or process characteristic at a fraction of the

cost. It is therefore important to know how samples are selected and the properties of various

sampling procedures.
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A sampling design is a description of the procedure bywhich the observations in a sample

are to be chosen. It does not necessarily deal with the measuring instrument to be used. For

example, a sampling design might specify choosing every tenth item produced.

In the context of sampling, an element is an object (or group of objects) for which data or

information are gathered. A sampling unit is an individual element or a collection of

nonoverlapping elements from a population. A sampling frame is a list of all sampling units.

For example, if our interest is confined to a set of parts produced in themonthof July (sampling

element), the sampling unit could be an individual part, while the sampling framewould be a

list of the part numbers of all the items produced.

Sampling Designs and Schemes

Amajor objective of any sampling design or scheme is to select the sample in such away as to

accurately portray the population fromwhich it is drawn.After all, a sample is supposed to be

representative of the population.

Sampling in general has certain advantages. If the measurement requires destroying the

item being measured (destructive testing), we cannot afford to obtain data from each item in

the population. Also, in measurements involving manual methods or high production rates,

inspector fatigue may result, which would yield inaccurate data.

Errors in Sampling There are three sources of errors in sample surveys. The first source is

random variation. The inherent nature of sampling variability causes such errors to occur.

The more sophisticated the measuring instrument, the lower the random variation.

Misspecification of the population is a second source of error. This type of error occurs in

public opinion polling, in obtaining responses regarding consumer satisfaction with a

product, in listing a sampling frame incorrectly, and so on.

Thethirdsourceoferrordealswithnonresponses (usually insamplesurveys).Thiscategory

also includes situations where a measurement is not feasible due to an inoperative measuring

instrument, a shortageof people responsible for taking themeasurement, or other such reasons.

Simple Random Sample One of the most widely used sampling designs in quality control

is the simple random sample. Suppose that we have afinite population ofN items fromwhich

a sample of n items is to be selected. If samples are chosen such that each possible sample of

sizenhas an equal chance of being selected, the sampling process is said to be random, and the

sample obtained is known as a simple random sample.

Random number tables (or computer-generated uniform random numbers) can be used to

draw a simple random sample. For example, if there are 1000 elements in the population, the

three-digit numbers 000–999 are used to identify each element. To start, a random number is

selected; one element corresponds to this number. This selection continues until the desired

sample of size n is chosen. If a random number that has already been used comes up, it is

ignored and another one is chosen.

In estimating the population mean (μ) by the sample mean �X�, the conclusions from the

central limit theorem, discussed in Chapter 4, are used to describe the precision of the

estimator. The precision is the inverse of the sampling variance and is estimated by

2s N � n2σ̂�x � �5-12� 
n N

where s2 represents the sample variance. The term (N� n)/N is known as the finite population
2 2

correction factor. If N is very large compared to n, the expression for σ̂ is s /n.�x
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Stratified Random Sample Sometimes the population from which samples are selected is

heterogeneous. For instance, consider the output from two operators who are known to differ

greatly in their performance. Rather than randomly selecting a sample from their combined

output, a random sample is selected from the output of each operator. In this way both

operators are fairly represented, sowe can determinewhether there are significant differences

between them. Another applicationmay deal with estimation of the average response time of

emergency services, such as ambulances in a city.Given the traffic density in different parts of

the city, location of the ambulance centers, and/or locationof hospitals, it could bemeaningful

to divide the city into certain segments or strata. Then, random samples could be chosen from

each stratum for the purpose of estimation. Thus, a stratified random sample is obtained by

separating the elements of the population into nonoverlapping distinct groups (called strata)

and then selecting a simple random sample from each stratum.

When the variance of the observations within a stratum is smaller than the overall

population variance, stratified sampling may yield a variance of the estimator that is smaller

than that found from a simple randomsample of the same size.Another advantage of stratified

sampling is that the cost of collectingdata couldbe reduced.Throughproper selectionof strata

such that elementswithin a stratumare homogeneous, smaller samples could be selected from

strata where unit costs of sampling are higher. Finally, through stratified sampling, it is

possible to obtain parameter estimates for each stratum, which is of importance in heteroge

neous populations.

We consider a common scheme of proportional allocation where the sample size is

partitioned among the strata in the same proportion as the size of the strata to the population.

Let Ni, i= 1, 2, . . ., k, represent the size of the k strata in the population of size N, where
k

N � Ni. If the sample size is represented by n, the size from each strata usingi�1
proportional allocation is given by

Ni
ni � n ; i � 1; 2; . . .; k �5-13� 

N

Estimates of the mean and variance of each stratum are

xij
� j�1xi� ni �5-14� 

2�xij � �xi�
j�12s � ; i � 1; 2; . . .; ki ni � 1

ni

ni

Further, the estimate of the population mean and the variance of the estimator, for a

stratified proportional sample, are given by

1 k

�xst � Ni�xi
N

i�1 �5-15� 
21 k
sNi � ni iN2Var ��xst� �  ; i � 1; 2; . . .; ki

N2 Ni nii�1
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Cluster Sample In the event that a sampling frame is not available or if obtaining samples

from all segments of the population is not feasible for geographic reasons, a cluster sample

can be used. Here, the population is first divided into groups of elements, or clusters. Clusters

are randomly selected, and a census of data is obtained (i.e., all of the elements within the

chosen clusters are examined). If a company has plants throughout the southeastern United

States, it may not be feasible to sample from each plant. Clusters are then defined (say, one

for each plant), and some of the clusters are then randomly chosen (say, three of the five

clusters). A census of data is then obtained for each selected cluster. Cluster sampling is less

costly, relative to a simple or stratified random sampling, if the cost of obtaining a framewith a

listing of all population elements is high. Also, if the cost of obtaining observations increases

with the distance separating the elements (i.e., travel cost), cluster samplingmay be preferred.

Sampling error may be reduced by choosing many small clusters rather than a few large

clusters, sincewe reduce the probability of excluding certain groups of elements. LetM andm

denote the number of clusters in the population and the number of sampled clusters,

respectively, with ni representing the size of the ith cluster. Let ti represent the total of the

measurements in cluster i, (i.e., ti � jxij). The estimate of the population mean and the

variance of the estimator, using cluster sampling, is given by

m

ti

�xcl � i�1
m

ni �5-16�i�1
m

2�ti � �xclni�
M � m i�1

Var ��xcl� �  
Mmn�2 m � 1

m
where �n � 1 ni=m.i�

Sample Size Determination

The size of a sample has a direct impact on the reliability of the information provided by the

data. The larger the sample size, themore valuable the data. It is usually of interest to know the

minimum sample size that can be used to estimate an unknown product or process parameter

accurately under certain acceptable levels of tolerance. Here, we focus on simple random

samples.

Bound on the Error of Estimation and Associated Confidence Level

Estimating the Population Mean Suppose that the mean of a product or process

characteristic is of interest (e.g., the mean time to process a transaction in a marketing

firm). There is a (1� α) probability that the difference between the estimated value and

the actual value will be no greater than some number B. Figure 5-17 shows the principle

behind selecting an appropriate sample size for estimating the populationmean. The quantity

B, sometimes referred to as the tolerable error bound, is given by

σ
B � zα=2σ�x � zα=2 p �5-17� 

n
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FIGURE 5-17 Sample size determination for estimating the population mean μ.

or
2 σ2z

B2

2α=� �5-18n �

An analyst wishes to estimate the average bore size of a large casting. BasedExample 5-15

on historical data, it is estimated that the standard deviation of the bore size is 4.2mm. If it is

desired to estimate with a probability of 0.95 the average bore size to within 0.8mm, nd thefi

^

appropriate sample size.

σSolution We have 4.2, B= 0.8, and z0.025= 1.96. Thus,=

�1:96�2�4:2�2
sample size n � � 105:88 ' 106�0:8�2

Estimating the Population Proportion Consider a binomial population where the

objective is to estimate the proportion of “successes” (p). Examples might include

estimating the proportion of nonconforming stamped parts in a press shop or

the proportion of unsatisfied customers in a restaurant. Here, again, we must select a

tolerable error bound B such that that estimate will have a probability of (1� α) of being

within B units of the parameter value. We use the concept of the sampling distribution of the

sampleproportionof successes (

^

p̂),which is approximatelynormal for largesample sizes.The

equation for determining the sample size n is given by

p�1 � p� 
pB � zα=2σ � zα=2 �5-19� 

n

or

2z p�1 � p� 
n � α=2 �5-20� 

B2
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Since the true parameter value p is not known, there are a couple ofways inwhich eq. (5-20)

can bemodified. First, if a historical estimate of p is available (say, p̂), it can be used in place of

p. Second, if no prior information is available, a conservative estimate of n canbe calculated by

using p= 0.5. Using p= 0.5 maximizes the value of p(1� p) and hence produces a conserva

tive estimate.

Example 5-16 In the production of rubber tubes, the tube stockfirst has to be cut into a piece

of a specified length. This piece is then formed into a circular shape and joined using pressure

and the correct temperature. The operator training and such process parameters as tempera

ture, pressure, and die size influence the production of conforming tubes.Wewant to estimate

with a probability of 0.90 the proportion of nonconforming tubes to within 4%. How large a

sample should be chosen if no prior information is available on the process?

Solution Using the preceding notation, B= 0.04. From Appendix A-3, z0.05= 1.645.

Since no information on p, the proportion of nonconforming tubes, is available, use p= 0.5.

Hence,

�1:645�2�0:5��0:5� 
n � � 422:8 ' 423�0:04�2

If a prior estimate of p had been available, it would have reduced the required sample size.

Estimating the Difference of Two Population Means

Suppose that our interest is to estimate the difference in themean project completion time in a

consulting firm before (μ1) and after (μ2) some process improvement changes. The estimator

is the difference in the sample means, �x1 � �x2. We have

σ2 σ21 � 2B � zα=2
n1 n2

where σ2 and σ2 represent the population variances, respectively, before and after changes,1 2

andn1 andn2 represent the corresponding sample sizes.Under the assumptionof equal sample

sizes (n1= n2= n), we have

z2 �σ2 � σ2�
α=2 1 2

n � �5-21� 
B2

Estimating the Difference of Two Population Proportions

Acompanywishes to estimate the difference in the proportion of satisfied customers between

its two branch offices. If the proportion of successes in each population is defined as p1 and p2,

respectively, then for large samples, we have

p1�1 � p1� p2�1 � p2� B � zα=2 � 
n1 n2
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where n1 and n2 represent the corresponding sample sizes from each population. Under the

assumption of equal sample sizes (n1= n2= n), we have

2z �p1�1 � p1� �  p2�1 � p2�� 
n � α=2 �5-22� 

B2

When historical estimates of p1 and p2 are available, those estimates, p̂1 and p̂2, are used in

eq. (5-22). Alternatively, with no prior information, using p1= 0.5 and p2= 0.5will provide a

conservative estimate.

Controlling the Type I Error, Type II Error, and Associated Parameter Shift

In the previous discussion on calculating sample sizes, we were interested in controlling the

error bound (B) and the associated confidence level (1� α). Recall that in the hypothesis-

testing context, the type I error (rejecting a null that is true) is represented byα. Now suppose

that we are also interested in controlling the probability of a type II error (not rejecting

the null when it is false), β, associated with a shift (δ) in the parameter value. How large a

samplemust be chosen tomeet these tolerable conditions? Sometimes, instead of β, the power

of the test (1� β) may be indicated.

Let us demonstrate the derivation concept in the context of estimating the populationmean

(μ): say, the mean delivery time of packages by a company. Due to an anticipated increase in

volume, we would like to determine if the mean delivery time exceeds a hypothesized value

(μ0). If the mean does increase by an amount δ, we would like to detect such with a power

given by (1� β). The hypotheses being tested are: H0: μ� μ0; Ha: μ> μ0. The critical value

and the associated type I and II errors, considering the sampling distribution of X� when σ is

known, are shown in Figure 5-18.

Using the distribution under H0, when μ= μ0, the critical value (CV) is obtained as

σ
CV � μ0 � z1�α p �5-23� 

n

FIGURE 5-18 Sampling distribution of X� under H0 and Ha.
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where z1�α is the (1� α)th quantile of the standard normal distribution. Under Ha, when

μ= μ1= μ0+ δ, the critical value is given by

σ
CV � μ1 � z1�β p �5-24� 

n

Equating eqs. (5-23) and (5-24), we obtain the sample size as

�z1�α � z1�β�2σ2
n � �5-25� 

δ2

When we have a two-tailed hypothesis test of the type H0: μ= μ0 versus Ha: μ�6 μ0, a
slightmodificationof eq. (5-23) is necessary. In this case, the rejection region is onboth tails of

the null distribution, with the area on each tail being α/2. So, in computing the necessary

sample size, replace z1�α with z1�α/2 in eq. (5-25).

A similar approach may be conducted for determining the sample size when the parameter

of interest is the difference in the means of two populations, proportion of successes in a bino

mial population, or difference in the proportion of successes of two binomial populations.

Minitab has an attractive feature in determination of sample sizes under a variety of

parameter testing situations in itsPower and Sample Size option. Information is input on the

given level of the type I error (α), specification of the form of Ha (not equal to, less than, or

greater than), and an estimate of the population standard deviation (σ). Minitab then outputs

the sample size, power, or degree of difference that one wishes to detect (δ) when any two of

the three quantities are specified.

Example 5-17 A company is interested in determining whether a product advertising

campaign that has been used in one geographical region has had a positive impact. It

wishes to detect an increase in average sales per customer of $50 with a probability of

0.98. The tolerable level of a type I error is 0.05. Assuming that the estimate of the

standard deviation of sales per customer is $70 in both the region where the campaign was

used and elsewhere, how large a sample must be chosen from each region? Assume equal

sample sizes.

Solution The hypotheses areH0: μ1� μ2� 0;Ha: μ1� μ2> 0, where μ1 and μ2 represent

mean sales per customer in the regionwhere the advertising campaignwas used and not used,

respectively.Also, σ̂1 � σ̂2 � 70,withα= 0.05 andpower= 0.98whenδ (difference inmean

sales)= 50. Using Minitab, click on Stat>Power and Sample Size> 2- Sample t. Under

Difference, input 50; under Power Values, input 0.98; under Standard deviation, input 70.

Click on Options. For Alternative Hypothesis, select greater than and input significance

level as 0.05.ClickOK. The output fromMinitab indicates that the sample size for each group

should be 55.

SUMMARY

In this chapter we present some analytical and graphical tools for describing populations and

making inferences on their parameters. Using observed values of the quality characteristic,

empirical distribution plots such as frequency histograms, stem-and-leaf plots, and box plots

are methods for displaying distributional features. Such plots indicate the location and shape
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of the empirical distribution,whether they are skewed, and the degree of variability. They can

also be used to identify any outliers.

A test for indicating the randomness of a sequence of observations, usually in time, is

discussed through a run chart. Since many parametric tests require assumptions on the

distribution of the quality characteristic, typically normality, methods for testing such

assumptions are presented. To justify the use of certain statistical inferential procedures

when the distribution of the characteristic is nonnormal, certain transformations that are

useful in achieving normality are exhibited. The use of power transformations and a family of

transformations known as the Johnson family are discussed.

Inmany quality improvement analyses, the data that are collectedmay not be quantitative.

For example, in consumer surveys, product preferencemay beobserved in terms of frequency

or count data. Ordinal rating scalesmay also be used for survey data. Using stacked bar charts

as a formof visualization is presented. Run charts could also be used to visualize performance

of a selected item over a period of time. Determining the degree of association between two

categorical variables, say satisfaction rating and importance rating, is also discussed. A

methodology is presented, utilizing such information, for management to select strategic and

operational plans.Methodsof analysis of count data are alsopresented.When classificationof

the observations is through two or more categorical variables, contingency table analysis is

used to test independence of the classification variables.

An important issue in product/process analysis involves determining how the sampling

procedure is to be conducted. In this context, methods such as simple random sampling,

stratified sampling, and cluster sampling are addressed. A follow-up issue is the size of the

sample to select, based on certain tolerable levels of risk. For the case of simple random

samples, expressions are derived for the appropriate sample size invarious inferential contexts.

Thus, the chapter provides a good exposure to how much data should be collected, how to

collect it, and how to analyze it to make inferences on product and process characteristics.

KEY TERMS

Anderson–Darling test distribution

association measures histogram

box plot interquartile range

notched kurtosis

chi-squared test Likert scale

clustering mean-squared contingency
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cumulative distribution function nonresponse
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outlierdistribution
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powererror bound
precisionexponential probability plot
probability plottingfrequency
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EXERCISES

Discussion Questions

5-1 Explain some specific parametric tests that require the distributional assumption of

normality. What do you do if the assumption is not satisfied?

5-2 A county wishes to estimate the average income of people, where it is known that

income levels vary quite a bit among the residents in sections of the county.What type

of sampling scheme should be used?

5-3 Data from a survey of customers are on an ordinal scale (1–7) regarding satisfaction

with the services provided in a bank by three tellers. If we wish to determine if the

degree of customer satisfaction is independent of the teller, what statistical test should

be used?

5-4 A financial institution is contemplating the offering of three different types of savings

accounts. It selects 100 customers randomly and obtains a response onwhich account

each person would select. What statistical test would you use to determine if

customers have a preference for any account?

5-5 Explain the relationship between a type I error, power, degree of difference that one

wishes to detect in a parameter value, and sample size. How can a type I error be

reduced and the power be increased for a given difference in the parameter?

5-6 Explain type I and type II errors in the context of sampling from customers’

accounts to identify billing errors in a large retail store. What are the associated

costs of these two types of errors?

5-7 A fast-food restaurant in an urban area experiences a higher traffic rate during the early

morning and lunch hours. In order to conduct a customer satisfaction survey, discuss

possible sampling procedures.

5-8 Explain why it is important to obtain feedback from customers on both perceived

satisfaction and importance of specified survey items.
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Problems

5-9 A random sample of 50 observations on the waiting time (in seconds) of customers

before speaking to a representative at a call center is as follows:

33.2 29.4 36.5 38.1 30.0

29.1 32.2 29.5 36.0 31.5

34.5 33.6 27.4 30.4 28.4

32.6 30.4 31.8 29.8 34.6

30.7 31.9 32.3 28.2 27.5

34.9 32.8 27.7 28.4 28.8

30.2 26.8 27.8 30.5 28.5

31.8 29.2 28.6 27.5 28.5

30.8 31.8 29.1 26.9 34.2

33.5 27.4 28.5 34.8 30.5

(a) Construct a histogram and comment on the process.

(b) What assumptions are necessary to test if the mean waiting time is less than

32 seconds?

(c) Make an appropriate transformation to satisfy the assumption stated in part (b)

and validate it. Use α= 0.05.

(d) Test to determine if the mean waiting time is less than 32 seconds. Use α= 0.05.

(e) Find a 90% confidence interval for the variance of waiting time.

5-10 Using the call waiting time of customer data in Exercise 5-9, construct a stem-and-leaf

plot. Construct a box plot and comment on the distribution. Are there any outliers?

Construct a 95% confidence interval for the median.

5-11 The pH values of a dye for 30 samples taken consecutively over time are listed

rowwise:

20.3 15.5 18.2 18.0 20.5 22.8

21.6 21.0 22.5 23.8 23.9 24.2

23.6 24.9 27.4 25.5 20.9 25.8

24.6 25.5 27.3 26.4 26.8 27.5

26.4 26.8 27.2 27.1 27.4 27.8

(a) Can we conclude that the sequence of pH values over time is nonrandom? Use

α= 0.05.

(b) Assume that dyes are produced in batches, with 10 random samples taken from

each of three batches. Explain possible special causes in the process.

(c) What type of special cause (clustering, mixture, trend, oscillation) do you

suspect?

(d) What type of sampling scheme was used in this process and is it appropriate?

5-12 Percentage investment in new-product development is monitored for a pharmaceuti

cal company by quarter. The observations are listed rowwise:

32.9 31.5 34.3 36.8 35.0

29.4 33.2 37.8 35.0 32.7

28.5 30.4 32.6 31.5 30.6

35.8 36.4 34.2 35.0 33.5

31.8 32.5 28.4 33.8 35.1

30.2 33.0 34.6 32.4 32.0
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(a) Can we conclude that the sequence of investment percentages is random? Use

α= 0.05.

(b) Is there clustering? Is there a trend? Use α= 0.05.

(c) Can you conclude that the distribution of investment percentages is normal? Use

α= 0.01.

(d) Find a 98% confidence interval for the mean percentage investment.

(e) Find a 98% confidence interval for the standard deviation of the percentage

investment.

(f) Can we conclude that the mean percentage investment in new products exceeds

31%? Use α= 0.01. What is the p-value? Explain.

5-13 An automobile manufacturing company is attempting to cope with rising health care

costs of its employees. It offers three types of plans. Based on a random sample of 200

employees selected last year, Table 5-11 shows the number who selected each plan.

The same table also shows, for a random sample of 150 employees selected in the

current year, the number who selected each plan. Can we conclude that employee

preferences for the health care plans have changed from last year? Use α= 0.05.What

is the p-value?

TABLE 5-11

Year Plan 1 Plan 2 Plan 3

Last year 50 40 110

Current year 15 45 90

5-14 The impact of three different advertising techniques is being studied by a marketing

firm. Sales, in thousand dollars, categorized in four groups are shown for each

advertising technique for 200 randomly selected customers exposed to each technique

in Table 5-12. Canwe conclude that the advertising technique has an impact on sales?

Use α= 0.10. What is the p-value?

TABLE 5-12

Sales (thousands) Technique 1 Technique 2 Technique 3

0–99 60 40 75

100–199 85 30 70

200–299 20 70 30

300–399 35 60 25

5-15 A survey asked customers to rate their overall satisfaction with a service company as

well as the speed in responding to their requests. For both questions, a rating scale of

1–5 was used with the following guidelines: 1, poor; 2, below average; 3, above

average; 4, good; and 5, excellent. Table 5-13 shows the tabulated frequencies based

on responses to both questions. Does response speed influence overall satisfaction?

Use α= 0.01. Find Cramer’s index of association.
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TABLE 5-13

Response

Speed

Rating 1 2

Overall Satisfaction Rating

3 4 5

1

2

3

4

5

40

1

2

0

0

3

30

5

6

12

0

8

49

33

15

0

6

15

45

50

0

5

45

60

70

5-16 Refer to Table 5-7 and the patient satisfaction survey form with 22 items. Patients

were asked to rate their perceived level of satisfaction on a five-point ordinal Likert

scale as shown. Additionally, patients were asked to rate the importance of each item

on a five-point ordinal Likert scale, using a rating of 1 to indicate “not important at

all” to a rating of 5 indicating “very important.” The median rating scores for

both perceived satisfaction and importance for each of the 22 items are shown in

Table 5-14. Construct an overall analysis to advise management on strategic and

operational plans.

TABLE 5-14

Item Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Median 1.5 1.5 4 3.5 1.5 1 1.5 2 3.5 2 1.5 1.5 1.5 4.5 3 4.5 4 4 3.5 2.5 1 1

satisfaction

rating

Median 4 3 2.5 2 2 1.5 4.5 4 3 4.5 3.5 3.5 4.5 5 5 4 4.5 4.5 5 4.5 4.5 3.5

importance

rating

5-17 Consider the five items on timeliness of operations as listed in Table 5-7. A summary

of the survey responses on patient satisfaction for each item, by the percentage in each

rating category, is shown in Table 5-15. Construct a stacked bar chart and discuss the

results

5-18 Consider Table 5-15 on the summary of patient satisfaction ratings on survey items

related to timeliness of operations. Suppose the percentages are based on a response

TABLE 5-15 Patient Satisfaction Data on Timeliness of Operations

Rating

Items 1 2 3 4 5

1. Waiting time at registration 10 40 20 20 10

2. Time to occupy bed 10 30 30 20 10

3. Waiting time prior to being seen by a physician 10 5 10 40 35

4. Timeliness of nurse visits 30 20 20 20 10

5. Waiting time to be checked out 20 30 10 30 10
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from a total of 200 patients. Regarding the item on timeliness of nurse visits, can we

conclude that the proportion of responses in each rating category are equal? Use a

significance level of 5%.

5-19 Consider Table 5-15 on the summary of patient satisfaction ratings. The percentages

in each rating category are based on a response from a total of 200 patients from a prior

year. For the item waiting time prior to being seen by a physician, consider the

combined proportion of patients who are satisfied, that is, includes those in the

category of very satisfied or satisfied. Suppose that, based on a survey during the

current year, out of a total of 400 patients, 85% of them expressed a rating of very

satisfied or satisfied. Can we conclude that there has been an increase in the overall

proportion of satisfied patients from a prior year to the current year? Use a level of

significance of 5%.

5-20 Summary data on ratings of patient satisfaction and importance for the survey item

“waiting time prior to being seen by a physician” is shown in Table 5-16 for a total of

400 patients. Perceived satisfaction was rated on a Likert scale from 1 to 5, while

importance was also rated on a Likert scale from 1 to 5 using the nomenclature

discussed in the chapter. Determine if the categorical variables “satisfaction rating”

and “importance rating” are independent using a level of significance of 5%.

TABLE 5-16 Patient Satisfaction and Importance Ratings

Importance Rating

Satisfaction Rating 1 2 3 4 5

1 6 8 10 20 6

2 7 10 10 40 13

3 8 9 12 21 10

4 6 12 15 85 22

5 5 7 7 30 21

5-21 The Small Business Administration (SBA) wishes to estimate the mean annual sales

of companies that employ fewer than 20 persons. Historical data suggest that the

standard deviation of annual sales of such companies is about $5500.

(a) If the SBAwants to estimatemean annual sales towithin $1000with a probability

of 0.90, how large a sample should be chosen?

(b) Suppose that the SBA has a tolerable type I error rate of 10%. It wishes to detect a

difference in mean annual sales of $500 with a probability of 0.95. How large a

sample should be chosen?

5-22 A company’s qualitymanagerwants to estimate, with a probability of 0.90, the copper

content in a mixture to within 4%.

(a) How many samples must be selected if no prior information is available on the

proportion of copper in the mixture?

(b) Suppose that the manager has made some changes in the process and wishes to

determine if the copper content exceeds 15%. The manager would like to detect

increases of 2%ormore, with a probability of 0.98. How large a sample should be

selected for a chosen level of significance of 2%?
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5-23 Thepersonnelmanagerwants todetermine if there isadifference in theaverage timelost

due to absenteeism between two plants. From historical data, the estimated standard

deviations of lost time are 200 and 250 minutes, respectively, for plants 1 and 2.

(a) Assuming that equal sample sizes will be selected from each plant, what should

the sample size be if the bound on the error of estimation is 40 minutes with a

probability of 0.90?

(b) If the unit sampling costs are less in plant 1 compared to plant 2 such that a sample

that is twice as large could be selected fromplant 1, what are the respective sample

sizes?

(c) Suppose that it is desired to detect a difference of 30minutes in the lost timewith a

probability of 0.80. Assume that there is no significant difference in the standard

deviations of lost time. For a chosen level of significance of 0.10, what should the

sample size be assuming samples of equal size from both plants?

5-24 By incorporating certain process improvement methods, a company believes that it

has reduced the proportion of nonconforming product and wishes to test this belief.

(a) If the operationsmanager selects an error bound for the difference in the proportion

nonconforming before and after implementation of process changes as 4%, with a

probability of 0.90, what sample size should be selected? Assume that samples of

equal size will be chosen for before and after implementation of process changes.

(b) What measures could you take to reduce the sample size?

(c) Suppose that the hypothesized proportion nonconforming is 8% prior to process

changes. We wish to detect reductions of 5% or more with a probability of 0.80.

For a chosen level of significance of 10%, what should the sample sizes be?

Assume samples of equal size before and after process changes.

5-25 The production of nonconforming items is of critical concern because it increases

costs and reduces productivity. Identifying the causes behind the production of

unacceptable items and taking remedial action are steps in the right direction. To

begin, we decide to estimate the proportion of nonconforming items in a process

to within 3% with a probability of 0.98.

(a) Previous information suggests that the percentage nonconforming is approxi

mately 4%. How large a sample must be chosen?

(b) If no prior information is available on the proportion nonconforming, how large a

sample must be chosen?

5-26 Management is exploring the possibility of addingmore agents at the check-in counter

of an airline to reduce the waiting time of customers. Based on available information,

the standard deviation of the waiting times is approximately 5.2 minutes. If manage

mentwants to estimate themeanwaiting time towithin 2minutes, with a probability of

0.95, how many samples must be selected?

5-27 It is desired to estimate the average consumer spending on durable goods, annually, in

a defined geographical region. Spending patterns are influenced by disposable

income. Based on county tax records, the population has been segmented into three

groups: (1) annual income < $50,000; (2) between $50,000 and $100,000; (3) over

$100,000. The number of people in each category has been identified as 2000, 7000,

and 1000, respectively. Sampling costs limit the total sample size to be 200.

(a) Using a stratified proportional sample, what should the sample sizes be from each

group?
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(b) Using the sample sizes found in part (a), the following samplemeans and standard

deviations (in thousands of dollars) were found: �x1 = 3.5, s1= 1.2; �x2 = 7.6,

s2= 2.8; �x3 = 15.1, s3= 6.4. Estimate the mean and standard deviation of the

amount spent on durables.

(c) Find a bound on the error of estimation using a 95% level of confidence.

(d) Suppose that you had selected a simple random sample of the same total size from

the population and that the results indicated the following sample mean and

standard deviation: �x= 6.8, s= 5.6. Find a bound on the error of estimation using

a 95% level of confidence.

(e) What is the percentage improvement in precision by using a stratified propor

tional sample relative to a simple random sample?

5-28 Consider Exercise 5-27 and suppose that a cluster sample is chosen, where the

randomly groups selected are 2 and 3. The total of all observations from group 2 is

$7,100,000, while that from group 3 is $15,200,000.

(a) Estimate the mean spending and its standard error.

(b) Find a bound on the error of estimation using a 95% level of confidence.

(c) What are the disadvantages of using cluster samples in this situation?
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6
STATISTICAL� PROCESS� CONTROL� USING
CONTROL� CHARTS

6-1 Introduction and chapter objectives

6-2 Causes of variation

6-3 Statistical basis for control charts

6-4 Selection of rational samples

6-5 Analysis of patterns in control charts

6-6 Maintenance of control charts

Summary

Symbols

θ Parameter

θ̂ Estimator

α Probability of a type I error

β Probability of a type II error

σx�

Standard deviation of sample mean

σ Process standard deviation

n� Subgroup or sample size

6-1� INTRO�DUC�TION� AND� CHAPT�ER� OBJE�CTIVE�S

We have discussed at length the importance of satisfying the customer by improving the

product or service. A process capable of meeting or exceeding customer requirements is a key

part of this endeavor. Part III of the book deals with the topic of process control and

improvement. It provides the necessary background for understanding statistical process

control through control charts. In this chapter we build the foundation for using control charts.

The objectives of this chapter are to introduce the principles on which control charts are based.

The basic features of the control charts, along with the possible inferential errors and how they

may be reduced, are presented. Various types of out-of-control patterns are also discussed. In

Chapter 7 we examine control charts for variables, and in Chapter 8 we discuss control charts

for attributes. Process capability analysis is covered in Chapter 9.

A control� chart� is a graphical tool for monitoring the activity of an ongoing process.

Control charts are sometimes referred to as Shewhart control charts, because Walter A.

Fundamentals of Quality Control and Improvement, Fourth Edition. Amitava Mitra
 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com\go\mitra\QualityControl4e
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FIGURE 6-1 Typical control chart.

Shewhartfirst proposed their general theory. The values of the quality characteristic are plotted

along the vertical axis, and the horizontal axis represents the samples, or subgroups (in order of

time), fromwhich the quality characteristic is found. Samples of a certain size (say, four orfive

observations) are selected, and the quality characteristic (say, average length) is calculated

based on the number of observations in the sample. These characteristics are then plotted in the

order in which the samples were taken. Figure 6-1 shows a typical control chart.

Examples of quality characteristics include average length, average waiting time, average

tensile strength, average resistance, and average service time. These characteristics are

variables, and numerical values can be obtained for each. The term attribute applies to such

quality characteristics as the proportion of nonconforming items, the number of nonconfor

mities in a unit, and the number of demerits per unit.

Three lines are indicated on the control chart. The centerline, which typically represents

the average value of the characteristic being plotted, is an indication of where the process is

centered. Two limits, the upper control limit and the lower control limit, are used to make

decisions regarding the process. If the points plot within the control limits and do not

exhibit any identifiable pattern, the process is said to be in statistical control. If a point

plots outside the control limits or if an identifiable nonrandompattern exists (such as 12 out of

14 successive points plotting above the centerline), the process is said to be out of statistical

control. Details are given in Section 6-5 on the rules for identifying out-of-control conditions.

Several benefits canbe realized by using control charts. Such charts indicate the following:

1. When to take corrective action. A control chart indicates when something may be

wrong so that corrective action can be taken.

2. Type of remedial action necessary. The pattern of the plot on a control chart diagnoses

possible causes and hence indicates possible remedial actions.

3. When to leave a process alone. Variation is part of any process. A control chart shows

when an exhibited variability is normal and inherent such that no corrective action is

necessary. As explained in Chapter 2, inappropriate overcontrol through frequent

adjustments only increases process variability.

4. Process capability. If the control chart shows a process to be in statistical control, we

can estimate the capability of the process and hence its ability to meet customer

requirements. This helps product and process design.
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5. Possible means of quality improvement. The control chart provides a baseline for

instituting and measuring quality improvement. Control charts also provide useful

information regarding actions to take for quality improvement.

6-2 CAUSES OF VARIATION

Variability is a part of any process, nomatter how sophisticated, somanagement and employees

must understand it. Several factors over which we have some control, such as methods,

equipment, people, materials, and policies, influence variability. Environmental factors also

contribute to variability. The causes of variation can be subdivided into two groups: common

causes and special causes. Control of a process is achieved through the elimination of special

causes. Improvement of a process is accomplished through the reduction of common causes.

Special Causes

Variability caused by special or assignable causes is something that is not inherent in the

process. That is, it is not part of the process as designed and does not affect all items. Special

causes canbe theuseof awrong tool, an improper rawmaterial, or an incorrect procedure. If an

observation falls outside the control limits or a nonrandompattern is exhibited, special causes

are assumed to exist, and the process is said to be out of control. One objective of a control

chart is to detect the presence of special causes as soon as possible to allow appropriate

corrective action. Once the special causes are eliminated through remedial actions, the

process is again brought to a state of statistical control.

Deming believed that 15% of all problems are due to special causes. Actions on the part of

both management and employees will reduce the occurrence of such causes.

Common Causes

Variability due to common or chance causes is something inherent to a process. It exists as

long as the process is not changed and is referred to as the natural variation in a process. It is an

inherent part of the process design and affects all items. This variation is the effect of many

small causes and cannot be totally eliminated.When this variation is random,we havewhat is

known as a stable system of common causes. A process operating under a stable system of

common causes is said to be in statistical control. Examples include inherent variation in

incoming rawmaterial from a qualified vendor, the vibration ofmachines, and fluctuations in

working conditions.

Management alone is responsible for common causes. Deming believed that about 85%of

all problems are due to common causes and hence can be solved only by action on the part of

management. In a control chart, if quality characteristic values arewithin control limits andno

nonrandompattern is visible, it is assumed that a system of common causes exists and that the

process is in a state of statistical control.

6-3 STATISTICAL BASIS FOR CONTROL CHARTS

Basic Principles

A control chart has a centerline and lower and upper control limits. The centerline is usually

found in accordance with the data in the samples. It is an indication of the mean of a process

and is usually found by taking the average of the values in the sample.However, the centerline

can also be a desirable target or standard value.
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Normal distributions play an important role in the use of control charts (Duncan1986).The

values of the statistic plotted on a control chart (e.g., average diameter) are assumed to have an

approximately normal distribution. For large sample sizes or for small sample sizes with a

population distribution that is unimodal and close to symmetric, the central limit theorem

states that if the plotted statistic is a sample average, it will tend to have a normal distribution.

Thus, even if the parent population is not normally distributed, control charts for averages and

related statistics are based on normal distributions.

The control limits are two lines, one above and one below the centerline, that aid in the

decision-making process. These limits are chosen so that the probability of the sample points

falling between them is almost 1 (usually about 99.7% for 3σ limits) if the process is in

statistical control. As discussed previously, if a system is operating under a stable system of

common causes, it is assumed to be in statistical control. Typical control limits are placed at

three standard deviations away from the mean of the statistic being plotted. Normal

distribution theory states that a sample statistic will fall within the limits 99.74% of the

time if the process is in control. If a point falls outside the control limits, there is a reason to

believe that a special cause exists in the system.Wemust then try to identify the special cause

and take corrective action to bring the process back to control.

Themost commonbasis for decidingwhether a process is out of control is the presence of a

sample statistic outside the control limits. Other rules exist for determining out-of-control

process conditions and are discussed in Section 6-5. These rules focus on nonrandom or

systematic behavior of a process as evidenced by a nonrandom plot pattern. For example, if

seven successive points plot above the centerline but within the upper control limit, there is a

reason to believe that something might be wrong with the process. If the process were in

control, the chances of this happeningwouldbe extremely small. Such apatternmight suggest

that the process mean has shifted upward. Hence, appropriate actions would need to be

identified in order to lower the process mean.

A control chart is a means of online process control. Data values are collected for a

process, and the appropriate sample statistics (such as sample mean, sample range, or sample

standard deviation) based on the quality characteristic of interest (such as diameter, length,

strength, or response time) are obtained. These sample statistics are then plotted on a control

chart. If they fall within the control limits and do not exhibit any systematic or nonrandom

pattern, the process is judged tobe in statistical control. If the control limits are calculated from

current data, the chart tells us whether the process is presently in control. If the control limits

were calculated frompreviousdatabasedonaprocess thatwas incontrol, the chart canbeused

to determine whether the current process has drifted out of control.

Control charts are important management control tools. If management has some target

value in mind for the process mean (say, average part strength), a control chart can be

constructed with that target value as the centerline. Sample statistics, when plotted on the

control chart, will show how close the actual process output comes to the desired standard. If

the deviation is unsatisfactory, management will have to come up with remedial actions.

Control charts help management set realistic goals. For example, suppose the output of a

process shows that the average part strength is 3000 kg,with a standard deviation of 100 kg. If

management has a target average strength of at least 3500 kg, the control chart will indicate

that such agoal is unrealistic andmaynot be feasible for the existingprocess.Major changes in

the system and process, possibly only through action on the part of management, will be

needed to create a process that will meet the desired goal.

If a process is under statistical control, control chart information can estimate such

process parameters as the mean, standard deviation, and proportion of nonconforming items
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(also known as fallout). These estimates can then be used to determine the capability of the

process. Process capability refers to the ability of the process to produce within desirable

specifications. Conclusions drawn from studies on process capability have a tremendous

influence on major management decisions such as whether to make or buy, how to direct

capital expenditures formachinery, how to select and control vendors, and how to implement

process improvements to reduce variability. Process capability is discussed in Chapter 9.

For variables, the value of a quality characteristic is measurable numerically. Control charts

for variables are constructed to show measures of central tendency as well as dispersion.

Variable control charts display such information as samplemean, sample range, sample standard

deviation, cumulative sum, individual values, and moving average. Control charts for variables

are described in Chapter 7. Attributes, on the other hand, indicate the presence or absence of a

condition. Typical attribute charts deal with the fraction of nonconforming items, the number of

nonconforming items, the total number of nonconformities, the number of nonconformities per

unit, or the number of demerits per unit. Control charts for attributes are described in Chapter 8.

There are several issues pertinent to the construction of a control chart: the number of items

in a sample, the frequency with which data are sampled, how to minimize errors in making

inferences, the analysis and interpretation of the plot patterns, and rules for determining out

of-control conditions. We discuss these issues in the following sections.

Selection of Control Limits

Let θ represent a quality characteristic of interest and
^

^

^

θ represent an estimate of θ. For

example, if θ is themean diameter of parts produced by aprocess, θwould be the samplemean

diameter of a set of parts chosen from the process. Let E�θ� represent the mean, or expected
^

^

^�value, and let be the standard deviation of the estimatorσ θ θ� .

The centerline and for this arrangement are given bycontrol limits

CL � E�θ� 
^

^

^

^
UCL � E�θ� � kσ�θ� 
LCL � E�θ� � kσ�θ� 

�6-1� 

where k represents the number of standard deviations of the sample statistic that the control

limits are placed from the centerline.Typically, thevalueof k is chosen tobe3 (hence thename

3σ limits). If the sample statistic is assumed to have an approximately normal distribution, a

value of k= 3 implies that there is a probability of only 0.0026 of a sample statistic falling

outside the control limits if the process is in control.

Sometimes, the selection of k in eq. (6-1) is based on a desired probability of the

sample statistic falling outside the control limits when the process is in control. Such

limits are known as probability limits. For example, if we want the probability that the

sample statistic will fall outside the control limits to be 0.002, Appendix A-3 gives

k= 3.09 (assuming that the sample statistic is normally distributed). The probabilities of

the sample statistic falling above the upper control limit and below the lower control limit

are each equal to 0.001. Using this principle, the value of k and hence the control limits

can be found for any desired probability.

The choice of k is influenced by error considerations also. As discussed in the next section,

two types of errors (I and II) can bemade inmaking inferences from control charts. The choice

of a value k is influenced by how significant we consider the impact of such errors to be.

Example 6-1 A semiautomatic turret lathe machines the thickness of a part that is

subsequently used in an assembly. The process mean is known to be 30mm with a standard
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TABLE 6-1 Average Part Thickness Values

Average Part Average Part Average Part

Sample Thickness, x (mm) Sample Thickness, x (mm) Sample Thickness, x (mm)

1 31.56 6 31.45 11 30.20

2 29.50 7 29.70 12 29.10

3 30.50 8 31.48 13 30.85

4 30.72 9 29.52 14 31.55

5 28.92 10 28.30 15 29.43

deviation of 1.5mm. Construct a control chart for the average thickness using 3σ limits if

samplesofsize5arerandomlyselectedfromtheprocess.Table6-1showstheaverage thickness

of 15 samples selected from the process. Plot these on a control chart and make inferences.

Solution The centerline is

CL � 30mm

The standard deviation of the sample mean X is given by

σ 1:5
σ� � p � p � 0:671 mmX

n 5

Assuming a normal distribution of the samplemean thickness, the value of k in eq. (6-1) is

selected as 3. The control limits are calculated as follows:

UCL � 30 � �3��0:671� � 32:013
LCL � 30 � �3��0:671� � 27:987

The centerline and control limits are shown in Figure 6-2. The sample means for the 15

samples shown in Table 6-1 are plotted on this control chart. Figure 6-2 shows that all of the

sample means are within the control limits. Also, the pattern of the plot does not exhibit any

nonrandom behavior. Thus, we conclude that the process is in control.

FIGURE 6-2 Control chart for average thickness.
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Errors in Making Inferences from Control Charts

Making inferences from a control chart is analogous to testing a hypothesis. Suppose that we

are interested in testing the null hypothesis that the average diameter θ of a part from a

particular process is 25mm.This situation is represented by the null hypothesisH0: θ= 25; the

alternative hypothesis is Ha: θ�6 25. The rejection region of the null hypothesis is thus two-

tailed. The control limits are the critical points that separate the rejection and acceptance

regions. If a sample value (sample average diameter, in this case) falls above the upper control

limit or below the lower control limit,we reject the null hypothesis. In such a case,we conclude

that the process mean differs from 25mm and the process is therefore out of control. Types I

and II errors can occur when making inferences from control charts.

Type I Errors Type I errors result from inferring that a process is out of control when it

is actually in control. The probability of a type I error is denotedbyα. Suppose that a process is

in control. If a point on the control chart falls outside the control limits, we assume that the

process is out of control. However, since the control limits are a finite distance (usually, three

standarddeviations) from themean, there is a small chance (about 0.0026) of a sample statistic

falling outside the control limits. In such instances, inferring that the process is out of control is

awrongconclusion.Figure 6-3 shows theprobability ofmakinga type I error in control charts.

It is the sum of the two tail areas outside the control limits.

Type II Errors Type II errors result from inferring that a process is in control when it

is really out of control. If no observations fall outside the control limits and a random pattern

is exhibited, we conclude that the process is in control. Suppose, however, that a process is

actually out of control. Perhaps the process mean has changed (say, an operator has

inadvertently changed a depth of cut or the quality of raw materials has decreased). Or, the

process could go out of control because the process variability has changed (due to the presence

of a new operator). Under such circumstances, a sample statistic could fall within the control

limits, yet the process would be out of control—this is a type II error.

FIGURE 6-3 Type I error in control charts.
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FIGURE 6-4 Type II error in control charts.

Let’s consider Figure 6-4, which depicts a process going out of control due to a change in

the processmean fromA toB. For this situation, the correct conclusion is that the process is out

of control. However, there is a strong possibility of the sample statistic falling within the

control limits (as indicated by the shaded area), in which case we would conclude that the

process is in control and thus make a type II error.

Example 6-2 Acontrol chart is to be constructed for the average breaking strength of nylon

fibers. Samples of size 5 are randomly chosen from the process. The process mean and

standard deviation are estimated to be 120 kg and 8 kg, respectively.

(a) If the control limits are placed three standard deviations from the process mean, what

is the probability of a type I error?

Solution From the problem statement, μ̂ � 120 and σ̂ � 8. The centerline for the control
chart is at 120 kg. The control limits are

UCLX � 120 � 3 8

5
p � 130:733, LCLX � 120 � 3 8

5
p � 109:267

These limits are shown in Figure 6-5a.

Since the control limits are three standard deviations from the mean, the standardized

normal value at the upper control limit is

X � μ
Z � 

σX�

130:733 � 120� p � 3:00
8= 5
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FIGURE 6-5 Control charts for Example 6-2.

Similarly, the Z-value at the lower control limit is�3.00. For these Z-values in the standard
normal table in AppendixA-3, each tail area is found to be 0.0013. The probability of a type

I error, as shown by the shaded tail areas in Figure 6-5a, is therefore 0.0026.

(b) If the process mean shifts to 125 kg, what is the probability of concluding that the

process is in control and hence making a type II error on the first sample plotted after

the shift?

Solution Theprocessmean shifts to125 kg.Assuming that theprocess standarddeviation

is the same as before, the distribution of the sample means is shown in Figure 6-5b.

The probability of concluding that the process is in control is equivalent to finding the area

betweenthecontrol limitsunder thedistributionshowninFigure6-5b.Wefindthestandardized

normal value at the upper control limit as

130:733 � 125
Z1 � p � 1:60

8= 5

From the standard normal table in Appendix A-3, the tail area above the upper control limit is

0.0548. The standardized normal value at the lower control limit is

109:267 � 125
Z2 � p � � 4:40

8= 5

From Appendix A-3, the tail area below the lower control limit is approximately 0.0000. The

area between the control limits is 1� (0.0548+ 0.0000)= 0.9452. Hence, the probability of

concluding that the process is in control andmaking a type II error is 0.9452, or 94.52%. This

implies that for a shift of this magnitude there is a pretty good chance of not detecting it on the

first sample drawn after the shift.

(c) What is the probability of detecting the shift by the second sample plotted after the

shift if the samples are chosen independently?

Solution The probability of detecting the shift by the second sample is P(detecting shift

on sample 1)+P(not detecting shift in sample 1 and detecting shift in sample 2). This first

probability was found in part (b) to be 0.0548. The second probability, using eqs. (4-2) and

(4-5), is found to be (1� 0.0548)(0.0548)= 0.0518, assuming independence of the two
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FIGURE 6-6 Operating characteristic curve for a control chart.

samples. The total probability is 0.0548+ 0.0518= 0.1066. Thus, there is a 10.66% chance of

detecting a shift in the process by the second sample.

Operating Characteristic Curve An operating characteristic (OC) curve is ameasure of

goodness of a control chart’s ability to detect changes in process parameters. Specifically, it is

a plot of the probability of the type II error versus the shift of a process parameter value from its

in-control value. OC curves enable us to determine the chances of not detecting a shift of a

certain magnitude in a process parameter on a control chart.

A typical OC curve is shown in Figure 6-6. The shape of an OC curve is similar to an

inverted S. For small shifts in the process mean, the probability of nondetection is high.

As the change in the process mean increases, the probability of nondetection decreases;

that is, it becomes more likely that we will detect the shift. For large changes, the

probability of nondetection is very close to zero. The ability of a control chart to detect

changes quickly is indicated by the steepness of the OC curve and the quickness with

which the probability of nondetection approaches zero. Calculations for constructing an

operating characteristic curve are identical to those for finding the probability of a type II

error.

Example 6-3 Refer to the data in Example 6-2 involving the control chart for the average

breaking strength of nylonfibers. Samples of size 5 are randomly chosen fromaprocesswhose

mean and standard deviation are estimated to be 120 kg and 8 kg, respectively. Construct the

operating characteristic curve for increases in the process mean from 120kg.

Solution A sample calculation for the probability of not detecting the shift when the

process mean increases to 125 kg is given in Example 6-2. This same procedure is used to

calculate the probabilities of nondetection for several values of the process mean. Table 6-2

displays some sample calculations. The vertical axis of the operating characteristic curve in

Figure 6-6 represents the probabilities of nondetection given in Table 6-2 (these values are

also the probabilities of a type II error). The graph shows that for changes in the process

mean exceeding 15 kg the probability of nondetection is fairly small (less than 10%), while

shifts of 5 kg or less have a high probability (over 85%) of nondetection.
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TABLE 6-2 Probabilities for OC Curve

Z-Value Area Above Z-Value Area Below Probability of

Process Mean at UCL, Z1 UCL at LCL, Z2 LCL Nondetection, β

123.578 2.00 0.0228 �4.00 0.0000 0.9772

127.156 1.00 0.1587 �5.00 0.0000 0.8413

130.733 0.00 0.5000 �6.00 0.0000 0.5000

134.311 �1.00 0.8413 �7.00 0.0000 0.1587

137.888 �2.00 0.9772 �8.00 0.0000 0.0228

141.466 �3.00 0.9987 �9.00 0.0000 0.0013

Effect of Control Limits on Errors in Inference Making

The choice of the control limits influences the likelihood of the occurrence of type I and type II

errors. As the control limits are placed farther apart, the probability of a type I error decreases

(refer to Figure 6-3). For control limits placed 3 standard deviations from the centerline, the

probability of a type I error is about 0.0026. For control limits placed 2.5 standard deviations

from the centerline,AppendixA-3 gives theprobability of a type I error as 0.0124.On theother

hand, for control limits placed 4 standard deviations from the mean, the probability of a type I

error is negligible. If a process is in control, the chance of a sample statistic falling outside the

control limits decreases as the control limits expand. Hence, the probability of making a type I

error decreases, too.The control limits couldbeplaced sufficiently far apart, say4 or 5 standard

deviations on each side of the centerline, to reduce the probability of a type I error, but doing so

affects the probability of making a type II error.

Moving the control limits has the opposite effect on the probability of a type II error.As the

control limits are placed farther apart, the probability of a type II error increases (refer to

Figure 6-4). Ideally, to reduce the probability of a type II error, we would tend to have the

control limits placed closer to each other. But this, of course, has the detrimental effect of

increasing the probability of a type I error. Thus, the two types of errors are inversely related to

each other as the control limits change. As the probability of a type I error decreases, the

probability of a type II error increases.

If all other process parameters are held fixed, the probability of a type II error will

decrease with an increase in sample size. As n increases, the standard deviation of the

sampling distribution of the sample mean decreases. Thus, the control limits will be

drawn closer, and the probability of a type II error will be reduced. Figure 6-7

demonstrates this effect. The new sample size is larger than the old sample size. The

sampling distribution of the new sample mean has a reduced variance, so the new control

limits are closer to each other. As can be seen from the figure, the probability of a type II

error is smaller for the larger sample.

Because of the inverse relationship between type I and type II errors, a judicious choice of

control limits is desirable. In themajority of uses, the control limits are placed at three standard

deviations from the centerline, thereby restricting the probability of a type I error to 0.0026.

The reasoning behind this choice of limits is that the chart user does not want to look

unnecessarily for special causes in aprocesswhen there are none.Byplacing the control limits

at three standard deviations, the probability of a false alarm is small, and minimal resources

will be spent on locating nonexistent problemswith the process.However, the probability of a

type II error may be large for small shifts in the process mean.
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FIGURE 6-7 Effect of an increased sample size on the probability of a type II error.

If it is more important to detect small changes in the process than to avoid spending

time looking for nonexistent problems, it may be desirable to place the control limits

closer (at, say, 2 or 2.5 standard deviations). For sophisticated processes, it is often crucial

to detect small changes as soon as possible, because the impact on downstream activities

is enormous if they are not detected right away. In this case, tighter control limits are

preferable, even if this means incurring some costs for unnecessary investigation of

problems when the process is in control.

Warning Limits

Warning limits are usually placed at two standard deviations from the centerline. When a

sample statistic falls outside thewarning limits but within the control limits, the process is not

considered to be out of control, but users are now alerted that the process may be going out of

control. For a normally distributed sample statistic, Appendix A-3 gives the probability of it

falling in the band between the warning limit and the control limit to be 0.043 (i.e., there is

about a 4.3% chance of this happening). Thus, a sample statistic outside the warning limits is

reason to be wary. If two out of three successive sample statistics fall within the warning/

control limit on a given side, the processmay indeed be out of control, because the probability

of this happening in an in-control process is very small (0.0027, obtained from

2× 3× 0.0215× 0.0215× 0.9785).

Effect of Sample Size on Control Limits

The sample size usually has an influence on the standard deviation of the sample statistic

being plotted on the control chart. For example, consider a control chart for the sample mean
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X. The standard deviation of X is given by

σ
σ � p
X

n

where σ represents the process standard deviation and n is the sample size. We see that the

standard deviationofX is inversely related to the square root of the sample size. Since the control

limits are placed a certain number of standard deviations (say, three) from the centerline, an

increase in the sample size causes the control limits to be drawn closer. Similarly, decreasing the

sample size causes the limits to expand. Increasing the sample size provides more information,

intuitively speaking, and causes the sample statistics to have less variability. A lower variability

reduces the frequency with which errors occur in making inferences.

Average Run Length

Analternativemeasureof theperformanceof a control chart, in addition to theOCcurve, is the

average run length (ARL). This denotes the number of samples, on average, required to

detect anout-of-control signal. Suppose that the rule used todetect anout-of-control condition

is a point plotting outside the control limits. Let Pd denote the probability of an observation

plotting outside the control limits. Then the run length is 1 with a probability of Pd, 2 with a

probability of (1�Pd)Pd, 3 with a probability of (1�Pd)
2Pd, and so on. The average run

length is given by
1 

j�1 � Pd�j�1Pd

j�1
ARL � 

j�1 � Pd�j�1 �6-2�� Pd

The infinite series inside the summation is obtained from 1/[1� (1�Pd)]
2. Hence, we have

1 

j�1

Pd 1
ARL � � �6-3� �1 � �1 � Pd��2 Pd

For a process in control, Pd is equal to α, the probability of a type I error. Thus, for 3σ

control charts with the selected rule for the detection of an out-of-control condition, ARL is

1=0:0026 ' 385. This indicates that an observation will plot outside the control limits every

385 samples, on average. For a process in control, we prefer the ARL to be large because an

observation plotting outside the control limits represents a false alarm.

For an out-of-control process, it is desirable for the ARL to be small because we want to

detect the out-of-control condition as soon as possible. Let’s consider a control chart for the

process mean and suppose that a change takes place in this parameter. In this situation,

Pd= 1� β, where β is the probability of a type II error. So, ARL= 1/(1� β).

We have computed β, the probability of a type II error, for a control chart on changes in

the processmean (seeFigure 6-4).Because it is straightforward to develop a general expression

for β in terms of the shift in the process mean (expressed in units of the process standard

deviation, σ), we can also construct ARL curves for the control chart. Figure 6-8 shows

ARLcurves for sample sizes of1,2,3, 4,5, 7,9, and16 for a control chart for themeanwhere the

shifts in the mean are shown in units of σ. Note that if we wish to detect a shift of 1.0σ in the

process mean, using a sample of size 5, the average number of samples required will be about

four. In case thisARL isnot suitable andwewish to reduce it, the sample size couldbe increased

to7,whereupon theARLis reduced toapproximately3.Whenweneed toexpressARLin terms
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FIGURE 6-8 ARL curves for control charts for the mean.

of the expected number of individual units sampled, I, the expression is

I � n�ARL� �6-4� 
where n denotes the sample size.

Example 6-4 Let’s reconsider Example 6-3 on the average breaking strength of nylon

fibers. Our sample size is 5. Table 6-2 shows calculations for β, the probability of

nondetection, for different values of the process mean. Table 6-3 displays the values of

ARL for eachchange in theprocessmean.The change in theprocessmean, from the in-control

value of 120, is shown in multiples of the process standard deviation, σ.

TABLE 6-3 Computation of ARL for Changes in Process Mean

Shift in Process Shift in Process

Process Mean Mean in Units of σX Mean in Units of σ Pd ARL

123.578 1 0.4472 0.0228 43.86

127.156 2 0.8945 0.1587 6.30

130.733 3 1.3416 0.5000 2.00

134.311 4 1.7889 0.8413 1.19

137.888 5 2.2360 0.9772 1.02

141.466 6 2.6832 0.9987 1.00
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From Table 6-3 we find that for shifts in the process mean of 2.5 or more standard

deviations the control chart is quite effective because the ARL is slightly above 1. This

indicates that, on average, the out-of-control condition will be detected on the first sample

drawn after the shift takes place. For a shift in the process mean of 1.34σ, the ARL is 2, while

for a smaller shift in the process mean of 0.89σ, the ARL is above 6. These values of ARL

represent a measure of the strength of the control chart in its ability to detect process changes

quickly. For a small shift in the process mean of about 0.45σ, about 44 samples, on average,

will be required to detect the shift.

6-4 SELECTION OF RATIONAL SAMPLES

Shewhart described the fundamental criteria for the selectionof rational subgroups, or rational

samples, the termweuse in this book.Thepremise is that a rational sample is chosen in sucha

manner that the variationwithin it is considered to be due only to commoncauses. So, samples

are selected such that if special causes are present, they will occur between the samples.

Therefore, the differences between samples will be maximized, and differences within

samples will be minimized.

In most cases, the sampling is done by time order. Let’s consider a job shop with several

machines. Samples are collected at random times from each machine. Control charts for the

average value of the characteristic for eachmachine are plotted separately. If two operators are

producing output, samples are formed from the output of each operator, and a separate control

chart is plotted for each operator. If output between two shifts differs, the two outputs should

not bemixed in the sampling process. Rather, samples should first be selected from shift 1 and

a control chart constructed to determine the stability of that shift’s output. Next, rational

samples are selected from shift 2 and a control chart constructed for this output.

Selection of the sample observations is done by the instant-of-time method (Besterfield

2013). Observations are selected at approximately the same time for the population under

consideration. This method provides a time frame for each sample, which makes the

identification of problems simpler. The instant-of-time method minimizes variability within

a sample and maximizes variability between samples if special causes are present.

Sample Size

Selecting sample size—the number of items in each sample—is a necessity in using control

charts. The degree of shift in the process parameter expected to take place will influence the

choice of sample size. As noted in the discussion of operating characteristic curves, large

shifts in a process parameter (say, the process mean) can be detected by smaller sample sizes

than those needed to detect smaller shifts. Having an idea of the degree of shift we wish to

detect enables us to select an appropriate sample size. If we can tolerate smaller changes in the

process parameters, a small sample sizemight suffice.Alternatively, if it is important to detect

slight changes in process parameters, a larger sample size will be needed.

Frequency of Sampling

The sampling frequency must be decided prior to the construction of control charts.

Choosing large samples very frequently is the sampling scheme that provides the most

information. However, this is not always feasible because of resource constraints. Other

options include choosing small sample sizes at frequent intervals or choosing large sample

sizes at infrequent intervals. In practice, the former is usually adopted.
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Other factors also influence the frequency of sampling and the sample size. The type

of inspectionneededtoobtainthemeasurement—that is,destructiveornondestructive—canbe

a factor. The current state of the process (in control or out of control) is another factor. If

the process is stable, we might get by with sampling at infrequent intervals. However, for

processes that indicate greater variability, we would need to sample more frequently.

The cost of sampling and inspection per unit is another area of concern. The choice of

sample size is influenced by the loss incurred due to a nonconforming item being passed on to

the consumer. These intangible costs are sometimes hard to identify and quantify. Because

larger sample sizes detect shifts in process parameters sooner than smaller sample sizes, they

can be the most cost-effective choice.

6-5 ANALYSIS OF PATTERNS IN CONTROL CHARTS

One of the main objectives of using control charts is to determine when a process is out of

control so that necessary actions may be taken. Criteria other than a plotted point falling

outside the control limits are also used to determine whether a process is out of control. We

discuss some rules for out-of-control processes next.

Later, we examine some typical control chart patterns and the reasons for their occurrence.

As mentioned previously, plot patterns often indicate whether or not a process is in control; a

systematic or nonrandompattern suggests anout-of-control process.Analyzing thesepatterns

ismore difficult than plotting the chart. Identifying the causes of nonrandompatterns requires

knowledge of the process, equipment, and operating conditions as well as of their impact on

the characteristic of interest.

Some Rules for Identifying an Out-of-Control Process

Rule 1 A process is assumed to be out of control if a single point plots outside the control

limits.

This is the most commonly used rule. If the control limits are placed at three standard

deviations from the mean of the quality characteristic being plotted (assuming a normal

distribution), the probability of a point falling outside these limits if the process is in control

is very small (about 0.0026). Figure 6-9 depicts this situation.

FIGURE 6-9 Out-of-control patterns: Rule 1.
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FIGURE 6-10 Out-of-control patterns: Rule 2.

Rule 2 A process is assumed to be out of control if two out of three consecutive points fall

outside the 2σ warning limits on the same side of the centerline.

As noted in Section 6-3, warning limits at two standard deviations of the quality

characteristic from the centerline can be constructed. These are known as 2σ limits. If the

process is in control, the chance of two out of three points falling outside the warning limits is

small. In Figure 6-10, observe that samples 7 and 9 fall above the upper 2σ limit.We can infer

that this process has gone out of control, so special causes should be investigated.

Rule 3 A process is assumed to be out of control if four out of five consecutive points fall

beyond the 1σ limit on the same side of the centerline.

If the control limits arefirst determined, the standard deviation can be calculated. Note that

the distance between the centerline and the upper control limit is three standard deviations

(assuming 3σ limits). Dividing this distance by 3 gives the standard deviation of the

characteristic being plotted. Adding and subtracting this standard deviation from the

centerline value gives the 1σ limits. Consider Figure 6-11, for which samples 4, 5, 6, and

FIGURE 6-11 Out-of-control patterns: Rule 3.
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FIGURE 6-12 Out-of-control patterns: Rule 4.

8 plot below the lower 1σ limit. Based on Rule 3, this process would be considered out of

control.

Rule 4 Aprocess is assumed tobeout of control if nineormore consecutive points fall to one

side of the centerline.

For a process in control, a roughly equal number of points should be above or below the

centerline, with no systematic pattern visible. The condition stated in Rule 4 is highly

unlikely if a process is in control. For instance, if nine or more consecutive points plot above

the centerline on an X-chart, an upward shift in the process mean may have occurred. In

Figure 6-12, samples 2, 3, 4, 5, 6, 7, 8, 9, and 10 plot above the centerline. The process is

assumed to be out of control.

Rule 5 A process is assumed to be out of control if there is a run of six or more consecutive

points steadily increasing or decreasing.

A run is a sequence of like observations. Thus, if three successive points increase in

magnitude,wewould have a run of three points. In Figure 6-13, samples 2–8 show acontinual

increase, so this process would be deemed out of control.

Interpretation of Plots

The five rules for determining out-of-control conditions are not all used simultanceously.

Rule 1 is used routinely alongwith a couple of the other rules (say, Rules 2 and 3). The reason

for not using all of them simultaneously is that doing so increases the chance of a type I error.

In otherwords, the probability of a false alarm increases asmore rules are used to determine an

out-of-control state. Even though the probability of the stated condition occurring is rather

small for any one rule with an in-control process, the overall type I error rate, based on the

number of rules that are used, may not be small.

Suppose that the number of independent rules used for out-of-control criteria is k.

Let αi be the probability of a type I error of rule i. Then, the overall probability of a
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FIGURE 6-13 Out-of-control patterns: Rule 5.

type I error is

k

α � 1 �∏�1 � αi� �6-5� 
i�1

Suppose that four independent rules are being used to determinewhether a process is out of

control. Let the probability of a type I error for each rule be given by α1= 0.005, α2= 0.02,

α3= 0.03, and α4= 0.05. The overall false alarm rate, or the probability of a type I error,

would be

α � 1 � �0:995��0:98��0:97��0:95� �  0:101

If several more rules were used simultaneously, the probability of type I error would

become too large to be acceptable. Note that the relationship in eq. (6-5) is derived under the

assumption that the rules are independent. The rules, however, are not independent, so

eq. (6-5) is only an approximation to theprobability of a type I error. Formore information, see

Walker et al. (1991).

Using many rules for determining out-of-control conditions complicates the decision

process and sabotages the purpose of using control limits. One of the major advantages of

control charts is that they are easy to construct, interpret, and use.

In addition to the rules that we’ve been discussing, there are many other nonrandom

patterns that a control chart user has to interpret judiciously. It is possible for the process

to be out of control yet for none of the five rules to be applicable. This is where

experience, judgment, and interpretive skills come into play. Consider, for example,

Figure 6-14. None of the five rules for out-of-control conditions apply even though

the pattern is clearly nonrandom. The systematic nature of the plot and the somewhat

cyclic behavior are important clues. This pattern probably means that special causes are

present and the process is out of control. You should always keep an eye out for

nonrandom patterns when you examine control charts.
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FIGURE 6-14 Nonrandom pattern in a control chart.

Determination of Causes of Out-of-Control Points

The task of the control chart user does not endwith the identification of out-of-control points.

In fact, the difficult part begins when out-of-control points have been determined. Now we

must pinpoint the causes associatedwith these points—not always a trivial task. This requires

a thorough knowledge of the process and the sensitivity of the output quality characteristic to

the process parameters.

Determination of cause is usually a collective effort, with people from product design,

process design, tooling, production, purchasing, and vendor control involved. A cause

and-effect chart is often an appropriate tool here. Once special causes have been identified,

appropriate remedial actions need to be proposed. Typical control chart patterns for out

of-control processes, along with their possible causes, are discussed in Chapter 7. These

include a sudden shift in the pattern level, a gradual shift in the pattern level, a cyclic pattern, or

a mixture pattern, among others.

6-6 MAINTENANCE OF CONTROL CHARTS

Although the construction of control charts is an important step in statistical process control, it

should be emphasized that quality control and improvement are an ongoing process.

Therefore, implementation and control chart maintenance are a vital link in the quality

system. When observations plotted on control charts are found to be out of control, the

centerline and control limits need to be revised; this, of course, will eliminate these out-of

control points. There are some exceptions to the elimination of out-of-control points,

however, especially for points below the lower control limit. These are discussed in

Chapters 7 and 8. Once computation of the revised centerline and control limits is completed,

these lines are drawn on charts where future observations are to be plotted. The process of

revising the centerline and control limits is ongoing.

Proper placement of the control charts on the shop floor is important. Each person who is

associatedwith a particular quality characteristic should have easy access to the chart.When a

statistical process control system is first implemented, the chart is usually placed in a

conspicuous place where operators can look at it. The involvement of everyone from the

operator to themanager to the chief executive officer is essential to the success of the program.

The control charts should be attended to by everyone involved. Proper maintenance of these
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charts on a regular ongoing basis helps ensure the success of the quality systems approach. If a

particular quality characteristic becomes insignificant, its control chart can be replaced by

others that are relevant. Products, processes, vendors, and equipment change with time.

Similarly, the different control charts that are kept should be chosen to reflect important

characteristics of the current environment.

SUMMARY

This chapter has introduced the basic concepts of control charts for statistical process control.

The benefits that can be derived from using control charts have been discussed. This chapter

covers the statistical background for the useof control charts, the selection of the control limits,

and the manner in which inferences can be drawn from the charts. The two types of errors that

can be encountered inmaking inferences from control charts are discussed. Guidelines for the

proper selection of sample size and rules for determining out-of-control conditions have been

explored. Several control chart patterns have been studiedwith a focus on identifying possible

special causes. Since this chapter is intended solely to explain the fundamentals of control

charts, such technical details as formulas for various types of control charts have intentionally

been omitted here.We discuss these in Chapters 7 and 8, and youmay also find them inBanks

(1989), Montgomery (2013), and Wadsworth et al. (2001).

KEY TERMS

average run length rational samples

centerline remedial actions

common cause rules for out-of-control processes

control chart sample size

control chart maintenance sampling frequency

control limits Shewhart control charts

lower control limit special cause

upper control limit statistical control

instant-of-time method type I error

online process control overall rate

operating characteristic curve type II error

probability limits warning limits

process capability

EXERCISES

Discussion Questions

6-1 What are the benefits of using control charts?

6-2 Explain the difference between common causes and special causes. Give examples of

each.

6-3 Explain the rationale behind placing the control limits at three standard deviations

from the mean.
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6-4 Define and explain type I and type II errors in the context of control charts. Are they

related? How does the choice of control limits influence these two errors?

6-5 What are warning limits and what purpose do they serve?

6-6 What is the utility of the operating characteristic curve? How can the discriminatory

power of the curve be improved?

6-7 Describe the role of the average run length (ARL) in the selection of control chart

parameters. Explain how ARL influences sample size.

6-8 Discuss the relationship between ARL and type I and II errors.

6-9 How are rational samples selected? Explain the importance of this in the total quality

systems approach.

6-10 State and explain each rule for determining out-of-control points.

6-11 What are some reasons for a process to go out of control due to a sudden shift in the

level?

6-12 Explain some causes that would make the control chart pattern follow a gradually

increasing trend.

Problems

6-13 What is meant by an overall type I error rate? If Rules 1, 2, and 3 of this chapter are

used simultaneously, assuming independence, what is the probability of an overall

type I error if 3σ control limits are used?

6-14 The diameter of a part produced by an automaticmachine is a characteristic of interest.

Based on historical data, the process average diameter is 15mm with a process

standard deviation of 0.8mm. If samples of size 4 are randomly selected from the

process:

(a) Find the 1σ and 2σ control limits.

(b) Find the 3σ control limits for the average diameter.

(c) What is the probability of a false alarm?

(d) If the process mean shifts to 14.5mm, what is the probability of not detecting this

shift on the first sample plotted after the shift? What is the ARL?

(e) What is the probability of failing to detect the shift by the second sample plotted

after the shift?

(f) Construct the OC curve for this control chart.

(g) Construct the ARL curve for this control chart.

6-15 The length of industrial filters is a quality characteristic of interest. Thirty samples,

each of size 5, are chosen from the process. The data yield an average length of

110mm, with the process standard deviation estimated to be 4mm.

(a) Find the warning limits for a control chart for the average length.

(b) Find the 3σ control limits. What is the probability of a type I error?

(c) If the process mean shifts to 112mm, what are the chances of detecting this shift

by the third sample drawn after the shift?

(d) What is the chance of detecting the shift for the first time on the second sample

point drawn after the shift?
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(e) What is the ARL for a shift in the process mean to 112mm? How many

samples, on average, would it take to detect a change in the process mean to

116mm?

6-16 The tensile strength of nonferrous pipes is of importance. Samples of size 5 are

selected from the process output, and their tensile strength values are found. After 30

such samples, the process mean strength is estimated to be 3000 kg with a standard

deviation of 50 kg.

(a) Find the 1σ and 2σ control limits. For the 1σ limits, what is the probability of

concluding that the process is out of control when it is really in control?

(b) Find the 3σ limits.

(c) If Rules 1 and 2 are used simultaneously to detect out-of-control conditions,

assuming independence, what is the overall probability of a type I error if 3σ

control limits are used?

6-17 Suppose 3σ control limits are constructed for the average temperature in a furnace.

Samples of size 4 were selected with the average temperature being 5000°C and a

standard deviation of 50°C.

(a) Find the 3σ control charts.

(b) Suppose that Rules 2 and 3 are used simultaneously to determine out-of-control

conditions. What is the overall probability of a type I error assuming indepen

dence of the rules?

(c) Approximately howmany samples, on average, will be analyzed before detecting

a change when Rules 2 and 3 are used simultaneously?

(d) If the process average temperature drops to 4960°C, what is the probability of

failing to detect this change by the third sample point drawn after the change?

(e) What is the probability of the shift being detected within the first two samples?

6-18 A manager is contemplating using Rules 1 and 4 for determining out-of-control

conditions. Suppose that the manager constructs 3σ limits.

(a) What is the overall type I error probability assuming independence of the rules?

(b) On average, howmany samples will be analyzed before detecting a change in the

process mean? Assume that the process mean is now at 110mm (having moved

from 105mm) and that the process standard deviation is 6mm. Samples of size 4

are selected from the process.

6-19 The time to deliver packaged containers by a logistics company is found from samples

of size 4. The mean and standard deviation of delivery times is estimated to be

140 hours and 6 hours, respectively.

(a) Find the 2σ and 3σ control limits for the average delivery time.

(b) Explain a type I and type II error specifically in this context.

(c) Suppose that Rules 1 and 3 are used simultaneously to detect out-of-control

conditions. Assuming independence of the rules, what is the overall probability of

a type I error for 3σ control limits?

(d) If the mean delivery time shifts to 145 hours, using Rule 1, what is the probability

of not detecting this by the second sample after the shift?

(e) What is the ARL using Rule 1? Explain.

6-20 A health care facility is monitoring daily expenditures for a certain diagnosis-related

group (DRG). Individual observations are selected. After 50 samples, the average and
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standard deviation of daily expenditures (in hundreds of dollars) are estimated to be

15 and 2, respectively.

(a) Find the 3σ control limits.

(b) Suppose that Rules 1 and 2 are used simultaneously for the detection of out-of

control conditions. Assuming independence of the rules, what is the overall

probability of a type I error? Explain the meaning of a type I error in this

context.

(c) What is the ARL using Rule 1?

(d) Suppose that the average daily expenditures for the same DRG increases to

$1750.What is the chance of detecting this shift by the second sample drawn after

the shift using Rule 1?

6-21 The turnaround time (TAT) for a certain blood test in a laboratory in a health care

facility is of interest. Themean and standard deviation of a random sample of 100 such

tests are found to be 120 minutes and 20 minutes, respectively. Find the 3σ control

limits for the individual turnaround test time. What are the warning limits? If the

turnaround time for a test is found to be 40 minutes, is the process in control? Should

one consider remedial actions in this situation?

REFERENCES

ASQ (1993). ANSI/ISO/ASQ. Statistics—Vocabulary and Symbols–Statistical Quality Control,

A3534-2. Milwaukee, Wi: American Society for Quality.

Banks, J. (1989). Principles of Quality Control. New York: Wiley.

Besterfield, D. H. (2013). Quality Improvement. 9th ed. Upper Saddle River, N J: Prentice Hall.

Duncan, A. J. (1986). Quality Control and Industrial Statistics. 5th ed. Homewood, IL: Richard

Irwin.

Montgomery, D. C. (2013). Introduction to Statistical Quality Control. 7th ed. Hoboken, NJ: Wiley.

Wadsworth, H.M., K. S. , Stephens, and A. B. Godfrey, (2001).ModernMethods for Quality Control

and Improvement, 2nd ed. New York: Wiley.

Walker, E., J. W. Philpot, and J. Clement (1991). ``False Signal Rates for the Shewhart Control Chart

with Supplementary Runs Tests,” Journal of Quality Technology, 23 (3):247–252.



7
CONTROL� CHARTS� FOR� VARIABLES

7-1 Introduction and chapter objectives

7-2 Selection of characteristics for investigation

7-3 Preliminary decisions

7-4 Control charts for the mean and range

7-5 Control charts for the mean and standard deviation

7-6 Control charts for individual units

7-7 Control charts for short production runs

7-8 Other control charts

7-9 Risk-adjusted control charts

7-10 Multivariate control charts

Summary
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μ Process (or population) mean ki Standardized value for range of sample
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σ Process (or population) standard σ0 Target or standard value of process

deviation standard deviation

σ̂ Estimate of process standard deviation σX Standard deviation of the sample mean

X Sample average

R Sample range Sm Cumulative sum at sample number m

s Sample standard deviation w Span, or width, in calculation of moving

average

n Sample or subgroup size

Xi ith observation X Mean of sample means

W Relative range R Mean of sample ranges

g Number of samples or subgroups Gt Geometric moving average at time t

X0 Target or standard value of process mean Mt Arithmetic moving average at time t

T2 Hotelling’s T2 multivariate statistic

Zi Standardized value for average of sample MR Moving range

number i

pn Predicted pre-operative mortality risk for Wn Risk-adjusted weight function for

patient n patient n
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7-1 INTRODUCTION AND CHAPTER OBJECTIVES

In Chapter 6 we introduced the fundamentals of control charts. In this chapter we look at the

details of control charts for variables—quality characteristics that are measurable on a

numerical scale. Examples of variables include length, thickness, diameter, breaking

strength, temperature, acidity, viscosity, order-processing time, time tomarket a newproduct,

and waiting time for service. We must be able to control the mean value of a quality

characteristic aswell as its variability. Themean gives an indication of the central tendency of

a process, and the variability provides an idea of the process dispersion. Therefore, we need

information about both of these statistics to keep a process in control.

Let’s consider Figure 7-1. A change in the process mean of a quality characteristic (say,

length of a part) is shown in Figure 7-1a, where themean shifts from μ0 to μ1. It is, of course,

important that this change be detected because if the specification limits are as shown in

Figure 7-1a, a change in the process mean would change the proportion of parts that do not

meet specifications. Figure 7-1b shows a change in the dispersion of the process; the process

standarddeviation has changed fromσ0 toσ1,with the processmean remaining stationary at

μ0. Note that the proportion of the output that does not meet specifications has increased.

Control charts aid in detecting such changes in process parameters.

Variables provide more information than attributes. Attributes deal with qualitative

information such as whether an item is nonconforming or what the number of nonconfor

mities in an item is. Thus, attributes do not show the degree to which a quality characteristic

FIGURE 7-1 Changes in the mean and dispersion of a process.
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is nonconforming. For instance, if the specifications on the length of a part are 40± 0.5mm

and a part has length 40.6mm, attribute information would indicate as nonconforming

both this part and a part of length 42mm. The degree to which these two lengths deviate from

the specifications is lost in attribute information. This is not so with variables, however,

because the numerical value of the quality characteristic (length, in this case) is used in

creating the control chart.

The cost of obtaining variable data is usually higher than that for attributes because

attribute data are collected by means such as go/no-go gages, which are easier to use and

therefore less costly. The total cost of data collection is the sum of two components: the fixed

cost and the variable unit cost. Fixed costs include the cost of the inspection equipment;

variable unit costs include the cost of inspectingunits.Themoreunits inspected, thehigher the

variable cost, whereas the fixed cost is unaffected. As the use of automated devices for

measuring quality characteristic values spreads, the difference in the variable unit cost

between variables and attributes may not be much. However, the fixed costs, such as

investment costs, may increase.

In health care applications, the severity of illness of patients and consequently the pre

operative mortality rate for surgical patients, say, in an intensive care unit may vary from

patient to patient. Risk-adjusted control charts are introduced in this concept. Some of the

charts discussed are the risk-adjusted cumulative sum chart, the risk-adjusted sequential

probability ratio test, the risk-adjusted exponentiallyweightedmoving-average chart, and the

variable life-adjusted display chart.

7-2 SELECTION OF CHARACTERISTICS FOR INVESTIGATION

In small organizations as well as in large ones, many possible product and process quality

characteristics exist. A single component usually has several quality characteristics, such as

length, width, height, surfacefinish, and elasticity. In fact, the number of quality characteristics

that affect a product is usually quite large.Nowmultiply such a number by even a small number

of products and the total number of characteristics quickly increases to an unmanageable value.

It is normally not feasible to maintain a control chart for each possible variable.

Balancing feasibility and completeness of information is an ongoing task. Accomplishing

it involves selecting a few vital quality characteristics from the many candidates. Selecting

which quality characteristics to maintain control charts on requires giving higher priority to

those that cause more nonconforming items and that increase costs. The goal is to select the

“vital few” fromamong the “trivialmany.” This iswherePareto analysis comes in because it

clarifies the “important” quality characteristics.

When nonconformities occur because of different defects, the frequency of each defect can

be tallied. Table 7-1 shows the Pareto analyses for various defects in an assembly. Alterna

tively, the cost of producing the nonconformity could be collected. Table 7-1 shows that the

three most important defects are the inside hub diameter, the hub length, and the slot depth.

Using the percentages given in Table 7-1, we can construct a Pareto diagram like the one

shown in Figure 7-2. The defects are thus shown in a nonincreasing order of occurrence. From

thefigurewecan see that ifwehaveonly enough resources to construct three variable charts,we

will choose inside hub diameter (code 4), hub length (code 3), and slot depth (code 7).

Once quality characteristics for which control charts are to be maintained have been

identified, a scheme for obtaining the data should be set up. Quite often, it is desirable

to measure process characteristics that have a causal relationship to product quality
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TABLE 7-1 Pareto Analysis of Defects for Assembly Data

Defect Code Defect Frequency Percentage

1 Outside diameter of hub 30 8.82

2 Depth of keyway 20 5.88

3 Hub length 60 17.65

4 Inside diameter of hub 90 26.47

5 Width of keyway 30 8.82

6 Thickness of flange 40 11.77

7 Depth of slot 50 14.71

8 Hardness (measured by Brinell 20 5.88

hardness number)

FIGURE 7-2 Pareto diagram for assembly data.

characteristics. Process characteristics are typically controlled directly throughcontrol charts.

In the assembly example of Table 7-1, we might decide to monitor process variables (cutting

speed, depth of cut, and coolant temperature) that have an impact on hubdiameter, hub length,

and slot depth. Monitoring process variables through control charts implicitly controls

product characteristics.

7-3 PRELIMINARY DECISIONS

Certain decisions must bemade before we can construct control charts. Several of these were

discussed in detail in Chapter 6.

Selection of Rational Samples

The manner in which we sample the process deserves our careful attention. The sampling

method should maximize differences between samples and minimize differences within

samples. This means that separate control charts may have to be kept for different operators,

machines, or vendors.

Lots fromwhich samples are chosen should be homogeneous. Asmentioned in Chapter 6,

if our objective is to determine shifts in process parameters, samples should be made up of

items produced at nearly the same time. This gives us a time reference andwill be helpful ifwe
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need to determine special causes.Alternatively, if we are interested in the nonconformance of

items produced since the previous samplewas selected, samples should be chosen from items

produced since that time.

Sample Size

Sample sizes are normallybetween4and10, and it is quite common in industry tohave sample

sizes of 4 or 5. The larger the sample size, the better the chance of detecting small shifts. Other

factors, such as cost of inspection or cost of shipping a nonconforming item to the customer,

also influence the choice of sample size.

Frequency of Sampling

The sampling frequency depends on the cost of obtaining information compared to the cost of

not detecting a nonconforming item. As processes are brought into control, the frequency of

sampling is likely to diminish.

Choice of Measuring Instruments

The accuracy of themeasuring instrument directly influences the quality of the data collected.

Measuring instruments should be calibrated and tested for dependability under controlled

conditions. Low-quality data lead to erroneous conclusions. The characteristic being

controlled and the desired degree of measurement precision both have an impact on the

choice of a measuring instrument. In measuring dimensions such as length, height, or

thickness, something as simple as a set of calipers or a micrometer may be acceptable. On the

other hand, measuring the thickness of silicon wafers may require complex optical sensory

equipment.

Design of Data Recording Forms

Recording forms should bedesigned in accordancewith the control chart to beused.Common

features for data recording forms include the sample number, the date and time when the

sample was selected, and the raw values of the observations. A column for comments about

the process is also useful.

7-4 CONTROL CHARTS FOR THE MEAN AND RANGE

Development of the Charts

Step 1: Using a pre-selected sampling scheme and sample size, record on the appropriate

forms the measurements of the quality characteristic selected.

Step 2: For each sample, calculate the sample mean and range using the following formulas:

Xi
i�1

X � �7-1� 
n

n

R � Xmax � Xmin �7-2� 
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where Xi represents the ith observation, n is the sample size, Xmax is the largest observation,

and Xmin is the smallest observation.

Step 3: Obtain and draw the centerline and the trial control limits for each chart. For the

X-chart, the centerline X is given by

Xi
i�1

X � �7-3� 
g

where g represents the number of samples. For the R-chart, the centerline R is found from

Ri

X

R � i�1 �7-4� 
g

Conceptually, the 3σ control limits for the X-chart are

X � 3σ �7-5� 
Rather than compute σ x from the raw data, we can use the relation between the process

standard deviation σ (or the standard deviation of the individual items) and the mean of the

ranges �R�. Multiplying factors used to calculate the centerline and control limits are given in

AppendixA-7.When sampling fromapopulation that is normally distributed, the distribution

of the statisticW=R/σ (known as the relative range) is dependent on the sample size n. The

mean of W is represented by d2 and is tabulated in Appendix A-7. Thus, an estimate of the

process standard deviation is

R �7-6� 
d2

The control limits for an X-chart are therefore estimated as

g

g

σ � 

3σ�UCL ;LCL � � X �p
X X

n

3R� X �p
nd2

�UCL ; LCL � � X � A2R �7-7�X X

p
where A2 � 3= n d2 and is tabulated in Appendix A-7. Equation (7-7) is the working

equation for determining the X-chart control limits, given R.

The control limits for the R-chart are conceptually given by

�UCLR; LCLR� � R � 3σR �7-8� 

Since R= σW, we have σR= σσw. In Appendix A-7, σw is tabulated as d3. Using eq. (7-6),

we get

R
d3

d2
σR � 



CONTROL CHARTS FOR THE MEAN AND RANGE 305

The control limits for the R-chart are estimated as

R
UCLR � R � 3d3 � D4R

d2
�7-9� 

R
LCLR � R � 3d3 � D3R

d2

where
3d3 3d3

D4 � 1 � and D3 � max 0; 1 � 
d2 d2

Equation (7-9) is the working equation for calculating the control limits for the R-chart.

Values of D4 and D3 are tabulated in Appendix A-7.

Step 4: Plot the values of the range on the control chart for range, with the centerline and the

control limits drawn. Determine whether the points are in statistical control. If not,

investigate the special causes associated with the out-of-control points (see the rules

for this in Chapter 6) and take appropriate remedial action to eliminate special causes.

Typically, only some of the rules are used simultaneously. The most commonly used

criterion for determining an out-of-control situation is the presence of a point outside the

control limits.

AnR-chart is usually analyzed before anX-chart to determine out-of-control situations.AnR-

chart reflects process variability, which should be brought into control first. As shown by

eq. (7-7), the control limits for anX-chart involve the process variability and henceR. Therefore,

if anR-chart shows an out-of-control situation, the limits on theX-chart may not bemeaningful.

Let’s considerFigure 7-3.On theR-chart, sample 12plots above theupper control limit and so

is out of control. The X-chart, however, does not show the process to be out of control. Suppose

that the special cause is identified as a problem with a new vendor who supplies raw materials

and components. The task is to eliminate the cause, perhaps by choosing a new vendor or

requiring evidence of statistical process control at the vendor’s plant.

Step 5: Delete the out-of-control point(s) for which remedial actions have been taken to

remove special causes (in this case, sample 12) and use the remaining samples (here

they are samples 1–11 and 13–15) to determine the revised centerline and control

limits for the X- and R-charts.

These limits are known as the revised control limits. The cycle of obtaining information,

determining the trial limits, finding out-of-control points, identifying and correcting special

causes, and determining revised control limits then continues. The revised control limits will

serve as trial control limits for the immediate future until the limits are revised again. This

ongoing process is a critical component of continuous improvement.

A point of interest regarding the revision of R-charts concerns observations that plot below

the lower control limit, when the lower control limit is greater than zero. Such points that fall

below LCLR are, statistically speaking, out of control; however, they are also desirable

because they indicate unusually small variability within the sample which is, after all, one of

our main objectives. It is most likely that such small variability is due to special causes.

If the user is convinced that the small variability does indeed represent the operating state of

the process during that time, an effort should bemade to identify the causes. If such conditions

can be created consistently, process variability will be reduced. The process should be set to

match those favorable conditions, and the observations should be retained for calculating the

revised centerline and the revised control limits for the R-chart.



FIGURE 7-3 Plot of sample values on X- and R-charts.
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Step 6: Implement the control charts.

The X- and R-charts should be implemented for future observations using the revised

centerline and control limits. The charts should be displayed in a conspicuous placewhere they

will be visible to operators, supervisors, and managers. Statistical process control will

beeffectiveonly if everyone is committed to it—fromtheoperator to the chief executiveofficer.

Example 7-1 Consider a process by which coils are manufactured. Samples of size 5 are

randomly selected from the process, and the resistance values (in ohms) of the coils are

measured. The data values are given in Table 7-2, as are the sample mean X and the range

R. First, the sum of the ranges is found and then the centerline R. We have
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TABLE 7-2 Coil Resistance Data

Sample Observation (Ω) X R Comments

1 20, 22, 21, 23, 22 21.60 3

2 19, 18, 22, 20, 20 19.80 4

3 25, 18, 20, 17, 22 20.40 8 New vendor

4 20, 21, 22, 21, 21 21.00 2

5 19, 24, 23, 22, 20 21.60 5

6 22, 20, 18, 18, 19 19.40 4

7 18, 20, 19, 18, 20 19.00 2

8 20, 18, 23, 20, 21 20.40 5

9 21, 20, 24, 23, 22 22.00 4

10 21, 19, 20, 20, 20 20.00 2

11 20, 20, 23, 22, 20 21.00 3

12 22, 21, 20, 22, 23 21.60 3

13 19, 22, 19, 18, 19 19.40 4

14 20, 21, 22, 21, 22 21.20 2

15 20, 24, 24, 23, 23 22.80 4

16 21, 20, 24, 20, 21 21.20 4

17 20, 18, 18, 20, 20 19.20 2

18 20, 24, 22, 23, 23 22.40 4

19 20, 19, 23, 20,19 20.20 4

20 22, 21, 21, 24, 22 22.00 3

21 23, 22, 22, 20, 22 21.80 3

22 21, 18, 18, 17, 19 18.60 4 High temperature

23 21, 24, 24, 23, 23 23.00 3 Wrong die

24 20, 22, 21, 21, 20 20.80 2

25 19, 20, 21, 21, 22 20.60 3

Sum= 521.00 Sum= 87

Ri
87i�1

R � � � 3:48
g 25

For a sample of size 5, Appendix A-7 givesD4= 2.114 andD3= 0. The trial control limits

for the R-chart are calculated as follows:

UCLR � D4R � �2:114��3:48� � 7:357
LCLR � D3R � �0��3:48� � 0

The centerline on the X-chart is obtained as follows:

Xi
521:00i�1

X � � � 20:840
g 25

g

g



FIGURE 7-4 X- and R-charts for data on coil resistance using Minitab.
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Appendix A-7, for n= 5, gives A2= 0.577. Hence, the trial control limits on the X-charts

are

UCL � X � A2R � 20:84 � �0:577��3:48� � 22:848X

LCL � X � A2R � 20:84 � �0:577��3:48� � 18:832X

We can useMinitab to construct trialX- andR-charts for the data in Table 7-2.Choose Stat

> Control Charts > Variables Charts for subgroups > X bar-R. Indicate whether the

subgroups are arranged in a single column or in rows, input, in this case column numbers C1 to

C5, since in the worksheet for this example a subgroup is entered as a row across five columns,

Click onXbar-Rchart options, selectEstimate, andunderMethod for estimating standard

deviation, select Rbar. Click OK. Figure 7-4 shows the Minitab X- and R-charts with 3σ

limits. Observe that sample 3 is above the upper control limit on theR-chart and samples 22 and

23 are below and above the X-chart control limit, respectively. When the special causes for

these three samples were investigated, operators found that the large value for the range in

sample3was due to the quality of rawmaterials and components purchased fromanewvendor.

Management decided to require the new vendor to provide documentation showing that

adequate control measures are being implemented at the vendor’s plant and that subsequent

deliveries of raw materials and components will conform to standards.

When the special causes for samples 22 and 23 were examined, operators found that the

oven temperature was too high for sample 22 and the wrong die was used for sample 23.

Remedial actions were taken to rectify these situations.

With samples 3, 22, and 23 deleted, the revised centerline on the R-chart is

72
R � � 3:273

22

The revised control limits on the R-chart are

UCLR � D4R � �2:114��3:273� � 6:919

LCLR � D3R � �0��3:273� � 0



CONTROL CHARTS FOR THE MEAN AND RANGE 309

The revised centerline on the X-chart is

459
X � � 20:864

22

The revised control limits on the X-chart are

UCL � X � A2R � 20:864 � �0:577��3:273� � 22:753X

LCL � X � A2R � 20:864 � �0:577��3:273� � 18:975X

Note that sample 15 falls slightly above the upper control limit on the X-chart. On further

investigation, no special causes could be identified for this sample. So, the revised limits will

be used for future observations until a subsequent revision takes place.

Variable Sample Size

So far, our sample size has been assumed to be constant. A change in the sample size has an

impact on the control limits for theX- andR-charts. It can be seen fromeqs. (7-7) and (7-9) that

an increase in the sample size n reduces the width of the control limits. For an X-chart, the

width of the control limits from the centerline is inversely proportional to the square root of the

sample size. Appendix A-7 shows the pattern in which the values of the control chart factors

A2, D4, and D3 decrease with an increase in sample size.

Standardized Control Charts

When the sample size varies, the control limits on an X- and an R-chart will change, as

discussed previously. With fluctuating control limits, the rules for identifying out-of-control

conditions we discussed in Chapter 6 become difficult to apply—that is, except for Rule 1

(which assumes a process to be out of control when an observation plots outside the control

limits). One way to overcome this drawback is to use a standardized control chart. When we

standardize a statistic, we subtract its mean from its value and divide this value by its standard

deviation. The standardized values then represent the deviation from the mean in units of

standard deviation. They are dimensionless and have a mean of zero. The control limits on a

standardized chart are at ±3 and are therefore constant. It’s easier to interpret shifts in the

process from a standardized chart than from a chart with fluctuating control limits.

Let the sample size for sample i be denoted by ni, and let Xi and si denote its average and

standard deviation, respectively. The mean of the sample averages is found as

g

niXi
i�1

X � �7-10� g

ni
i�1

An estimate of the process standard deviation, σ, is the square root of the weighted average

of the sample variances, where the weights are 1 less the corresponding sample sizes. So,

g
2�ni � 1�si

i�1
σ � �7-11� g

�ni � 1� 
i�1
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Now, for sample i, the standardized value for the mean, Zi, is obtained from

Xi � Xp �7-12�Zi � 
σ= ni

where X and σ are given by eqs. (7-10) and (7-11), respectively. A plot of the Zi-values on a

control chart, with the centerline at 0, the upper control limit at 3, and the lower control limit at

�3, represents a standardized control chart for the mean.

To standardize the range chart, the rangeRi for sample i isfirst dividedby the estimate of the

process standard deviation, σ, given by eq. (7-11), to obtain

ri � Ri=σ �7-13� 

The values of ri are then standardized by subtracting its mean d2 and dividing by its

standard deviation d3 (Nelson 1989). The factors d2 and d3 are tabulated for various sample

sizes in Appendix A-7. So, the standardized value for the range, ki, is given by

ki � ri � d2 �7-14� 
d3

These values of ki are plotted on a control chart with a centerline at 0 and upper and lower

control limits at 3 and �3, respectively.

Control Limits for a Given Target or Standard

Management sometimeswants to specify values for the processmean and standard deviation.

These valuesmay represent goals or desirable standard or target values.Control charts based

on these target values help determine whether the existing process is capable of meeting the

desirable standards. Furthermore, they also help management set realistic goals for the

existing process.

Let X0 and σ0 represent the target values of the process mean and standard deviation,

respectively. The centerline and control limits based on these standard values for the X-chart

are given by
CLX � X0

UCLX � X0 � 3 σ0

n
p 

�7-15� 
LCLX � X0 � 3 σ0

n
p 

p
Let A � 3= n. Values for A are tabulated in Appendix A-7. Equation (7-15) may be

rewritten as
CL � X0X

UCL � X0 � Aσ0 �7-16�
X

LCL � X0 � Aσ0X

For the R-chart, the centerline is found as follows, Since σ � R=d2, we have

CLR � d2σ0 �7-17� 
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where d2 is tabulated in Appendix A-7. The control limits are

UCLR � R � 3σR � d2σ0 � 3d3σ0 �7-18� � �d2 � 3d3�σ0 � D2σ0

where D2= d2+ 3d3 (Appendix A-7) and σR= d3σ.

Similarly,

LCLR � R � 3σR � d2σ0 � 3d3σ0 �7-19� � �d2 � 3d3�σ0 � D1σ0

where D1= d2� 3d3 (Appendix A-7).

We must be cautious when we interpret control charts based on target or standard values.

Sample observations can fall outside the control limits even though no special causes are

present in the process. This is because these desirable standardsmaynot be consistentwith the

process conditions. Thus, we could waste time and resources looking for special causes that

do not exist.

On an X-chart, plotted points can fall outside the control limits because a target process

mean is specified as too high or too low compared to the existing process mean. Usually, it is

easier tomeet a desirable target value for the processmean than it is for the process variability.

For example, adjusting the mean diameter or length of a part can often be accomplished by

simply changing controllable process parameters.However, correcting forR-chart points that

plot above the upper control limit is generally much more difficult.

An R-chart based on target values can also indicate excessive process variability without

special causes present in the system. Therefore, meeting the target value σ0 may involve

drastic changes in theprocess. Such anR-chartmaybe implying that the existingprocess is not

capable ofmeeting the desired standard. This information enablesmanagement to set realistic

goals.

Example 7-2 Refer to the coil resistance data in Example 7-1. Let’s suppose that the target

values for the average resistance and standard deviation are 21.0 and 1.0Ω, respectively. The

sample size is 5. The centerline and the control limits for the X-chart are as follows:

CL � X0 � 21:0X

UCL � X0 � Aσ0 � 21:0 � �1:342��1:0� � 22:342X

LCL � X0 � Aσ0 � 21:0 � �1:342��1:0� � 19:658X

The centerline and control limits for the R-chart are

CLR � d2σ0 � �2:326��1:0� � 2:326
UCLR � D2σ0 � �4:918��1:0� � 4:918
LCLR � D1σ0 � �0��1:0� � 0

Figure 7-5 shows the control chart for the range based on the standard value. Since the

control charts were revised in Example 7-1, we plot the 22 in-control samples and exclude

samples 3, 22, and 23 because we are assuming that remedial actions have eliminated those

causes. Now we can see how close the in-control process comes to meeting the stipulated

target values.

The process seems to be out of control with respect to the given standard. Samples 5 and 8

are above the upper control limit, and amajority of the points lie above the centerline.Only six
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FIGURE 7-5 R-chart based on a standard value.

σ � 

of the points plot below the centerline. Figure 7-5 thus reveals that the process is not capable of

meeting company guidelines. The target standard deviation σ0 is 1.0. The estimated process

standard deviation from Example 7-1 (calculated after the process was brought to control) is

R 3:50� � 1:505
d2 2:326

This estimate exceeds the target value of l.0.Management must look at common causes to

reduce the process variability if the standard is to met. This may require major changes in the

methods of operation, the incoming material, or the equipment. Process control will not be

sufficient to achieve the desired target.

TheX-chart based on the standard value is shown in Figure 7-6. Several points fall outside

the control limits—four points below and two points above. In Example 7-1, the revised

centerline for theX-chart was found to be 20.864.Our target centerline is now21.0.Adjusting

controllable process parameters could possibly shift the average level up to 21.0. However,

the fact that there are points outside both the upper and lower control limits signifies that

process variability is the issue here.
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Common causes must be examined: That is, reducing variability will only be achieved

through process improvement. Figure 7-6 indicates that the target standard deviation of 1.0 is

not realistic for the current process. Unless management makesmajor changes in the process,

the target valuewill not bemet.Actions on the part of the operators alone are unlikely to cause

the necessary reduction in process variability.

Interpretation and Inferences from the Charts

The difficult part of analysis is determining and interpreting the special causes and selecting

remedial actions. Effective use of control charts requires operators who are familiar with not

only the statistical foundations of control charts but also the process itself. They must

thoroughly understand how the different controllable parameters influence the dependent

variable of interest. The quality assurance manager or analyst should work closely with the

product design engineer and the process designer or analyst to come upwith optimal policies.

In Chapter 6 we discussed five rules for determining out-of-control conditions. The

presence of a point falling outside the 3σ limits is the most widely used of those rules.

Determinations can also be made by interpreting typical plot patterns. Once the special

cause is determined, this information plus a knowledge of the plot can lead to appropriate

remedial actions.

Often, when the R-chart is brought to control, many special causes for the-X-chart are

eliminated aswell. TheX-chartmonitors the centering of the process becauseX is ameasure of

the center. Thus, a jump on the X-chart means that the process average has jumped and an

increasing trend indicates the process center is gradually increasing. Process centering usually

takes place through adjustments in machine settings or such controllable parameters as proper

tool, proper depth of cut, or proper feed. On the other hand, reducing process variability to

allow an R-chart to exhibit control is a difficult task that is accomplished through quality

improvement.

Once a process is in statistical control, its capability can be estimated by calculating the

process standard deviation. This measure can then be used to determine how the process

performswith respect to some stated specification limits. Theproportion ofnonconforming

items can be estimated. Depending on the characteristic being considered, some of the output

may be reworked, while somemay become scrap. Given the unit cost of rework and scrap, an

estimate of the total cost of rework and scrap can be obtained. Process capabilitymeasures

are discussed in more detail in Chapter 9. From an R-chart that exhibits control, the process

standard deviation can be estimated as

R

d2

where R is the centerline and d2 is a factor tabulated in Appendix A-7. If the distribution of

the quality characteristic can be assumed to be normal, then given some specification limits,

the standard normal table can be used to determine the proportion of output that is

nonconforming.

Example 7-3 Refer to the coil resistance data in Example 7-1. Suppose that the specifica

tions are 21± 3Ω.

(a)	 Determine the proportion of the output that is nonconforming, assuming that coil

resistance is normally distributed.

σ � 
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FIGURE 7-7 Proportion of nonconforming output.

σ � 

Solution From the revisedR-chart,we found the centerline to beR � 3:50.The estimated

process standard deviation is

R 3:50� � 1:505
d2 2:236

The revised centerline on the X-chart is X � 20:864, which we use as an estimate of the

process mean. Figure 7-7 shows the proportion of the output that is nonconforming. The

standardized normal value at the lower specification limit (LSL) is found as

18 � 20:864
z1 � � �  1:90

1:505

The standardized normal value at the upper specification limit (USL) is

24 � 20:864
z2 � � 2:08

1:505

From Appendix A-3 we find that the proportion of the product below the LSL is 0.0287,

and the proportion above the USL is 0.0188. Thus, the total proportion of nonconforming

output is 0.0475.

(b)	 If the daily production rate is 10,000 coils and if coils with a resistance less than the

LSL cannot be used for the desired purpose, what is the loss to the manufacturer if the

unit cost of scrap is 50 cents?

Solution The daily cost of scrap is

�10; 000��0:0287��$0:50� �  $143:50



FIGURE 7-8 Natural pattern for an in-control process on an X-chart.
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Control Chart Patterns and Corrective Actions

Anonrandom identifiable pattern in the plot of a control chart might provide sufficient reason

to look for special causes in the system.Commoncausesofvariation are inherent to a system;

a system operating under only common causes is said to be in a state of statistical control.

Special causes, however, could be due to periodic and persistent disturbances that affect the

process intermittently. The objective is to identify the special causes and take appropriate

remedial action.

Western Electric Company engineers have identified 15 typical patterns in control charts.

Your ability to recognize these patterns will enable you to determinewhen action needs to be

taken and what action to take (AT&T 1984). We discuss 9 of these patterns here.

Natural Patterns A natural pattern is one in which no identifiable arrangement of the

plotted points exists. No points fall outside the control limits, the majority of the points are

near the centerline, and few points are close to the control limits. Natural patterns are

indicative of a process that is in control; that is, they demonstrate the presence of a stable

system of common causes. A natural pattern is shown in Figure 7-8.

Sudden Shifts in the Level Many causes can bring about a sudden change (or jump) in

pattern level on an X- or R-chart. Figure 7-9 shows a sudden shift on an X-chart. Such jumps

occur becauseof changes—intentional or otherwise—in suchprocess settings as temperature,

pressure, or depth of cut.A sudden change in the average service level, for example, could be a

change in customer waiting time at a bank because the number of tellers changed. New

operators, new equipment, new measuring instruments, new vendors, and new methods of

processing are other reasons for sudden shifts on X- and R-charts.

Gradual Shifts in the Level Gradual shifts in level occurwhenaprocessparameter changes

gradually over a period of time. Afterward, the process stabilizes. An X-chart might exhibit

such a shift because the incoming quality of rawmaterials or components changed over time,

the maintenance program changed, or the style of supervision changed. An R-chart might



FIGURE 7-9 Sudden shift in pattern level on an X-chart.

FIGURE 7-10 Gradual shift in pattern level on an X-chart.
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exhibit such a shift because of a new operator, a decrease in worker skill due to fatigue or

monotony, or a gradual improvement in the incoming quality of raw materials because a

vendor has implemented a statistical process control system. Figure 7-10 shows an X-chart

exhibiting a gradual shift in the level.

Trending Pattern Trends differ from gradual shifts in level in that trends do not stabilize or

settle down. Trends represent changes that steadily increase or decrease. An X-chart may

exhibit a trend because of tool wear, die wear, gradual deterioration of equipment, buildup

of debris in jigs and fixtures, or gradual change in temperature. AnR-chart may exhibit a trend

because of a gradual improvement in operator skill resulting from on-the-job training or a

decrease in operator skill due to fatigue. Figure 7-11 shows a trending pattern on an X-chart.



FIGURE 7-11 Trending pattern on an X-chart.

FIGURE 7-12 Cyclic pattern on an X-chart.

CONTROL CHARTS FOR THE MEAN AND RANGE 317

Cyclic Patterns Cyclic patterns are characterized by a repetitive periodic behavior in the

system.Cycles of lowandhigh pointswill appear on the control chart.AnX-chartmay exhibit

cyclic behavior because of a rotation of operators, periodic changes in temperature and

humidity (such as a cold-morning startup), periodicity in the mechanical or chemical

properties of the material, or seasonal variation of incoming components. An R-chart

may exhibit cyclic patterns because of operator fatigue and subsequent energization

following breaks, a difference between shifts, or periodic maintenance of equipment.

Figure 7-12 shows a cyclic pattern for an X-chart. If samples are taken too infrequently,

only the high or the low points will be represented, and the graph will not exhibit a cyclic

pattern. If control chart users suspect cyclic behavior, they should take samples frequently to

investigate the possibility of a cyclic pattern.



FIGURE 7-13 Freak pattern on an X-chart.
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Wild Patterns Wild patterns are divided into two categories: freaks and bunches (or

groups). Control chart points exhibiting either of these two properties are, statistically

speaking, significantly different from the other points. Special causes are generally

associated with these points.

Freaks are causedby external disturbances that influence oneormore samples. Figure 7-13

shows a control chart exhibiting a freak pattern. Freaks are plotted points too small or too

large with respect to the control limits. Such points usually fall outside the control limits

and are easily distinguishable from the other points on the chart. It is often not difficult to

identify special causes for freaks. You should make sure, however, that there is no

measurement or recording error associated with the freak point. Some special causes of

freaks include sudden, very short-lived power failures; the use of a new tool for a brief test

period; and the failure of a component.

Bunches, or groups, are clusters of several observations that are decidedly different from

other points on the plot. Figure 7-14 shows a control chart pattern exhibiting bunching

behavior. Possible special causes of such behavior include the use of a new vendor for a short

period time, useof adifferentmachine for abrief timeperiod, andnewoperator used for a short

period.

Mixture Patterns (or the Effect of Two orMore Populations) Amixture pattern is caused

by the presence of two or more populations in the sample and is characterized by points that

fall near the control limits,with an absence of points near the centerline.Amixture pattern can

occur when one set of values is too high and another set too low because of differences in the

incoming quality ofmaterial from two vendors.A remedial actionwould be to have a separate

control chart for each vendor. Figure 7-15 shows a mixture pattern. On an X-chart, a mixture

pattern can also result from overcontrol. If an operator chooses to adjust the machine or

process every time a point plots near a control limit, the result will be a pattern of large swings.

Mixture patterns can also occur on both X- and R-charts because of two or more machines

being represented on the same control chart. Other examples include two or more operators



FIGURE 7-14 Bunching pattern on an X-chart.

FIGURE 7-15 Mixture pattern on an X-chart.
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being represented on the same chart, differences in two ormore pieces of testing ormeasuring

equipment, and differences in production methods of two or more lines.

Stratification Patterns A stratification pattern is another possible result when two or more

population distributions of the same quality characteristic are present. In this case, the output

is combined, ormixed (say, from two shifts), and samples are selected from themixed output.

In this pattern, the majority of the points are very close to the centerline, with very few points

near the control limits, Thus, the plot can be misinterpreted as indicating unusually good

control. A stratification pattern is shown in Figure 7-16. Such a plot could have resulted from

plotting data for samples composed of the combined output of two shifts, each different in its

performance. It is possible for the sample average (which is really the average of parts chosen



FIGURE 7-16 Stratifications pattern on an X-chart.
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from both shifts) to fluctuate very little, resulting in a stratification pattern in the plot.

Remedial measures in such situations involve having separate control charts for each shift.

The method of choosing rational samples should be carefully analyzed so that component

distributions are not mixed when samples are selected.

Interaction Patterns An interaction pattern occurswhen the level of one variable affects the

behavior of other variables associated with the quality characteristic of interest. Furthermore,

the combined effect of two or more variables on the output quality characteristic may be

different from the individual effect of each variable. An interaction pattern can be detected by

changing the scheme for rational sampling. Suppose that in a chemical process the temperature

andpressure are two important controllablevariables that affect theoutputquality characteristic

of interest. A low pressure and a high temperature may produce a very desirable effect on the

output characteristic, whereas a low pressure by itself may not have that effect. An effective

sampling method would involve controlling the temperature at several high values and then

determining the effect of pressure on the output characteristic for each temperature value.

Samplescomposedof randomcombinationsof temperatureandpressuremay fail to identify the

interactive effect of those variables on the output characteristic. The control chart inFigure7-17

shows interactionbetweenvariables. In thefirst plot, the temperaturewasmaintainedat levelA;

in the secondplot, itwas held at level B.Note that the average level and variability of the output

characteristic change for the two temperature levels. Also, if the R-chart shows the sample

ranges to be small, information regarding the interaction could be used to establish desirable

process parameter settings.

Control Charts for Other Variables The control chart patterns described in this section

also occur in control charts besides X- and R-charts. When found in other types of control

charts, these patternsmay indicate different causes than thosewe discussed in this section, but

similar reasoning can be used to determine them. Furthermore, both the preliminary

considerations and the steps for constructing control charts described earlier also apply to

other control charts.



FIGURE 7-17 Interaction pattern between variables on an X-chart.
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7-5 CONTROL CHARTS FOR THE MEAN AND STANDARD DEVIATION

Although an R-chart is easy to construct and use, a standard deviation chart (s-chart) is

preferable for larger sample sizes (equal to or greater than 10, usually). As mentioned in

Chapter 4, the range accounts for only the maximum and minimum sample values and

consequently is less effective for large samples. The sample standard deviation serves as a

bettermeasure of process variability in these circumstances. The sample standard deviation

is given by

s � 

n

i�1
�Xi � X�2

n � 1

� 

n

i�1
X2
i � 

n

i�1
Xi

2

=n

n � 1

�7-20� 

�7-21� 

If the population distribution of a quality characteristic is normal with a population

standard deviation denoted by σ, the mean and standard deviation of the sample standard

deviation are given by

E�s� �  c4σ �7-22� 

2σs � σ 1 � c �7-23�4

respectively, where c4 is a factor that depends on the sample size and is given by

2
1=2

Γ�n=2� �7-24�c4 � 
n � 1 Γ��n � 1�=2� 

Values of c4 are tabulated in Appendix A-7.
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No Given Standards

The centerline of a standard deviation chart is

si

CLs � s � i�1 �7-25� 
g

where g is the number of samples and si is the standard deviation of the ith sample. The upper

control limit is

2UCLs � s � 3σs � s � 3σ 1 � c4
In accordance with eq. (7-22), an estimate of the population standard deviation σ is

s �7-26� 
c4

g

σ � 

Substituting this estimate of σ in the preceding expression yields

p 
23s �1 � c4� UCLs � s � � B4s

c4
p 

2where B4 � 1 � 3 1 � c =c4 and is tabulated in Appendix A-7. Similarly,4

p
3s �1 � c24� LCLs � s � � B3s

c4

p 
2where B3 � max 0; 1 � 3 1 � c =c4 and is also tabulated in Appendix A-7. Thus, the4

3σ control limits are

UCLs � B4s; LCLs � B3s �7-27� 

The centerline of the chart for the mean X is given by

Xi
i�1

CLX � X � �7-28� 
g

The control limits on the X-chart are

3σ
X � 3σ � X �p

X
n

g

Using eq. (7-26) to obtain σ, we find the control limits to be

3s
UCL � X � p � X � A3sX

c4 n

3s
LCL � X � p � X � A3s �7-29�X

c4 n

p
where A3 � 3=�c4 n� and is tabulated in Appendix A-7.
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The process of constructing trial control limits, determining special causes associated with

out-of-control points, taking remedial actions, and finding the revised control limits is similar

to that explained in the section on X- and R-charts. The s-chart is constructed first. Only if it is

in control should the X-chart be developed, because the standard deviation of X is dependent

on s. If the s-chart is not in control, any estimate of the standard deviation of X will be

unreliable, which will in turn create unreliable control limits for X.

Given Standard

If a target standard deviation is specified as σ0, the centerline of the s-chart is found by using

eq. (7-22) as

CLs � c4σ0 �7-30� 

The upper control limit for the s-chart is found by using eq. (7-23) as

p 
2UCLs � c4σ0 � 3σs � c4σ0 � 3σ0 1 � cp 4

2� c4 � 3 1 � c σ0 � B6σ04

p 
2where B6 � c4 � 3 1 � c and is tabulated in Appendix A-7. Similarly, the lower control4

limit for the s-chart is

LCLs � c4 � 3 1 � c24 σ0 � B5σ0

where B5 � max 0; c4 � 3 1 � c24
p 

and is tabulated in Appendix A-7. Thus, the control

limits for the s-chart are

UCLs � B6σ0; LCLs � B5σ0 �7-31� 

If a target value for the mean is specified as X0, the centerline is given by

CLX � X0 �7-32� 

Equations for the control limits will be the same as those given by eq. (7-16) in the section on

X- and R-charts:

UCL � X0 � Aσ0; LCL � X0 � Aσ0 �7-33�X X

p
where A � 3= n and is tabulated in Appendix A-7.

Example 7-4 The thickness of the magnetic coating on audio tapes is an important

characteristic. Random samples of size 4 are selected, and the thickness is measured using

an optical instrument. Table 7-3 shows the mean Xand standard deviation s for 20 samples.

The specifications are 38± 4.5 micrometers (μm). If a coating thickness is less than the

specifications call for, that tape can be used for a different purpose by running it through

another coating operation.

(a) Find the trial control limits for an X- and an s-chart.
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TABLE 7-3 Data for Magnetic Coating Thickness (μm)

Sample Mean, Sample Standard Sample Mean, Sample Standard

Sample X Deviation, s Sample X Deviation, s

1 36.4 4.6 11 36.7 5.3

2 35.8 3.7 12 35.2 3.5

3 37.3 5.2 13 38.8 4.7

4 33.9 4.3 14 39.0 5.6

5 37.8 4.4 15 35.5 5.0

6 36.1 3.9 16 37.1 4.1

7 38.6 5.0 17 38.3 5.6

8 39.4 6.1 18 39.2 4.8

9 34.4 4.1 19 36.8 4.7

10 39.5 5.8 20 37.7 5.4

20

Solution The standard deviation chart must first be constructed. The centerline of the

s-chart is

si
95:80

CLs � s � i�1 � � 4:790
20 20

The control limits for the s-chart are

UCLs � B4s � �2:266��4:790� � 10:854

LCLs � B3s � �0��4:790� � 0

Figure 7-18 shows this standard deviation control chart. None of the points fall outside

the control limits, and the process seems to be in a state of control, so the X-chart is

constructed next. The centerline of the X-chart is

FIGURE 7-18 s-Chart for magnetic coating thickness.



FIGURE 7-19 X-chart for magnetic coating thickness.
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Xi
743:5i�1

CL � X � � � 37:175X 20 20

20

The control limits for the X-chart are

UCL � X � A3s � 37:175 � �1:628��4:790� � 44:973X

LCL � X � A3s � 37:175 � �1:628��4:790� � 29:377X

Figure 7-19 depicts theX-chart. All the points are within the control limits, and no unusual

nonrandom pattern is visible on the plot.

(b) Assuming special causes for the out-of-control points, determine the revised control

limits.

Solution In this case, the revised control limits will be the same as the trial control limits

because we believe that no special causes are present in the system.

(c) Assuming the thickness of the coating to be normally distributed, what proportion of

the product will not meet specifications?

Solution The process standard deviation may be estimated as

s 4:790� � 5:199
c4 0:9213

To find the proportion of the output that does not meet specifications, the standard normal

values at the upper and lower specification limits (USL and LSL)must be found. At the lower

specification limit we get

33:5 � 37:175
z1 � � � 0:71

5:199

σ � 
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The area below the LSL, found by using the standard normal table in Appendix A-3, is

0.2389. Similarly, the standard normal value at the upper specification limit is

42:5 � 37:175
z2 � � 1:02

5:199

From Appendix A-3, the area above the USL is 0.1539. Hence, the proportion of product

not meeting specifications is 0.2389+ 0.1539= 0.3928.

(d) Comment on the ability of the process to produce items that meet specifications.

Solution A proportion of 39.28% of product not meeting specifications is quite high. On

the other hand,we found the process to be in control. This example teaches an important lesson.

It is possible for a process to be in control and still not produce conforming items. In such cases,

management must look for the prevailing common causes and come up with ideas for process

improvement. The existing process is not capable of meeting the stated specifications.

(e) If the process average shifts to 37.8 μm, what proportion of the product will be

acceptable?

Solution If the process average shifts to 37.8 μm, the standard normal values must be

recalculated. At the LSL,

33:5 � 37:8
z1 � � � 0:83

5:199

From the standard normal table in Appendix A-3, the area below the LSL is 0.2033. The

standard normal value at the USL is

42:5 � 37:8
z2 � � 0:90

5:199

The area above the USL is 0.1841. So, the proportion nonconforming is 0.2033+

0.1841 = 0.3874. Although this change in the process average does reduce the proportion

nonconforming, 38.74% nonconforming is still quite significant.

If output that falls below the LSL can be salvaged at a lower expense than that for output

above the USL, the company could consider adjusting the process mean in the downward

direction to reduce the proportion above the USL. Being aware of the unit costs associated

with salvaging output outside the specification limits will enable the company to choose a

target value for the processmean. Keep inmind, though, that this approach does not solve the

basic problem.The underlying problem concerns the process variability. Tomake the process

more capable, we must find ways of reducing the process standard deviation. This cannot

come throughprocess control, because theprocess is currently in a state of statistical control. It

must come through process improvement, some analytical tools of which are discussed at

length in Chapter 5.

7-6 CONTROL CHARTS FOR INDIVIDUAL UNITS

For some situations inwhich the rate of production is low, it is not feasible for a sample size to

be greater than 1. Additionally, if the testing process is destructive and the cost of the item is
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σ � 

expensive, the sample size might be chosen to be 1. Furthermore, if every manufactured unit

from a process is inspected, the sample size is essentially 1. Service applications inmarketing

and accounting often have a sample size of 1.

In a control chart for individual units—for which the value of the quality characteristic is

represented by X—the variability of the process is estimated from themoving range (MR),

found from two successive observations. The moving range of two observations is simply

the result of subtracting the lesser value. Moving ranges are correlated because they use

common rather than independent values in their calculations. That is, the moving range of

observations 1 and 2 correlates with the moving range of observations 2 and 3. Because they

are correlated, the pattern of the MR-chart must be interpreted carefully. Neither can we

assume, as we have in previous control charts, that X-values in a chart for individuals will be

normally distributed. So we must first check the distribution of the individual values. To do

this, we might conduct an initial analysis using frequency histograms to identify the shape of

the distribution, its skewness, and its kurtosis. Alternatively, we could conduct a test for

normality. This information will tell us whether we can make the assumption of a normal

distribution when we establish the control limits.

No Given Standards

An estimate of the process standard deviation is given by

MR

d2

where MR is the average of the moving ranges of successive observations. Note that if we

have a total ofg individual observations, therewill beg� 1moving ranges.The centerline and

control limits of the MR-chart are

CLMR � MR

UCLMR � D4MR �7-34� 
LCLMR � D3MR

For n= 2, D4= 3.267, and D3= 0, the control limits become

UCLMR � 3:267MR

LCLMR � 0

The centerline of the X-chart is

CLX � X �7-35� 
The control limits of the X-chart are

MR
UCLX � X � 3

d2
�7-36� 

MR
LCLX � X � 3

d2

where (for n= 2) Appendix A-7 gives d2= 1.128.
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Given Standard

The preceding derivation is based on the assumption that no standard values are given for

either themean or the process standard deviation. If standard values are specified asX0 andσ0,

respectively, the centerline and control limits of the X-chart are

CLX � X0

UCLX � X0 � 3σ0 �7-37� 
LCLX � X0 � 3σ0

Assuming n= 2, the MR-chart for standard values has the following centerline and control

limits:

CLMR � d2σ0 � �1:128�σ0
UCLMR � D4d2σ0 � �3:267��1:128�σ0 � �3:685�σ0 �7-38� 

LCLMR � D3d2σ0 � 0

One advantage of anX-chart is the easewithwhich it can be understood. It can also be used

to judge the capability of a process by plotting the upper and lower specification limits on the

chart itself.However, it has several disadvantages compared to anX-chart.AnX-chart is not as

sensitive to changes in the process parameters. It typically requires more samples to detect

parametric changes of the same magnitude. The main disadvantage of an X-chart, though, is

that the control limits can become distorted if the individual items don’t fit a normal

distribution.

Example 7-5 Table 7-4 shows theBrinell hardness numbers of 20 individual steel fasteners

and themoving ranges. The testing process dents the parts so that they cannot be used for their

intended purpose. Construct theX-chart andMR-chart based on two successive observations.

Specification limits are 32± 7.

Solution Note that there are 19moving-range values for 20 observations. The average of

the moving ranges is

MRi 96
MR � � � 5:053

19 19

TABLE 7-4 Brinell Hardness Data for Individual Fasteners

Brinell Moving Brinell Moving

Sample Hardness Range Sample Hardness Range

1 36.3 – 11 29.4 1.1

2 28.6 7.7 12 35.2 5.8

3 32.5 3.9 13 37.7 2.5

4 38.7 6.2 14 27.5 10.2

5 35.4 3.3 15 28.4 0.9

6 27.3 8.1 16 33.6 5.2

7 37.2 9.9 17 28.5 5.1

8 36.4 0.8 18 36.2 7.7

9 38.3 1.9 19 32.7 3.5

10 30.5 7.8 20 28.3 4.4
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which is also the centerline of the MR-chart. The control limits for the MR-chart are

UCLMR � D4MR � �3:267�5:053 � 16:508

LCLMR � D3MR � �0�5:053 � 0

Wecan useMinitab to construct control charts for individual values andmoving ranges for

the steel fastener hardness data in Table 7-4. Click on Stat > Control Charts> Variables

Charts for Individuals > I � MR. In Variables, input the column number or variable

name, Brinell hardness in this case. ClickOK. Figure 7-20 shows the trial control charts.

No points plot outside the control limits on the MR-chart. Since the MR-chart exhibits

control, we can construct the X-chart for individual data values. The centerline of the X-

chart is

Xi 658:7
X � � � 32:935

20 20

The control limits for the X-chart are given by

3MR 3�5:053� 
UCLX � X � � 32:935 � � 46:374

d2 1:128

3MR 3�5:053� 
LCLX � X � � 32:935 � � 19:496

d2 1:128

TheX-chart is also shown in Figure 7-20. No out-of-control points are visible. Comparing

the individual values with the specification limits, we find no values outside the specification

limits. Thus, the observed nonconformance rate is zero and the process is capable.

FIGURE 7-20 Control charts for individual values (X-chart) and moving range (MR-chart) for

hardness of steel fasteners.
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7-7 CONTROL CHARTS FOR SHORT PRODUCTION RUNS

Organizations, both manufacturing and service, are faced with short production runs for

several reasons. Product specialization and being responsive to customer needs are two

important reasons. Consider a company that assembles computers based on customer orders.

There is noguarantee that thenext 50orderswill be for a computerwith the samehardware and

software features.

X- and R-Charts for Short Production Runs

Where different parts may be produced in the short run, one approach is to use the

deviation from the nominal value as the modified observations. The nominal value may

vary from part to part. So, the deviation of the observed valueOi from the nominal valueN

is given by

Xi � Oi � N; i � 1; 2; . . . ; n �7-39� 

The procedure for the construction of the X- and R-charts is the same as before using

themodified observations,Xi. Different parts are plotted on the same control chart so as to have

the minimum information (usually, at least 20 samples) required to construct the charts, even

though for each part there are not enough samples to justify construction of a control chart.

Several assumptions are made in this approach. First, it is assumed that the process

standard deviation is approximately the same for all the parts. Second, what happens when a

nominal value is not specified (which is especially true for characteristics that have one-sided

specifications, such as breaking strength)? In such a situation, the process average based on

historical data may have to be used.

Z-MR Chart

When individuals’ data are obtained on the quality characteristic, an approach is to construct a

standardized control chart for individuals (Z-chart) and a moving-range (MR) chart. The

standardized value is given by

individual value � process mean
Z � �7-40� 

process standard deviation

The moving range is calculated from the standardized values using a length of size 2.

Depending on how each group (part or product) is defined, the process standard deviation for

group i is estimated by

MRi �7-41� 
d2

where MRi represents the average moving range for group i and d2 is a control chart

factor found from Appendix A-7. Minitab provides several options for selecting computation

of the processmean and process standard deviation. For each group (part or product), themean

of theobservations in that group could beusedas anestimateof the processmean for that group.

Alternatively, historical values of estimates may be specified as an option.

σi � 
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In estimating the process standard deviation for each group (part or product), Minitab

provides options for defining groups as follows: by runs; by parts, where all observations on

the same part are combined in one group; constant (combine all observations for all parts in

one group); and relative to size (transform the original data by taking the natural logarithmand

then combine all into one group).

The relative-to-size option assumes that variability increases with the magnitude of

the quality characteristic. The natural logarithm transformation stabilizes the variance.

A common estimate (σ) of the process standard deviation is obtained from the transformed

data. The constant option that pools all data assumes that the variability associated with

all groups is the same, implying that product or part typeor characteristic size has no influence.

This option must be used only if there is enough information to justify the assumption. It

produces a single estimate (σ) of the common process standard deviation. The option of

poolingby parts assumes that all runs of a particular part have the same variability. It produces

an estimate (σi) of the process standard deviation for each part group. Finally, the option of

pooling by runs assumes that part variability may change from run to run. It produces an

estimate of the process standard deviation for each run, independently.

Example 7-6 Data on short production runs on the diameters of four parts (A, B, C, and D)

are shown in Table 7-5. It is believed that the processes for manufacturing the four parts have

different variabilities. Since parts aremanufactured basedondemand, they are not necessarily

produced in the same run.Construct an appropriate control chart and comment on the process.

Solution A worksheet is created in Minitab using the data provided. Click on Stat >

Control Charts > Variables Charts for Individuals > Z � MR. In Variables, enter the

column number or name of the variable, Diameter in this case. In Part indicator, enter the

column number or name, in this case Part number. Click on Z-MR Options, select

Estimate. Under How to define groups of observations, select By parts. Select Average

moving range to estimate the standard deviation of each group, with Length of moving

range as 2. Click OK. Figure 7-21 shows the Z-MR chart for diameter of parts. All of the

points on Z-MR charts are within the control limits with no unusual patterns. Note that

the upper and lower control limits on the Z-chart are at 3 and �3, respectively, with the

centerline at 0.

TABLE 7-5 Data on Short Production Runs

Run Part Quality Run Part Quality

Number Number Characteristic Number Number Characteristic

1 A 30 5 B 44

A 25 B 41

A 28 B 45

2 B 42 6 D 35

B 40 D 32

3 A 31 D 33

A 29 7 B 43

4 C 54 B 45

C 56 B 40

C 53 B 42
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FIGURE 7-21 Z-MR chart for diameter.

7-8 OTHER CONTROL CHARTS

In previous sections we have examined commonly used control charts. Now we look at

several other control charts. These charts are specific to certain situations. Procedures for

constructing X- and R-charts and interpreting their patterns apply to these charts as well, so

they are not repeated here.

Cumulative Sum Control Chart for the Process Mean

In Shewhart control charts such as the X- and R-charts, a plotted point represents information

corresponding to that observation only. It does not use information from previous observa

tions. On the other hand, a cumulative sum chart, usually called a cusum chart, uses

information from all of the prior samples by displaying the cumulative sumof the deviation of

the sample values (e.g., the sample mean) from a specified target value.

The cumulative sum at sample number m is given by

Sm � �Xi � μ0� �7-42� 

where Xi is the sample mean for sample i and μ0 is the target mean of the process.

Cusum charts aremore effective than Shewhart control charts in detecting relatively small

shifts in the processmean (ofmagnitude 0:5σ to about 2σ ). A cusum chart uses informationX X

from previous samples, so the effect of a small shift is more pronounced. For situations in

which the sample size n is 1 (say,when each part ismeasured automatically by amachine), the

cusum chart is better suited than a Shewhart control chart to determining shifts in the process

mean. Because of the magnified effect of small changes, process shifts are easily found by

locating the point where the slope of plotted cusum pattern changes.

There are some disadvantages to using cusum charts, however. First, because the cusum

chart is designed to detect small changes in the process mean, it can be slow to detect large

m

i�1
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changes in the process parameters. Because a decision criterion is designed to dowell under a

specific situation does not mean that it will perform equally well under different situations.

Details onmodifying the decision process for a cusum chart to detect large shifts can be found

in Hawkins (1981, 1993), Lucas (1976, 1982), and Woodall and Adams (1993). Second,

the cusum chart is not an effective tool in analyzing the historical performance of a process to

see whether it is in control or to bring it in control. Thus, these charts are typically used for

well-established processes that have a history of being stable.

Recall that for Shewhart control charts the individual points are assumed to be uncorre

lated. Cumulative values are, however, related. That is, Si�1 and Si are related because

Si � Si� 1 � �Xi � μ0�. It is therefore possible for a cusum chart to exhibit runs or other

patterns as a result of this relationship. The rules for describing out-of-control conditions

based on the plot patterns of Shewhart chartsmay therefore not be applicable to cusum charts.

Finally, training workers to use and maintain cusum charts may be more costly than for

Shewhart charts.

Cumulative sum charts can model the proportion of nonconforming items, the number

of nonconformities, the individual values, the sample range, the sample standard

deviation, or the sample mean. In this section we focus on their ability to detect shifts

in the process mean.

Suppose that the target value of a processmeanwhen the process is in control is denoted by

μ0. If the process mean shifts upward to a higher value μ1, an upward drift will be observed in

the value of the cusum Sm given by eq. (7-42) because the old lower value μ0 is still used in the

equation even though the X-values are now higher. Similarly, if the process mean shifts to a

lower value μ2, a downward trendwill be observed in Sm. The task is to determinewhether the

trend in Sm is significant so that we can conclude that a change has taken place in the process

mean.

In the situation where individual observations (n= 1) are collected from a process to

monitor the process mean, eq. (7-42) becomes

Sm � �Xi � μ0� �7-43� 
� �Xm � μ0� � Sm� 1

where S0= 0.

Tabular Method

Let us first consider the case of individual observations (Xi) being drawn from a process with

meanμ0 and standard deviationσ.When the process is in control,we assume thatXi∼N�μ0; σ�.
In the tabular cusum method, deviations above μ0 are accumulated with a statistic S+, and

deviations below μ0 are accumulated with a statistic S�. These two statistics, S+ and S� , are
labeled one-sided upper and lower cusums, respectively, and are given by

S� � max�0;Xi � � � K� � S� � �7-44� m μ0 m� 1

S � max�0; � � K� � Xi � S � �7-45� m
� μ0 m

�
� 1

where S0
+
= S0

� 
= 0.

m

i�1
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The parameterK in eqs. (7-44) and (7-45) is called theallowable slack in the process and is

usually chosen as halfway between the target value μ0 and the shifted value μ1 that we are

interested in detecting. Expressing the shift (δ) in standard deviation units, we have

δ � jμ1 � μ0 j=σ, leading to

δ jμ1 � μ0 jK � σ � �7-46� 
2 2

Thus, examining eqs. (7-44) and (7-45),wefind thatSm
+ andSm

� accumulate deviations from

the target value μ0 that are greater than K. Both are reset to zero upon becoming negative. In

practice, K= kσδ, where k is in units of standard deviation. In eq. (7-46), k= 0.5.

A second parameter in the decision-making process using cusums is the decision interval

H, to determine out-of-control conditions. As before, we set H= hσ, where h is in standard

deviation units.When the value of Sm
+ or Sm

� plots beyondH, the process will be considered to
be out of control. When k= 0.5, a reasonable value of h is 5 (in standard deviation units),

which ensures a small average run length for shifts of themagnitude of one standard deviation

that we wish to detect (Hawkins 1993). It can be shown that for a small value of β, the

probability of a type II error, the decision interval is given by

� σ2 ln�α� 
H � �7-47� 

μ1 � μ0

Thus, if sample averages are used to construct cusums in the above procedures, σ2 will be

replaced by σ2/n in eq. (7-47), assuming samples of size n.

To determinewhen the shift in the processmeanwasmost likely to have occurred, wewill

monitor two counters, N+ and N�. The counter N+ notes the number of consecutive periods

that Sm
+ is above 0,whereasN� tracks the number of consecutive periods that Sm

� is above zero.
When an out-of-control condition is detected, one can count backward from this point to the

time period when the cusum was above zero to find the first period in which the process

probably shifted. An estimate of the new process mean may be obtained from

S� 
mμ � μ0 � K � if S� > H �7-48� mN � 

or from

S� 
μ � μ0 � K � 

N
m

� if S� > H �7-49� m

Example 7-7 In the preparation of a drug, the percentage of calcium is a characteristic we

want to control. Random samples of size 5 are selected, and the average percentage of calcium

is found. The data values from 15 samples are shown in Table 7-6. From historical data, the

standard deviation of the percentage of calcium is estimated as 0.2%. The target value for the

average percentage of calcium content is 26.5%. We decide to detect shifts in the average

percentage of calcium content of 0.1%.

Solution Here μ0= 26.5, μ1= 26.6, σ � 0:2, and n= 5. So, since sample averages arep
being monitored, σx � 0:2= 5 � 0:089. Now K= (26.6� 26.5)/2= 0.05, while k= 0.05/

0.089= 0.5618. Assuming that h= 5, the decision interval H= 5(0.089)= 0.445. Table 7-7

shows the values computed for Sm
+,N+, Sm

�, andN�. If wewish to detect an upward drift of the
processmean, using Sm

+,wefind that thefirst timewhen Sm
+
>H= 0.445 is at sample number 5.
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TABLE 7-6 Average Percentage of Calcium

Average Percentage Average Percentage

Sample of Calcium, X Sample of Calcium, X

1 25.5 9 26.4

2 26.0 10 26.3

3 26.6 11 26.9

4 26.8 12 27.8

5 27.5 13 26.2

6 25.9 14 26.8

7 27.0 15 26.6

8 25.4

Note that, form= 5, N+
= 3. We estimate that the upward shift in the process average occurs

between samples 2 and 3. An estimate of the new process mean is

1:25
μ � 26:5 � 0:05 � � 26:967

3

On the contrary, if wewere interested in detecting downward drifts in the processmean using

the results of Table 7-7, it would have been detected on the first sample itself. Note that

S� 1= 0.95>H= 0.445.

A similar decision may be arrived at using Minitab. Click on Stat>Control Charts>

Time-Weighted Charts>CUSUM. In the worksheet, all observations were entered in one

column. Input the columnnumberor name, in this caseCalcium. InputSubgroupsize as 1 and

Target as 26.5. Click onCusumOptions.Under Parameters, input for Standard deviation

the value 0.089. Click on Plan/Type, under Type of CUSUM select One-sided. Under

CUSUM Plan, input for h the value 5.0 and for k the value 0.5618, Click OK. Figure 7-22

shows the one-sided cumulative sum charts usingMinitab. Conclusions drawn from thisfigure

are similar to those made earlier.

TABLE 7-7 Tabular Cumulative Sums for Average Calcium Percentage

Sample

Number Xm Xm�26:55 S� m N+ 26:45�Xm S� 
m N� 

1 25.5 �1.05 0 0 0.95 0.95 1

2 26.0 �0.55 0 0 0.45 1.40 2

3 26.6 0.05 0.05 1 �0.15 1.25 3

4 26.8 0.25 0.30 2 �0.35 0.90 4

5 27.5 0.95 1.25 3 �1.05 0 0

6 25.9 �0.65 0.60 4 0.55 0.55 1

7 27.0 0.45 1.05 5 �0.55 0 0

8 25.4 �1.15 0 0 1.05 1.05 1

9 26.4 �0.15 0 0 0.05 1.10 2

10 26.3 �0.25 0 0 0.15 1.25 3

11 26.9 0.35 0.35 1 �0.45 0.80 4

12 27.8 1.25 1.60 2 �1.35 0 0

13 26.2 �0.35 1.25 3 0.25 1.25 1

14 26.8 0.25 1.50 4 �0.35 0 0

15 26.6 0.05 1.55 5 �0.15 0 0
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FIGURE 7-22 One-sided cumulative sum charts for average calcium percentage.

V-Mask Method

In the V-mask approach, a template known as a V-mask, proposed by Barnard (1959), is

used to determine a change in the process mean through the plotting of cumulative sums.

Figure 7-23 shows a V-mask, which has two parameters, the lead distance d and the angle θ

of each decision linewith respect to the horizontal. TheV-mask is positioned such that pointP

coincides with the last plotted value of the cumulative sum and line OP is parallel to the

horizontal axis. If the values plotted previously are within the two arms of the V-mask—that

is, between the upper decision line and the lower decision line—the process is judged to be in

control. If any value of the cusum lies outside the arms of the V-mask, the process is

considered to be out of control.

In Figure 7-23, notice that a strong upward shift in the process mean is visible for

sample 5. This shift makes sense given the fact that the cusum value for sample 1 is below

the lower decision line, indicating an out-of-control situation. Similarly, the presence of a

plotted value above the upper decision line indicates a downward drift in the process

mean.

Determination of V-Mask Parameters The two parameters of a V-mask, d and θ, are

determined based on the levels of risk that the decisionmaker iswilling to tolerate. These risks

are the type I and type II errors described in Chapter 6. The probability of a type I error, α, is

the risk of concluding that a process is out of control when it is really in control. The

probability of a type II error,β, is the risk of failing todetect a change in theprocess parameter

and concluding that the process is in control when it is really out of control. Let ΔX denote

the amount of shift in the process mean that we want to be able to detect and σ denote theX

standard deviation of X. Next, consider the equation

ΔX
δ � �7-50� 

σX
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FIGURE 7-23 V-mask for making decisions with cumulative sum charts.

where δ represents the degree of shift in the processmean, relative to the standard deviation of

the mean, that we wish to detect. Then, the lead distance for the V-mask is given by

2 1 � β
d � ln �7-51� 

δ2 α

If the probability of a type II error, β, is selected to be small, then eq. (7-51) reduces to

2
d � �  ln�α� �7-52� 

δ2

The angle of decision line with respect to the horizontal is obtained from

ΔX� 1θ � tan �7-53� 
2k

where k is a scale factor representing the ratio of a vertical-scale unit to a horizontal-scale unit

on the plot. The value of k should be between σ and 2σ , with a preferred value of 2σ .X X X

One measure of a control chart’s performance is the average run length (ARL). (We

discussedARL inChapter 6.) This value represents the average number of points thatmust be

plotted before an out-of-control condition is indicated. For a Shewhart control chart, if p

represents the probability that a single pointwill fall outside the control limits, the average run

length is given by
1

ARL � �7-54� 
p

For 3σ limits on a Shewhart X-chart, the value of p is about 0.0026 when the process is in

control. Hence, the ARL for an X-chart exhibiting control is

1
ARL � � 385

0:0026
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TABLE 7-8 Cumulative Sum of Data for Calcium Content

Deviation of Sample Deviation of Sample

Mean from Target, Cumulative Mean from Target, Cumulative

Sample, i Xi � m0 Sum, Si Sample, i Xi � m0 Sum, Si

1 �1.0 �1.0 9 �0.1 �1.4
2 �0.5 �1.5 10 �0.2 �1.6
3 0.1 �1.4 11 0.4 �1.2
4 0.3 �1.1 12 1.3 0.1

5 1.0 �0.1 13 �0.3 �0.2
6 �0.6 �0.7 14 0.3 0.1

7 0.5 �0.2 15 0.1 0.2

8 �1.1 �1.3

The implication of this is that, on average, if the process is in control, every 385th sample

statistic will indicate an out-of-control state. TheARL is usually larger for a cusum chart than

for aShewhart chart. For example, for a cusumchartwith comparable risks, theARL is around

500. Thus, if the process is in control, on average, every 500th sample statistic will indicate an

out-of-control situation, so there will be fewer false alarms.

Example 7-8 Refer to Example 7-7 and the data on the average percentage of calcium from

15 samples shown in Table 7-6. Construct a cumulative sum chart and make a decision using

the V-mask method.

Solution AsshowninExample7-7,σ � 0:089:Now, thedeviationofeachsamplemean,X

Xi from the targetmean μ0= 26.5 is found, followingwhich the cumulative sum Si is obtained.

These values are shown inTable 7-8.UsingMinitab, click onStat>ControlCharts>Time-

WeightedCharts>CUSUM. InputSubgroupsize as1, andTargetas26.5.ClickonCusum

Options. Under Parameters, input for Standard deviation the value 0.089. Click on Plan/

Type; underType ofCUSUM, selectTwo-sided. UnderCUSUMPlan, input forh the value

of 5 and fork the value 0.5618. ClickOK. Figure 7-24 shows the cumulative sumchart using a

FIGURE 7-24 Cumulative sum chart using V-mask.
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V-mask.When the V-mask is centered on sample 5, note that samples 1, 2, 3, and 4 fall below

the decision line. We conclude that the process is out of control.

Designing a Cumulative Sum Chart for a Specified ARL The average run length can be

used as a design criterion for control charts. If a process is in control, the ARL should be long,

whereas if the process is out of control, the ARL should be short. Recall that δ is the degree of

shift in the process mean, relative to the standard deviation of the sample mean, that we are

interested indetecting; that is,δ � ΔX=σ . LetL(δ) denote thedesiredARLwhena shift in theX

processmean is on the order ofδ.AnARLcurve is a plot ofδversus its corresponding average

run length, L(δ). For a process in control, when δ= 0, a large value of L(0) is desirable, For a

specified value of δ, we may have a desirable value of L(δ). Thus, two points on the ARL

curve, [0,L(0)] and [δ,L(δ)], are specified.Thegoal is tofind the cusumchart parametersd and

θ that will satisfy these desirable goals.

Bowker and Lieberman (1987) provide a table (see Table 7-9) for selecting the V-mask

parameters d and θ when the objective is to minimize L(δ) for a given δ. It is assumed that

the decision maker has a specified value of L(0) in mind. Table 7-9 gives values for

k=σ tan θ and d, and the minimum value of L(δ) for a specified δ. We use this table inX

Example 7-9.

Example 7-9 Suppose that for a process in control we want an ARL of 400.We also decide

to detect shifts in the process mean of magnitude 1:5σ —that isΔX � 1:5σ —which meansX X

that δ= 1.5. Find the parameters of a V-mask for this process.

TABLE 7-9 Selection of Cumulative Sum Control Charts Based on Specified ARL

δ=Deviation

from Target Value
L(0)=Expected Run Length When Process Is in Control

(standard deviations) 50 100 200 300 400 500

0.25 �k=σx�tan θ 0.125 0.195 0.248

d 47.6 46.2 37.4

L(0.25) 28.3 74.0 94.0

0.50 �k=σx�tan θ 0.25 0.28 0.29 0.28 0.28 0.27

d 17.5 18.2 21.4 24.7 27.3 29.6

L(0.5) 15.8 19.0 24.0 26.7 29.0 30.0

0.75 �k=σx�tan θ 0.375 0.375 0.375 0.375 0.375 0.375

d 9.2 11.3 13.8 15.0 16.2 16.8

L(0.75) 8.9 11.0 13.4 14.5 15.7 16.5

1.0 �k=σx�tan θ 0.50 0.50 0.50 0.50 0.50 0.50

d 5.7 6.9 8.2 9.0 9.6 10.0

L(1.0) 6.1 7.4 8.7 9.4 10.0 10.5

1.5 �k=σx�tan θ 0.75 0.75 0.75 0.75 0.75 0.75

d 2.7 3.3 3.9 4.3 4.5 4.7

L(1.5) 3.4 4.0 4.6 5.0 5.2 5.4

2.0 �k=σx�tan θ 1.0 1.0 1.0 1.0 1.0 1.0

d 1.5 1.9 2.2 2.4 2.5 2.7

L(2.0) 2.26 2.63 2.96 3.15 3.3 3.4

Source: A. H. Bowker and G. J. Lieberman, Engineering Statistics, 2nd ed.,1987. Reprinted by permission of

Pearson Education, Inc. Upper Saddle River, NJ.
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Solution From Table 7-9, for L (0)= 400 and δ= 1.5, we have

k=σ tan θ � 0:75X

d � 4:5
L�1:5� � 5:2

If k, the ratio of the vertical scale to the horizontal scale, is selected to be 2σX , we have

2 tan θ � 0:75 or tan θ � 0:375

The angle of the V-mask is

θ � tan�1�0:375� � 20:556°

Ifwe feel that 5.2 is too large a value ofL (1.5),weneed to reduce the average number of plotted

points it takes to first detect a shift in the process mean of magnitude 1:5σ . Currently, it takesX

about 5.2 points, on average, to detect a shift of thismagnitude.Assume thatwepreferL (1.5) to

be less than 5.0. From Table 7-9, for δ= 1.5 and L (1.5)< 5.0, we could choose L (1.5)= 4.6,

which corresponds to �k=σ �tan θ � 0:75, and d= 3.9. If k is chosen to be 2σ , we getX X

0:75
tan θ � � 0:375

2

Hence, θ= 20.556° (the same value as before) and d= 3.9 (a reduced value). For

L(1.5)= 4.6, which is less than 5.0, we have increased the sensitivity of the cusum chart to

detect changes of magnitude 1:5σ , but in doing so, we have reduced the ARL for δ= 0 [i.e.,X

L(0)] to 200 from the previous value of 400. So now every 200th observation, on average, will

be plotted as an out-of-control point when the process is actually in control.

Cumulative Sum for Monitoring Process Variability

Cusum charts may also be used to monitor process variability as discussed by Hawkins

(1981). Assuming that Xi∼N(μ0, σ), the standardized value Yi is obtained first as

Yi= (Xi� μ0)/σ. A new standardized quantity (Hawkins 1993) is constructed as follows:

p
jyi j � 0:822

vi � �7-55� 
0:349

where it is suggested that the vi are sensitive to both variance and mean changes. For an

in-control process, vi is distributed approximately N(0, 1). Two one-sided standardized

cusums are constructed as follows to detect scale changes:

S� � max�0; vm � k � S� � �7-56� m m� 1

S � max�0; � k � vm � S � �7-57� m m� 1

where S� � S� � 0. The values of h and k are selected using guidelines similar to those0 0

discussed in the section on cusum for the process mean.When the process standard deviation

increases, the values of S� in eq. (7-56) will increase. When S� exceeds h, we will detect anm m

out-of-control condition. Similarly, if the process standard deviation decreases, values of S� 
m

will increase.
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Moving-Average Control Chart

As mentioned previously, standard Shewhart control charts are quite insensitive to small

shifts, and cumulative sum charts are one way to alleviate this problem. A control chart using

the moving-average method is another. Such charts are effective for detecting shifts of small

magnitude in the process mean. Moving-average control charts can also be used in situations

for which the sample size is 1, such as when product characteristics are measured automati

cally or when the time to produce a unit is long. It should be noted that, by their very nature,

moving-average values are correlated.

Suppose that samples of size n are collected from the process. Let the first t sample means

be denoted by X1;X2;X3; . . . ;Xt. (One sample is taken for each time step.) The moving

average of width w (i.e., w samples) at time step t is given by

Xt � Xt� 1 � ∙ ∙ ∙ � Xt�w� 1
Mt � �7-58� 

w

At any time step t, themoving average is updated by dropping the oldest mean and adding the

newest mean. The variance of each sample mean is

σ2
Var Xt � 

n

where σ2 is the population variance of the individual values. The variance of Mt is

1
t

Var� � �  Var XiMt 2w
i�t�w� 1

1 t
σ2� �7-59�2w n

i�t�w� 1

σ2� 
nw

The centerline and control limits for the moving-average chart are given by

CL � X

σ
UCL � X � 3p

nw �7-60� 
σ

LCL � X � 3p
nw

Fromeq. (7-60),we can see that asw increases, thewidth of the control limits decreases. So, to

detect shifts of smaller magnitudes, larger values of w should be chosen.

For the startup period (when t<w), the moving average is given by

t

Xi

Mt � i�1 ; t � 1; 2; . . . ;w � 1 �7-61�
 
t
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The control limits for this startup period are

3σ
UCL � X � 

nt
p ; t � 1; 2; ...; w � 1

LCL � X � 3σ
nt

p ; t � 1; 2; ...; w � 1
�7-62� 

Since these control limits change at each sample point during this startup period, an alternative

procedurewould be to use the ordinaryX-chart for t<w and use themoving-average chart for

t�w.

Example 7-10 The amount of a coloring pigment in polypropylene plastic, produced in

batches, is a variable of interest. For 20 random samples of size 5, the average amount of

pigment (in kilograms) is shown in Table 7-10. Construct a moving-average control chart of

width 6. The process has up to this point been in control with an average range R of 0.40 kg.

Solution Table 7-10 shows the values computed for the moving averageMt based on a

widthw of 6. For values of t< 6, the moving average is calculated using eq. (7-61). For t� 6,

Mt is calculated using eq. (7-58). Also shown in Table 7-10 are the lower and upper control

limits for the moving-average chart. To find these limits, eq. (7-62) is used for t< 6, and

eq. (7-60) is used for t� 6. The mean of the sample averages is

20

Xt
503:2t�1

X � � � 25:16
20 20

TABLE 7-10 Data and Results for a Moving-Average Control Chart (kg)

Control Limits for Mt

Sample Sample Average, Xt Moving Average, Mt LCL UCL

1 25.0 25.0 24.929 25.391

2 25.4 25.2 24.997 25.323

3 25.2 25.2 25.027 25.293

4 25.0 25.15 25.045 25.275

5 25.2 25.16 25.057 25.263

6 24.9 25.12 25.066 25.254

7 25.0 25.12 25.066 25.254

8 25.4 25.12 25.066 25.254

9 24.9 25.07 25.066 25.254

10 25.2 25.10 25.066 25.254

11 25.0 25.07 25.066 25.254

12 25.7 25.20 25.066 25.254

13 25.0 25.20 25.066 25.254

14 25.1 25.15 25.066 25.254

15 25.0 25.17 25.066 25.254

16 24.9 25.12 25.066 25.254

17 25.0 25.12 25.066 25.254

18 25.1 25.02 25.066 25.254

19 25.4 25.08 25.066 25.254

20 25.8 25.20 25.066 25.254
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Since R � 0:40, an estimate of the process standard deviation is

σ � R 0:40� � 0:172
d2 2:326

To calculate the control limits, consider sample 3:

σ 0:172
UCL � X � 3p � 25:16 � 3p � 25:293

nt �5��3� 
σ 0:172

LCL � X � 3p � 25:16 � 3p � 25:027
nt �5��3� 

For samples 6–20, the control limits stay the same; the LCL is 25.066 kg and the UCL is

25.254 kg. Figure 7-25 shows a plot of the moving averages and control limits. The moving

average for sample 18plots below the lower control limit, indicating that the processmeanhas

drifteddownward.Special causes shouldbe investigated for this out-of-control condition, and

appropriate corrective action should be taken.

Exponentially Weighted Moving-Average or Geometric Moving-Average

Control Chart

The preceding discussion showed that a moving-average chart can be used as an alternative

to an ordinary X-chart to detect small changes in process parameters. The moving-average

method is basically a weighted-average scheme. For sample t, the sample means

Xt;Xt� 1; . . . ;Xt�w� 1 are each weighted by 1/w [see eq. (7-58)], while the sample means

for time steps less than t�w+ 1 are weighted by zero. Along similar lines, a chart can be

constructed based on varying weights for the prior observations. More weight can be

assigned to the most recent observation, with the weights decreasing for less recent

observations. A geometric moving-average control chart, also known as an exponentially

weighted moving-average (EWMA) chart, is based on this premise. One of the advantages

FIGURE 7-25 Moving-average control chart.



344 CONTROL CHARTS FOR VARIABLES

of a geometric moving-average chart over amoving-average chart is that the former is more

effective in detecting small changes in process parameters. The geometric moving average

at time step t is given by

Gt � rXt � �1 � r�Gt� 1 �7-63� 

where r is aweighting constant (0< r� 1) andG0 isX. Byusing eq. (7-63) repeatedly,weget

2
Gt � rXt � r�1 � r�Xt� 1 � r�1 � r� Gt� 2

2 t �7-64� � rXt � r�1 � r�Xt� 1 � r�1 � r� Xt� 2 � ∙ ∙ ∙ � �1 � r� G0

Equation (7-64) shows that the weight associated with the ith mean from t�Xt� i� is
r (1� r)i. The weights decrease geometrically as the sample mean becomes less recent. The

sumof all theweights is 1.Consider, for example, the case forwhich r= 0.3. This implies that,

in calculatingGt, the most recent sample mean �Xt� has a weight of 0.3, the next most recent

observation �Xt� 1� has a weight of (0.3)(1� 0.3)= 0.21, the next observation �Xt� 2� has a
weight of 0.3(1� 0.3)2= 0.147, and so on. Here, G0 has a weight of (1� 0.3)t. Since these

weights appear to decrease exponentially, eq. (7-64) describes what is known as the

exponentially weighted moving-average model.

If the samplemeansX1;X2;X3; :::;Xt� 1 are assumed tobe independent of eachother and if

the population standard deviation is σ, the variance of Gt is given by

σ2 r
Var�Gt� �  1 � �1 � r�2t �7-65� 

n 2 � r

For large values of t, the standard deviation of Gt is

p σ2 r
σG � Var�Gt� � 

n 2 � r

The upper and lower control limits are

UCL � X � 3σ
r

�2 � r�n

LCL � X � 3σ
r

�2 � r�n

�7-66� 

For small values of t, the control limits are found using eq. (7-65) to be

r
UCL � X � 3σ 1 � �1 � r�2t

n�2 � r� 
r

LCL � X � 3σ 1 � �1 � r�2t �7-67�n�2 � r� 

A geometric moving-average control chart is based on a concept similar to that of a

moving-average chart. By choosing an adequate set of weights, however, where recent
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sample means are more heavily weighted, the ability to detect small changes in process

parameters is increased. If the weighting factor r is selected as

2
r � �7-68� 

w � 1
where w is the moving-average span, the moving-average method and the geometric

moving-average method are equivalent. There are guidelines for choosing the value of r.

If our goal is to detect small shifts in the process parameters as soon as possible,we use a small

value of r (say, 0.1). If we use r= 1, the geometric moving-average chart reduces to the

standard Shewhart chart for the mean.

Example 7-11 Refer to Example 7-10 regarding the amount of a coloring pigment in

polypropylene plastic. Table 7-11 gives the sample averages for 20 samples of size 5.

Construct a geometric moving-average control chart using a weighting factor r of 0.2.

Solution For the data in Table 7-11 the mean of the sample averages is

503:2
X � � 25:160

20

Since R is given as 0.40 in Example 7-10, the estimated process standard deviation is

R 0:40� � 0:172
d2 2:326

TABLE 7-11 Data and Results for a Geometric Moving-Average Control Chart (kg)

σ � 

Control Limits for

Sample Geometric Moving
Geometric Average

Sample Average, Xt Average, Gt LCL UCL

1 25.0 25.128 25.114 25.206

2 25.4 25.182 25.101 25.219

3 25.2 25.186 25.094 25.226

4 25.0 25.149 25.090 25.230

5 25.2 25.159 25.087 25.233

6 24.9 25.107 25.086 25.234

7 25.0 25.086 25.085 25.235

8 25.4 25.149 25.084 25.236

9 24.9 25.099 25.084 25.236

10 25.2 25.119 25.084 25.236

11 25.0 25.095 25.083 25.237

12 25.7 25.216 25.083 25.237

13 25.0 25.173 25.083 25.237

14 25.1 25.158 25.083 25.237

15 25.0 25.127 25.083 25.237

16 24.9 25.081 25.083 25.237

17 25.0 25.065 25.083 25.237

18 25.1 25.072 25.083 25.237

19 25.4 25.138 25.083 25.237

20 25.8 25.270 25.083 25.237
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The geometric moving average for sample 1 using eq. (7-63) is (for G0 � X)
G1 � rX1 � �1 � r�G0

� �0:2��25:0� � �1 � 0:2��25:16� �  25:128
The remaining geometric moving averages are calculated similarly. These values are shown

in Table 7-11. The control limits for sample 1 are calculated using eq. (7-67):

0:2
UCL � 25:160 � �3��0:172� 1 � �1 � 0:2�2�5��2 � 0:2� 

� 25:206
0:2

LCL � 25:160 � �3��0:172� 1 � �1 � 0:2�2�5��2 � 0:2� 
� 25:114

Similar computations are performed for the remaining samples. For large values of t

(say, t= 15), the control limits are found by using eq. (7-66):

UCL � 25:160 � �3��0:172� 

� 25:237
LCL � 25:160 � �3��0:172� 

0:2

�2 � 0:2��5� 

0:2

�2 � 0:2��5� 
� 25:083

Figure 7-26 shows a plot of this geometric moving-average control chart. Notice that

samples 16, 17, and 18 are below the lower control limit and that sample 20 plots above the

upper control limit. The special causes for these points should be investigated in order to take

remedial action.Note that in themoving-average chart inFigure 7-25 sample18plottedbelow

FIGURE 7-26 Geometric moving-average control chart for amount of coloring pigment.
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the lower control limit but samples 16, 17, and 20 were within the control limits. The

geometric moving-average chart (Figure 7-26), which is a little more sensitive to small shifts

in the process parameters than the moving-average chart, identifies these additional points as

being out of control.

Modified Control Chart

In our discussions of all the control charts, we have assumed that the process spread (6σ) is

close to and hopefully less than the difference between the specification limits. That is, we

hope that 6σ<(USL�LSL). Now we assume that the natural process spread of 6σ is

significantly less than the difference between the specification limits: that is, the process

capability ratio= (USL�LSL)/6σ>> 1. Figure 7-27 depicts this situation.

So far, the specification limits have not been placed onX-charts. One reason for this is that

the specification limits correspond to the conformance of individual items. If the distribution

of individual items is plotted, itmakes sense to show the specification limits on theX-chart, but

a control chart for the mean X deals with averages, not individual values. Therefore, plotting

the specification limits on anX-chart is not appropriate. For amodified control chart, however,

the specification limits are shown.

Our objective here is to determine bounds on the process mean such that the proportion of

nonconforming items does not exceed a desirable value δ. The focus is not on detecting the

statistical state of control, because a process can drift out of control and still produce parts that

conform to specifications. In fact, we assume that the process variability is in a state of

statistical control. An estimate of the process standard deviation σ is obtained from either the

mean (R) of the R-chart or the mean (s) of the s-chart. Furthermore, we assume that the

distribution of the individual values is normal and that a change in the process mean can be

accomplished without much difficulty. Our aim in constructing a modified control chart is to

determine whether the process mean μ is within certain acceptable limits such that the

proportion of nonconforming items does not exceed the chosen value δ.

FIGURE 7-27 Process with a capability ratio much greater than 1.
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FIGURE 7-28 Determination of modified control chart limits.

Let’s consider Figure 7-28a, which shows a distribution of individual values at two

differentmeans: one the lowest allowablemean (μL) and the other the highest allowablemean

(μU). Suppose that theprocess standard deviation isσ. If thedistributionof individual values is

normal, let zδ denote the standard normal value corresponding to a tail area of δ. By the

definitionof a standardnormal value, zδ represents thenumberof standarddeviations thatLSL

is from μL and that USL is from μU. So the distance between LSL and μL is zδσ, which is also

the same as the distance between USL and μU. The bounds within which the process mean

should be contained so that the fraction nonconforming does not exceed δ are μL� μ� μU.

From Figure 7-28a,

μL � LSL� zδσ; μU � USL � zδσ �7-69� 

Suppose that a type I error probability ofα is chosen. The control limits are placed such that

the probability of a type I error is α, as shown in Figure 7-28b. The control limits are placed at

each end to show that the sampling distribution of the sample mean can vary over the entire

range. Figure 7-28b shows the distribution of the sample means. Given the samplingp
distribution of X, with standard deviation σ � σ= n, the upper and lower control limitsX

as shown in Figure 7-28b are

zασ
UCL � μU � p

n

�7-70� 
zασ

LCL � μL � p
n
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UCL � USL � zδ � 
n

p σ

�7-71� 
LCL � LSL � zδ � zα

n
p σ

By substituting for μL and μU, the following equations are obtained:

zα

If the process standard deviation σ is to be estimated from an R-chart, then R=d2 is

substituted forσ in eq. (7-71).Alternatively, ifσ is to be estimated froman s-chart, s=c4 is used
in place of σ in eq. (7-71).

Example 7-12 The nitrogen content of a certain fertilizer mix is a characteristic of interest.

Random samples of size 5 are selected, and the percentage of nitrogen content is found for

each. The sample mean X and range R are shown for 20 samples in Table 7-12. The

specification limits allow values from 12 to 33%. A process nonconformance rate of more

than 1% is unacceptable.Wewant to construct 3σmodified control limits: that is, limitswith a

type I error rate α of 0.0026.

Solution First,wedeterminewhether the variability of theprocess is in control.Using the

data in Table 7-12,

39:8
R � � 1:99

20

The centerline of the R-chart is 1.99. The control limits for the R-chart are

UCLR � D4R � �2:114��1:99� � 4:207

LCLR � D3R � �0��1:99� � 0

Bychecking the rangevalues,wefind that thevariability is in control.Next,wecalculate the

modified control limits. For α= 0.0026, the standard normal tables show that zα is 2.79. For

δ= 0.01, we find that zδ= 2.33. An estimate of the process standard deviation σ is

R 1:99� � 0:856
d2 2:326

TABLE 7-12 Sample Average and Range Values for the Percentage of Nitrogen Content

σ � 

Sample Range, Sample Range,

Sample Average, X R Sample Average, X R

1 14.8 2.2 11 25.0 2.1

2 15.2 1.6 12 16.4 1.8

3 16.7 1.8 13 18.6 1.5

4 15.5 2.0 14 23.9 2.3

5 18.4 1.8 15 17.2 2.1

6 17.6 1.9 16 16.8 1.6

7 21.4 2.2 17 21.1 2.0

8 20.5 2.3 18 19.5 2.2

9 22.8 2.5 19 18.3 1.8

10 16.9 1.8 20 20.2 2.3
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The modified control limits are

UCL � zδ � zα

n
p σ

� 33 � 2:33 � 2:79

5
p 

zδ � p σ
zα

n

� 12 � 2:33 � p 2:79

5

USL � 

�0:856� � 32:074

LCL � LSL � 

�0:856� � 12:926

Thus, the sample average values shown in Table 7-12 are within the control limits. All

values are well below the upper control limit and are closer to the lower control limit. The

closest value to the lower control limit is 14.8%. Therefore, the process is currently able to

meet the desired standards.

Acceptance Control Chart

In the preceding discussion we outlined a procedure for obtaining the modified control limits

given the sample size n, the proportion nonconforming δ, and the acceptable level of

probability of type I error, α. In this section we discuss a procedure to calculate the control

chart limits when the sample size is known and when we have a specified level of proportion

nonconforming (γ) thatwe desire to detectwith a probability of (1� β). Such a control chart is

known as an acceptance control chart. The same assumptions are made here as for modified

control charts. That is, we assume that the inherent process spread (6σ) is much less than the

difference between the specification limits, the process variability is in control, and the

distribution of the individual values is normal.

Figure 7-29a shows the distribution of the individual values and the borderline locations of

the processmean so that the proportion nonconforming does not exceed the desirable level of

γ. From Figure 7-29a we have

μU � USL � zγσ; μL � LSL � zγσ �7-72� 
Figure 7-29b shows the distribution of the sample mean and the bounds within which the

processmeanmust lie for the probability of detecting a nonconformance proportion of γ to be

1� β. From Figure 7-29b we have

σ
UCL � μU � zβ p

n
�7-73�σ

LCL � μL � zβ p
n

Substituting from eq. (7-72), we get

zβ
UCL � USL � zγ � p σ

n
�7-74� 

zβ
LCL � LSL � zγ � p σ

n

If anR-chart is used to control the process variability,σ is estimated byR=d2. If an s-chart is
used, σ is estimated by s=c4. These estimates are then used in eq. (7-74).
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FIGURE 7-29 Determination of acceptance control chart limits.

σ � 

Example 7-13 Refer to Example 7-12 and the nitrogen content data. Suppose that the

proportion of nonconforming product is 3% andwewant to detect an out-of-control condition

with a probability of 0.95. Find the acceptance control chart limits.

Solution For this problem, γ= 0.03, 1� β= 0.95, LSL= 12%, USL= 33%. From the

standard normal tables, z0.03' 1.88 and z0.05= 1.645. From Example 7-12, R � 1:99 and

n= 5. We have

R 1:99� � 0:856
d2 2:326

The acceptance control chart limits are

zβ
UCL � USL � zγ � p σ

n

1:645� 33 � 1:88 � p �0:856� � 30:761
5

zβ
LCL � LSL � zγ � p σ

n

1:645� 12 � 1:88 � p �0:856� � 14:239
5

None of the sample averages are outside these control limits.
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TABLE 7-13 Applications of Control Charts for Variables in the Service Sector

Quality Characteristic Control Chart

Response time for correspondence in a X and R(n< 10); X and s(n� 10)

consulting firm or financial institution

Waiting time in a restaurant X and R(n< 10); X and s(n� 10)

Processing time of claims in an insurance company X and R(n< 10); X and s(n� 10)

Waiting time to have cable installed X and R(n< 10); I and MR (n= 1)

Turnaround time in a laboratory test in a hospital I and MR (n= 1)

Use of electrical power or gas on a monthly basis Moving average; EWMA

Admission time into an intensive care unit I and MR (n= 1)

Blood pressure or cholesterol ratings of a patient I and MR (n= 1)

over time

The principles ofmodified control charts and acceptance control charts can be combined to

determine an acceptable sample size n for chosen levels of δ, α, γ, and β. By equating the

expressions for the UCL in eqs. (7-71) and (7-74), we have

USL � zδ � zα
n

p σ � USL � zγ � zβ
n

p σ

which yields

2
zα � zβ

n � �7-75� 
zδ � zγ

Some examples of variables control chart applications in the service sector are shown in

Table 7-13. Note that the size of the subgroup in the data collected will determine, in many

instances, the use of theX-MRchart (for individuals’data),X andR (when the subgroup size is

small, usually less than 10), and X and s (when the subgroup size is large, usually equal to or

greater than 10).

7-9 RISK-ADJUSTED CONTROL CHARTS

In health care applications, certain adjustments are made to the construction of variable

control charts based on variation in the severity of illness or risk associated with patients from

whom data are collected and monitored. When regular variable control charts are developed

for manufacturing or service applications, an assumption made is that the sampled units are

independent and identically distributed when the process is in control. However, such is not

the case when monitoring health care operations. For instance, in monitoring heart surgical

outcomes, a performance measure of the surgeon and the associated team could be mortality.

Such outcomes are influenced not only by the performance level of the surgeon and the

support teambut also by the pre-operative severity of risk inherent to the patient. Furthermore,

such risk levels do not necessarily remain constant from patient to patient. Thus, the need

arises to create risk-adjusted control charts that incorporate the pre-operative severity of risk

associated with the patient.
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In addition to outcome measures such as mortality or morbidity for critically ill

patients in intensive care units (ICUs) or similar measures for patients undergoing cardiac

surgery, another measure could be the duration of ICU stay following cardiac surgery. A

few systems for stratification of pre-operative risk associated with patients exist in health

care. Such systems usually incorporate the use of a logistic regression model (see

Chapter 13) to predict, for example, mortality based on a number of patient character

istics. One system of risk stratification for surgical outcomes in acquired heart disease is

the Parsonnet score (Geissler et al. 2000; Lawrence et al. 2000; Parsonnet et al. 1989).

This scale incorporates patient characteristics such as gender, age, obesity, blood

pressure, presence of diabetes, cholesterol level, family history, Mitral valve disease,

and left ventricular ejection fraction, among others. Scores usually range from 0 to 100,

with low scores representing smaller risks. Another scoring system utilizes the APACHE

(Acute Physiology and Chronic Health Evaluation) score. This is calculated using patient

characteristics such as age, arterial pressure, heart rate, respiratory rate, sodium (serum)

level, potassium (serum) level, creatinine, and white blood cell count, among others. The

APACHE system has been refined over the years, with the APACHE III system that

measures severity of disease from 20 physiologic variables with scores ranging from 0 to

299 (Knaus et al. 1985, 1991). A fourth-generation APACHE IV scoring system has been

found to perform well in predicting mortality in the ICU (Zimmerman et al. 2006; Keegan

et al. 2011).

Risk-Adjusted Cumulative Sum (RACUSUM) Chart

Using the regular cusum chart, as discussed earlier, one could monitor the cumulative sum of

the number of deaths for each successive patient given by

C0 � 0 �7-76� 
Cn � Cn�1 �Wn; n > 1

where Wn denotes the weight applied to the nth observation, in this case the outcome

associatedwith the nth patient. Here,Wn = 1 if the nth patient dies andWn= 0 if the nth patient

survives. The control chartmay be designed to signal ifCn > h, where h is a bound selected on

the basis of a chosen false-alarm rate or, equivalently, an in-control ARL. The drawback of

this traditional cumulative sum chart is that it does not take into account the variation in the

pre-operative risk of mortality from patient to patient.

The risk-adjusted cumulative sumchart incorporates patient characteristics based on some

aggregate risk score, such as the Parsonnet score or the APACHE score. Using such a score,

the predicted risk of mortality is found from a logistic regression model and is given by

log�pn=�1 � pn�� � a � b RSCn

where pn denotes the pre-operative predictive mortality for patient n whose aggregate

risk score is given by RSCn and a and b are estimated parameters of the logistic regression

model. The above expression may be re-expressed to estimate the predicted risk of

mortality as

pn � c � d RSCn �7-77� 
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The risk-adjusted chart repeatedly tests the null and the alternative hypothesis given by

H0 : Odds ratio � R0

Ha : Odds ratio � Ra

The odds ratio is the ratio of the probability ofmortality to the probability of survival. Two

cumulative sums may be computed, one to detect increases in the mortality rate (Ra>R0)

through an upper limit h+ and the other to detect decreases in the mortality rate (Ra<R0)

through a lower limit h� .
Let us denoteC� andC� as the upper and lower cumulative sum values. The risk-adjustedn n

weight function (Wn) for patient n is utilized in computing the corresponding risk-adjusted

cumulative sum values given as follows (Steiner et al. 2000):

C� 
0 � C� 

0 � 0
C� 
n � max�0;C� 

n�1 �Wn� �7-78� 
C� 
n � min�0;C� 

n�1 �Wn�; n � 1

where

�1 � pn � R0pn�Ra
log if patient dies�1 � pn � Rapn�R0

Wn � �7-79� 
1 � pn � R0pn

log if patient survives
1 � pn � Rapn

The values of the control limits, h+ and h�, are selected based on chosen values of R0, Ra,

and the associated risks of a false alarm and the probability of a type II error. The chart signals

if C� > h� or C� < h�. In order to compare surgical performance based on pre-operativen n

prediction, R0 may be chosen to be 1. To detect a deterioration in performance, Ra may be

selected, for example, as 2, that is, a doubling of the odds ratio. On the other hand, to detect an

improvement in the performance, Ra may be selected to be less than 1, for example, 0.5. By

selecting the cumulative sum functions given by eqs. (7-78) and (7-79), the absorbing barrier

is at the zero line so that the chart resets itself any time this barrier is reached.

Risk-Adjusted Sequential Probability Ratio Test (RASPRT)

The resetting risk-adjusted sequential probability ratio test is quite similar to the RACUSUM

chart. The null hypothesis is that the risk ofmortality is accurately predicted by the chosen risk

adjustment prediction equation. In this case, we assume that pn, given by eq. (7-77) based on

an aggregate risk score, is accurate. The alternative hypothesis is that the probability of

mortality is better predicted by a different probability.

The RASPRT statistic is given by

R0 � 0 �7-80� 
Rn � Rn�1 �Wn

where the risk-adjustedweight for patient n is given by eq. (7-79). Thresholds for decision

making are given by bounds e and f. The upper bound e is chosen based on a selected level of a

type I error,α (false-alarm rate),where onemay incorrectly conclude, for example, a doubling
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of the mortality rate if Rn> e. Both bounds are influenced by the chosen levels α and β, the

probability of a type II error, and are given by

e � log
1 � β

α

β

1 � α

�7-81� 
f � log

Risk-Adjusted Exponentially Weighted Moving-Average (RAEWMA) Chart

The regular EWMAchart introduced previously in the chapterweights observations based on

how recent they are. More weight is assigned to the most recent observation with the weights

decreasing sequentially in a geometric manner for observations as they go back in history.

In the risk-adjusted EWMAchart, the computation of the charting statistic is similar to that

discussed previously. This is given by

EWMAn � λ Yn � �1 � λ�EWMAn�1

where λ is the weighting constant and Yn represents the observed outcome. If the patient

survives, Yn= 0, while it is 1 if the patient dies.

However, the control limits are based on risk adjustment associated with the varying

degree of severity of illness of the patients. As in the risk-adjusted cusum chart, the predicted

risk ofmortalitymaybe found froma re-expressed logistic regressionmodel, of the typegiven

by eq. 7-77, based on the aggregate risk score of the patient. The centerline for patient n, using

risk adjustment, is given by

EWMAn � λpn � �1 � λ�EWMAn�1 �7-82� 

where λ is the selected weighting constant (0< λ� 1) and pn is found from eq. (7-77).

Equation (7-82) may be re-expressed as

n
n�k nEWMAn � λ �1 � λ� pk � �1 � λ� EWMA0 ; n � 1 �7-83� 

k�1

where, for EWMA0, the starting estimate of the predicted mortality risk, one may use the

value of p1.

The control limits of the risk-adjusted EWMA chart may be found by calculating the

estimated variance of EWMAn :

n
2�n�k� 2nVar�EWMAn� � λ2 �1 � λ� Var�pk� � �1 � λ� Var�p1� 

k�1

Since Var(pk) = pk(1� pk), k= 1, 2, . . . , n, we have

n
2�n�k� 2nVar�EWMAn� � λ2 �1 � λ� pk�1 � pk� � �1 � λ� p1�1 � p1� �7-84� 

k�1
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Assuming a normal approximation, the risk-adjusted control limits, using eqs. (7-83) and

(7-84), are given by

�UCLn;LCLn� � �EWMAn� � zα=2 Var�EWMAn�; n � 1 �7-85� 

where zα/2 is the standard normal variate for a chosen type I error rate of α.

The risk-adjusted EWMAchart is able to detect small and gradual changes in themortality

rate. Further, an appropriate choice of the smoothing factor λ based on the anticipated change

helps the RAEWMA chart to signal quickly in the event of a change.

Variable Life-Adjusted Display (VLAD) Chart

Another control chart formonitoringmortality is theVLADchart that displays the cumulative

difference between observed and predicted deaths plotted against the patient sequence

number. The predicted number of deaths incorporates the severity of illness of the patient.

As discussed previously, a composite measure such as the Parsonnet score or the APACHE

score may be used to predict the risk of mortality for a patient using a logistic regression

model. Equation (7-77) shows a reduced form of the model.

The VLAD chart is a form of the cumulative sum control chart. For each operation

performed on a patient by the surgeon, the chart statistic accrues a value equal to the predicted

risk,which represents the expectednumberof deaths that incorporates thepatients’ severity of

illness, minus the observed outcome, which represents the actual number of deaths. The

statistic represents the net lives saved when adjusted for the patient’s pre-operative risk on a

cumulative basis. Hence, for a surgeon performing at the predicted level of risk, the statistic

will approach the value of zero. For those performing at a level better than that predicted, as

influenced by the patients’ risk level, a positive scorewill result for theVLADstatistic. On the

contrary, for a surgeon not performing at the predicted level, the VLAD statistic will show a

downward trend and eventually yield a negative value.

Suppose that the predicted risk of mortality for patient n is given by pn, as given by

eq. (7-77). The statistic for patient n is obtained as

Wn � pn � on; n � 1 �7-86� 
whereon = 1 if patientndies andon = 0 if thepatient survives. For a sequenceofoperations, the

cumulative sum of the VLAD statistic after operation t is given by

VLADt � Wn

n�1 �7-87�t

� pn � total number of deaths up to t; t � 1

Example 7-14 The predictedmortality of cardiac surgery patients in an ICU, based on their

APACHEscore, is found based on a logistic regressionmodel applied to patients over a three-

year period. Table 7-14 shows the predicted pre-operative mortality for 20 recent patients

along with the observed outcome after surgery, where a value of 0 indicates that the patient

survived while a value of 1 indicates the death of the patient. Construct a risk-adjusted

cumulative chart for mortality of the patients and comment on the observed trend.

t

n�1
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TABLE 7-14 Predicted and Observed Mortality of ICU Patients

Patient Predicted Observed Patient Predicted Observed

Number (n) Mortality Mortality Number (n) Mortality Mortality

1 0.35 0 11 0.54 0

2 0.25 0 12 0.68 0

3 0.40 0 13 0.52 0

4 0.48 1 14 0.70 0

5 0.60 0 15 0.85 0

6 0.52 0 16 0.82 0

7 0.68 0 17 0.76 0

8 0.86 0 18 0.80 0

9 0.80 1 19 0.74 0

10 0.82 0 20 0.72 0

Solution The risk-adjusted weights for each patient are found based on the predicted

pre-operativemortality using eq. (7-79), depending on the actual outcome after surgery. Here

the value of R0 is chosen to be 1, indicating that the hospital-developed model for mortality

prediction is accurate. We choose to determine if there is an improvement in the surgical

performance of the team, that is,Ra, is chosen to be<1. In this example,we selectRa to be 0.8,

demonstrating a chosen degree of improvement we wish to detect. Based on historical data

from an in-control process, the value of the bound, h�, will have to be selected for a chosen
level of the false-alarm rate,α. This valuewill bedependent on themodel that is used to predict

mortality based on patient’s risk factors.

Table 7-15 shows the risk-adjustedweight (Wn) for each patient aswell as the risk-adjusted

cumulative sum ofmortality using eq. (7-78). Here,C� is computed since wewish to detect an

decrease in mortality, that is, an improvement in the surgical performance of the team.

Figure 7-30 shows a plot of the risk-adjusted cumulative sum of mortality of the 20 recent

patients. A decreasing trend is observed with the exception of two points, corresponding to

patients 4 and 9, where the patients did not survive. Overall, the surgical performance of the

team demonstrates a continual improvement indicating that the adopted procedures seem to

be working well. The chart will signal when C� < h�, where h� is a lower bound to ben

determined from an in-control process with a chosen false-alarm rate.

TABLE 7-15 Risk-Adjusted Patient Weight and Cumulative Sum of Mortality

Patient Patient Cumulative Patient Patient Cumulative

Number Weight (Wn) Sum (C� 
n ) Number Weight (Wn) Sum (C� 

n )

1 0.0726 �0.0726 11 0.1143 �0.9072
2 0.0513 �0.1239 12 0.1462 �1.0534
3 0.0834 �0.2123 13 0.1098 �1.1632
4 �0.1222 �0.0901 14 0.1508 �1.3140
5 0.1278 �0.2179 15 0.1863 �1.5003
6 0.1098 �0.3277 16 0.1791 �1.6794
7 0.1462 �0.4739 17 0.1649 �1.8443
8 0.1887 �0.6626 18 0.1744 �2.0187
9 �0.0488 �0.6138 19 0.1602 �2.1789
10 0.1791 �0.7929 20 0.1555 �2.3344
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FIGURE 7-30 Risk-adjusted cumulative sum of mortality of ICU patients.

Example 7-15 For the data on cardiac surgery patients in an ICU as shown in Table 7-14,

demonstrate a risk-adjusted sequential probability ratio test using a false-alarm rate (α) of

0.01.Assume that the chanceof a type II error (β) of failing todetect adecrease in theodds ratio

of mortality from 1 to 0.8 is 0.05.

Solution The RASPRT statistic is obtained from eq. (7-80). Since the risk-adjusted

patientweights (Wn) are the same as in Example 7-14, theRASPRT statistic (Rn) is essentially

equivalent to the risk-adjusted cumulative sum of mortality (C�) shown in Table 7-15.n

We compute the lower bound, f, based on chosen levels of α and β, given by eq. (7-81), to

detect an improvement in the odds ratio. We have

f � log�0:05=�1 � 0:01�� � �2:986
From Table 7-15, we observe the decreasing trend in the values of C�, that is, Rn in thisn

situation. However, for the selected levels of α and β, the threshold value of�2.986 is not yet
surpassed. The smallest value of Rn is �2.334 as recorded for patient 20. Hence, monitoring

will have to be continued to determine if the risk-adjusted chart will signal in the future.

Example 7-16 For the data on cardiac surgery patients in an ICU as shown in Table 7-14,

construct a RAEWMAchart using a smoothing constant of 0.2 and a false-alarm rate of 0.05.

Solution We demonstrate the computation for the first patient. The risk-adjusted

centerline using eq. (7-82) is

EWMA1 � �0:2��0:35� � �0:8��0:35� � 0:35

The variance of EWMA1, using eq. (7-84), is

2 2Var �EWMA1 � � �0:2� �0:35��0:65� � �0:8� �0:35��0:65� � 0:1547
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The risk-adjusted control limits, using eq. (7-85), are
p

�UCL1;LCL1� � 0:35 � �1:96� 0:1547 � �1:121;�0:421� 
Based on the patient outcome data (Yi= 0, 1) assuming EWMA0 � Y1, we obtain

EWMA1 � �0:2�0 � 0:8�0� � 0 since Y1 � 0�patient survived� 
The computed EWMA values are then compared to the risk-adjusted RAEWMA control

limits to make a decision on the process. Table 7-16 shows values of EWMAn, the risk-

adjusted centerline EWMAn , and the risk-adjusted control limits for each patient.

A plot of the RAEWMA control charts is shown in Figure 7-31. If the lower control

limit is calculated to be negative, it is converted to 0, while if the upper control limit is

above unity, it is converted to 1. The plot shows that, starting with patient number 7, the

risk-adjusted EWMA values plot below the risk-adjusted lower control limit. Addition

ally, while the risk-adjusted centerline and control limits show a generally increasing

trend, the observed risk-adjusted EWMA shows a declining trend starting with patient

number 10. This demonstrates an improvement in the surgical performance of the team

while accounting for patient risk. It is found that even though the predicted risks for

individual patients are quite high, surgical outcome performance has exceeded predic

tions. The team should be commended and whatever measures they have utilized in their

process should be emulated in the future.

7-10 MULTIVARIATE CONTROL CHARTS

Thecontrol chartsmentioned thus far havedealtwith controlling onecharacteristic.However,

in real-world situations, we often deal with two or more variables simultaneously. For

instance, we may want to simultaneously control both the length and the inside diameter of a

pipe. In otherwords, both the length and the inside diametermust be acceptable for the pipe to

be usable. Controlling both characteristics separately may not yield a product in which both

variables are acceptable.

Controlling Several Related Quality Characteristics

Suppose we have two quality characteristics that must both be in control for the process to be

in control. If control charts for the averages of these two characteristics are kept indepen

dently, the result is a rectangular control regionona two-dimensional plot. Theboundariesof

this region are basically the upper and lower control limits of the two quality characteristics

and are calculated using eq. (7-5). If the bivariate observation of sample means (X1;X2) plots

within the control limits, the process would seem to be in control.

Such rectangular boundaries, however, can often be incorrect. An actual control region for

two characteristics is elliptic in nature (see Figure 7-32). The equation of a statistic that

incorporates two characteristics is an ellipse, as we will see in eq. (7-89). If the two

characteristics are independent of each other, the major and minor axes of the ellipse are

parallel to the respective plot axes (see ellipse A in Figure 7-32). If the pair of sample means

(X1;X2) falls within the boundary of the ellipse, the process is said to be in control. If two

characteristics are negatively correlated, the shape of the control ellipse will be similar to that

of ellipse B. If the two variables are positively correlated, the control ellipse will be similar to

that of ellipse C.
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FIGURE 7-31 Risk-adjusted EWMA control chart for ICU patient data.

Figure 7-32 shows that if the variables are positively correlated andwe use the rectangular

region erroneously as the control region,we drawvarious incorrect conclusions. For instance,

if (X1;X2) falls in region E or region F, the process is in control even though the point falls

outside the rectangular region.Apoint in regionG, on the other hand, iswithin the rectangular

region, but the process is nonetheless out of control.

FIGURE 7-32 Elliptical control region.
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The degree of correlation between the variables influences the magnitude of the errors

encountered in making inferences. If a separate X-chart is constructed for each characteristic

based on a type I error probability of α and a rectangular control region is used, then for

independent variables the probability of a type I error for the joint control procedure is

pα´ � 1 � �1 � α� �7-88� 
where p represents the number of jointly controlled variables. The probability of all p sample

means plotting within the rectangular region is (1� α)p.

Moderate or large values of p have a major impact on the errors associated with inference

making. Suppose that individual control chart limits are constructed using a type I error

probability of 0.0026. If we have four independent characteristics (i.e., p= 4), the overall

type I error probability (α´ ) for the joint control procedure is

α´ � 1 � �0:9974�4 � 0:0104

If the variables are not independent, the magnitude of the type I error will be difficult to

obtain. In practice, a control ellipse should be chosen so that the probability of the sample

means beingplottedwithin the elliptical regionwhen the process is in control is 1� α,whereα

is the desired overall probability of a type I error.

Hotelling’s T2 Control Chart and Its Variations

Suppose that we have two quality characteristics,X1 andX2, distributed jointly according to a

bivariate normal distribution. Assume that the target mean values of the characteristics are

represented by X01 and X02, respectively. Let the sample means be X1 and X2, with sample
2 2variances s1 and s2, and the covariance between the two variables be represented by s12 for a

sample of size n. Under these conditions, the statistic

n 2 22 2T2 � s X1 � X01 � s X2 � X022 2 2 2s � s 1
1s2 12

� 2s12 X1 � X01 X2 � X02 �7-89� 

is distributed according to Hotelling’s T2-distribution with 2 and (n� 1) degrees of

freedom (Hotelling 1947). The 2 in this case comes from the two characteristics being

considered, and the (n� 1) is the degrees of freedom associated with the sample variance.

If the calculated value of T2 given by eq. (7-89) exceeds T2 , the point on the T2α;2;n� 1

distribution such that the proportion to the right is α, then at least one of the characteristics

is out of control.

This procedure can be shown graphically. Equation (7-89) represents the control

ellipses shown in Figure 7-32. If the variables are independent, the covariance between

them is zero (i.e., s12= 0), the control ellipse is A, and the joint control region is

represented by the area within the control ellipse A. If a plot of the bivariate means

(X1;X2) falls within this control region, we can assume a state of statistical control. If the

two variables are positively correlated, then s12> 0, and the control ellipse is similar to

ellipse C. If the variables are negatively correlated, then s12< 0, and the control ellipse

will be similar to ellipse B.

Hotelling’s control ellipse procedure has several disadvantages. First, the time sequence of

the plotted points (X1;X2) is lost. This implies that we cannot check for runs in the plotted

pattern as with control charts. Second, the construction of the control ellipse becomes quite
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difficult for more than two characteristics. To overcome these disadvantages, the values of T2

given by eq. (7-89) are plotted on a control chart on a sample-by-sample basis to preserve the

timeorder inwhich the data values are obtained. Such acontrol chart has anupper control limit

of T2 , where p represents the number of characteristics. Patterns of nonrandom runs canα;p;n� 1

be investigated in such plots.

Values ofHotelling’s T2 percentile points can be obtained from the percentile points of the

F-distribution given in Appendix A-6 by using the relation

n � 1
T2 � p Fα;p;n� p �7-90�α;p;n� 1 n � p

where Fα;p;n� p represents the point on the F-distribution such that the area to the right is α,

with p degrees of freedom in the numerator and (n� p) degrees of freedom in the

denominator.

Ifmore than twocharacteristics are being considered, the value ofT2 givenbyeq. (7-89) for

a sample can be generalized as

X � μ0 ´ � 1
T2 � n �7-91�X � μ0

where X represents the vector of sample means of p characteristics for a sample of size n, μ0
represents the vector of target values for each characteristic, and denotes the variance–

covariance matrix of the p quality characteristics.

Phase 1 and Phase 2 Charts

In multivariate control charts, the process of determining control limits from an in-control

process and, thereby, using those control limits to detect a change in the process parameter, for

example, the process mean, is usually conducted in two phases. In phase 1, assuming that

special causes do not exist upon taking remedial actions, if necessary, based on the

observations from the in-control process, estimates of the process mean μ0 and process

variance–covariance matrix Σ are obtained.

Suppose that, for an in-control process,we havem samples, each of sizen, with the number

of characteristics being p. The vector of sample means is given by

Xj � 

X1j

X2j

. . 

. 

Xpj

; j � 1; 2; . . . ;m

whereXij represents the samplemeanof the ith characteristic for the jth sample and is found

from

Xijk

k�1 �7-92�Xij � 
n

i � 1; 2; . . . p; j � 1; 2; . . . ;m

n

where Xijk represents the value of the kth observation of the ith characteristic in the jth

sample. The sample variances for the ith characteristic in the jth sample are given by
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n1
s2 � �Xijk � Xij�2ij n � 1 �7-93�k�1
i � 1; 2; . . . ; p; j � 1; 2; . . . ;m

The covariance between characteristics i and h in the jth sample is calculated from

n1
sihj � �Xijk � Xij��Xhjk � Xhj� 

n � 1 �7-94�k�1
j � 1; 2; . . . ;m; i ≠ h

The vector μ0 of the process means of each characteristic for m samples is estimated as

Xij
j�1

Xi � ; i � 1; 2; . . . ; p �7-95� 
m

The elements of the variance–covariance matrix Σ in eq. (7-91) are estimated from the

following average for m samples:

m
2sij

j�12s � ; i � 1; 2; . . . ; p �7-96�i m

and

sihj
j�1

sih � ; i ≠ h �7-97� 
m

Finally, thematrixΣ is estimated using S as follows (only the upper diagonal part is shown

because the matrix is symmetric):

s2 s12 s13 ∙ ∙ ∙ s1p1

s2 s23 ∙ ∙ ∙ s2p2
S � �7-98�. . . 

2sp

Phase 1 Control Limits The upper control limit of the T2-chart given by eq. (7-90) can be

modified to take the following form (Alt 1982):

mnp � mp � np � p
UCL � Fα;p;mn�m�p�1 �7-99� 

mn � m � p � 1

wherem represents the number of samples, each of size n, used to estimateX and S. The value

of T2 for each of the m samples is calculated using the estimated statistic

S�1T2 � n�X � X�´ �X � X� �7-100� 
and is then compared to the UCL given by eq. (7-99). If the value of T2 for the jth sample

(i.e., Tj
2) is above the UCL, it is treated as an out-of-control point, and investigative action

is begun.

m

m
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Phase 2 Control Limits After out-of-control points, if any, are deleted assuming adequate

remedial actions are taken, the procedure is repeated until all retained observations are in

control.

Now, phase 2 of the procedure is used formonitoring future observations from the process.

Let us denote the number of samples retained at the end of phase 1 by m, each containing n
2observations. The upper control limit for the T control chart in phase 2 is given by

UCL � p�m � 1��n � 1� 
mn � m � p � 1

Fα;p;mn�m�p�1 �7-101� 

Usage and Interpretations

AHotelling’s control chart is constructed using the upper control limit and the plotted values

ofT2 for each sample givenbyeq. (7-100),where the vectorX and thematrixS are foundusing

the preceding procedure. A sample value of T2 above the upper control limit indicates an out

of-control situation. How do we determine which quality characteristic caused the out-of

control state?

Even with only two characteristics (p= 2), the situation can be complex. If the two

quality characteristics are highly positively correlated, we expect the averages for each

characteristic in the sample to maintain the same relationship relative to the process

average X. For example, in the jth sample, if X1j > X1, we could expect X2j > X2.

Similarly, if X1j < X1, we would expect X2j < X2, which would confirm that the sample

averages for each characteristic move in the same direction relative to their means.

If the two characteristics are highly positively correlated and X1j > X1, we would not

expect that X2j < X2. However, should this occur, this sample may show up as an out-of

control point inHotelling’sT2 procedure, thereby indicating that the bivariate process is out of

control. This same inference can bemade using individual 3σ control limit charts constructed

for each characteristic if X1j exceeds X1 � 3σ or X2j exceeds X2 � 3σ . However,X1 X2

individual quality characteristic means can plot within the control limits on separate control

charts even though the T2 plots above the UCL on the joint control chart. Using joint control

charts for characteristics that need to be considered simultaneously is thus advantageous.

However, note that an individual chart for a quality characteristic can sometimes indicate an

out-of-control condition when the joint control chart does not.

In general, larger sample sizes are needed to detect process changes with positively

correlated characteristics than with negatively correlated characteristics. Furthermore, for

highly positively correlated characteristics, larger sample sizes are needed to detect large

positive shifts in the process means than to detect small positive shifts.

Generally speaking, if an out-of-control condition is detected by a Hotelling’s control

chart, individual control intervals are calculated for each characteristic for that sample. If the

probability of a type I error for a joint control procedure is α, then for sample j, the individual

control interval for the ith quality characteristic is

m � 1
; i � 1; 2; . . . ; p �7-102�Xi � tα=2p;m�n� 1�si

mn

2where Xi and s are given by eqs. (7-95) and (7-96), respectively. If Xij falls outside thisi

interval, the corresponding characteristic should be investigated for a lack of control. If special
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causes are detected, the sample that contains information relating to all the characteristics

should be deleted when the upper control limit is recomputed.

As described previously, even though theT2 control chart is useful in detecting shifts in the

process mean vector, it does not identify which specific variables(s) are responsible. One

approach, in this context, is the T2 decomposition method. The concept is to determine the

individual contributions of each of the p variables, or combinations thereof, to the overall T2

statistic. These individual contributions or partial T2-statistics are found as follows:

Di � T2 � T2 ; i � 1; 2; . . .  p �7-103�1;2;...;i� 1;i� 1;...p

whereT2 denotes theT2-statisticwhen the ith variable is left out. Large values of1;2;...;i� 1;i� 1;...p

Di will indicate a significant impact of variable i for the particular observation under

investigation.

Individual Observations with Unknown Process Parameters

The situation considered previously dealt with subgroups of data, where the sample size (n)

for each subgroup exceeds 1. In this section we consider individual observations and assume

that the process parameters, mean vector or the elements of the variance–covariance matrix,

are unknown. As before, we use the two-phase approach, where in phase 1 we use the

preliminary data to retain observations in control.

The value of T2, when individual observations are obtained, is given by

S� 1T2 � �X � X�´ �X � X� �7-104� 

In eq. (7-104), the process mean vector is estimated from the observations by X, while the

process variance–covariancematrix is estimated, using the data, by S. The upper control limit

in this situation, in phase 1, is given by

�m � 1�2 p m � p � 1
UCL � B α; ; �7-105� 

m 2 2

where B�α; p=2; �m � p � 1�=2� denotes the upper αth quantile of the beta distribution with
parameters p/2 and (m� p� 1)/2.

If an observation vector has a value of T2, given by eq. (7-104), that exceeds the value of

UCL, given by eq. (7-105), it is deleted from the preliminary data set. Revised estimates of the

processmean vector and variance–covariancematrix elements are found using the remaining

observations and the process is repeated until no further observations are deleted. We now

proceed to phase 2 tomonitor future observations. The estimatesX andSobtained at the endof

phase 1 are used to calculate T2, using eq. (7-104), for new observations. Assuming that the

number of observations retained at the end of phase 1 is given bym, the upper control limit for

phase 2 is obtained as

p�m � 1��m � 1� 
UCL � Fα;p;m� p �7-106� 

m�m � p� 

Hence, values of T2 for new observations will be compared with the UCL given by

eq. (7-106) to determine out-of-control conditions.
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Generalized Variance Chart

The multivariate control charts discussed previously dealt with monitoring the process mean

vector. Here, we introduce a procedure to develop a multivariate dispersion chart to monitor

process variability based on the sample variance–covariance matrix S. A measure of the

sample generalized variance is given by jSj, the determinant of the sample variance–

covariance matrix.

Denoting the mean and variance of jSj by E�jSj� and V(jSj), respectively, and using the

propertypthat most of the probability distribution of jSj is contained in the interval

EjSj � 3 V�jSj�, expressions for the parameters of the control chart for jSj may be obtained.

It is known that

E�jSj� � b1 jΣj �7-107� 

V�jSj� � b2 jΣj2 �7-108� 
where Σ represents the process variance–covariance matrix, and

p

∏�n � i� 
b1 � i�1 �7-109� �n � 1�p

p p p

∏�n � i� ∏�n � j � 2� � ∏�n � j� 
i�1 j�1 j�1 �7-110�b2 � �n � 1�2p

SinceΣ is usually unknown, it is estimated basedon sample information. Fromeq. (7-107),

an unbiased estimator of jΣj is jSj/b1.Using eqs. (7-107) and (7-108), the centerline and control
limits for the jSj chart are given by

CL � b1 jΣj 
1=2

UCL � jΣj b1 � 3b2 �7-111� 
1=2

LCL � jΣj b1 � 3b2
When a target value for Σ, say Σ0, is specified, jΣj is replaced by jΣ0j in eq. (7-111).

Alternatively, the sample estimate of jΣj given by jSj/b1 will be used to compute the centerline

and control limits in eq. (7-111). In the event that the LCL from eq. (7-111) is computed to be

less than zero, it is converted to zero.

For a given sample j, jSjj, the determinant of the variance–covariancematrix for sample j, is

computed andplotted on the generalized variance chart. If the plotted value of jSjj is outside the
control limits, we flag the process and look for special causes.

Even though the generalized sample variance chart is useful, as it aggregates the variability

of several variables into one index, it has to be used with caution. This is because many

different Sjmatricesmaygive the samevalue of jSjj,while the variance structure could be quite
different. Hence, a univariate range (R) chart or standard deviation (s) chart may help us

understand the variables that contribute to make the combined impact on the generalized

variance to be significant.
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TABLE 7-17 Bivariate Data for the Fabric Production Example

Sample Single-Strand Break Factor, i= 1 Weight of Textile Fibers, i= 2

1 80 82 78 85 19 22 20 20

2 75 78 84 81 24 21 18 21

3 83 86 84 87 19 24 21 22

4 79 84 80 83 18 20 17 16

5 82 81 78 86 23 21 18 22

6 86 84 85 87 21 20 23 21

7 84 88 82 85 19 23 19 22

8 76 84 78 82 22 17 19 18

9 85 88 85 87 18 16 20 16

10 80 78 81 83 18 19 20 18

11 86 84 85 86 23 20 24 22

12 81 81 83 82 22 21 23 21

13 81 86 82 79 16 18 20 19

14 75 78 82 80 22 21 23 22

15 77 84 78 85 22 19 21 18

16 86 82 84 84 19 23 18 22

17 84 85 78 79 17 22 18 19

18 82 86 79 83 20 19 23 21

19 79 88 85 83 21 23 20 18

20 80 84 82 85 18 22 19 20

Example 7-17 The single-strand break factor (a measure of the breaking strength) and

weight of textile fibers (hanks per pound) are both of interest in keeping a fabric

production process in control. Table 7-17 shows data for the two characteristics for

20 samples of size 4. For instance, the bivariate observations for sample 1 are (80, 19),

(82, 22), (78, 20), and (85, 20).

To construct the Hotelling’s T2-chart, we need to calculate the sample means, sample

variances and covariances, andT2- values; these are shown inTable 7-18.Weuse p= 2 for the

number of characteristics, n= 4 for the sample size, and m= 20 for the number of samples.

The calculations proceed as follows.

The samplemeans of each characteristic are found for each sample by using eq. (7-92). For

sample 1, the mean of the break-factor readings is

80 � 82 � 78 � 85
X11 � � 81:25

4

Similarly, the mean fiber weight for sample 1 is 20.25 hanks per pound. This procedure is

repeated for each sample, yielding the results shown in Table 7-18.

Next, the sample variance of each characteristic is found for each sample [eq. (7-93)]. For

the single-strand break factor (i= 1), the sample variance of sample 1 is

2 2 2 2
s � 1 ��80 � 81:25� � �82 � 81:25� � �78 � 81:25� � �85 � 81:25�2� � 8:9211 3
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TABLE 7-18 Fabric Product Statistics for Construction of Hotelling’s T2-Chart

Sample Sample

Means Variances
Sample Generalized

Sample, Break Weight, Covariance Hotelling’s Variance,
2 2 T2j Factor, X1j X2j s1j s2j s12j j jSj j 

1 81.25 20.25 8.92 1.58 0.92 0.78 13.28

2 79.50 21.00 15.00 6.00 �9.00 5.25 9.00

3 85.00 21.50 3.33 4.33 3.00 5.98 5.44

4 81.50 17.75 5.67 2.92 1.17 7.95 15.17

5 81.75 21.00 10.92 4.67 5.33 1.03 22.50

6 85.50 21.25 1.67 1.58 0.17 6.72 2.61

7 84.75 20.75 6.25 4.25 4.58 3.36 5.55

8 80.00 19.00 13.33 4.67 �7.33 5.27 8.44

9 86.25 17.50 2.25 3.67 �2.50 15.25 2.00

10 80.50 18.75 4.33 0.92 �0.50 4.86 3.72

11 85.25 22.25 0.92 2.92 0.92 10.08 1.83

12 81.75 21.75 0.92 0.92 0.58 3.17 0.50

13 82.00 18.25 8.67 2.92 �0.33 4.74 25.17

14 78.75 22.00 8.92 0.67 1.33 10.66 4.17

15 81.00 20.00 16.67 3.33 �7.33 1.21 1.78

16 84.00 20.50 2.67 5.67 �2.67 1.45 8.00

17 81.50 19.00 12.33 4.67 3.00 2.31 48.55

18 82.50 20.75 8.33 2.92 �4.50 0.41 4.05

19 83.75 20.50 14.25 4.33 3.17 1.06 51.72

20 82.75 19.75 4.92 2.92 2.92 0.25 5.83

Means X1 � 82:46 X2 � 20:17 s21 � 7:51 s22 � 3:29 s12 � �0:35

The covariances between the two characteristics are then calculated for each sample using

eq. (7-94). For sample 1, we use

1
s121 � ��80 � 81:25��19 � 20:25� � �82 � 81:25��22 � 20:25� 

3 � �78 � 81:25��20 � 20:25� � �85 � 81:25��20 � 20:25�� 
� 0:917

Next, estimates of the processmean of each characteristic are found [eq. (7-95)]. Estimates of

the elements of the variance–covariancematrixS are found in accordancewith eqs. (7-96) and

(7-97). The values of T2 are given by eq. (7-89).

The upper control limit for the T2-chart for an overall type I error probability of 0.0054 is

found using eq. (7-99):

�20��4��2� � �20��2� � �4��2� �  2 F0:0054;2;�20��4� � 20� 2� 1UCL � �20��4� �  20 � 2 � 1

� 1:932F0:0054;2;59 � �1:932��6:406� � 12:376

The value of F0.0054,2,59 may be approximated from Appendix A-6 using linear

interpolation.
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2FIGURE 7-33 T control chart for bivariate fabric production data.

The multivariate T2-chart for these two characteristics in Figure 7-33 shows sample 9 to

be out of control. From Table 7-18, T2= 15.25 for this sample, which exceeds the upper

control limit of 12.376. The next step is to investigate which characteristic is causing this

condition.

Themeanof the ranges (R) of thesingle-strandbreak factors for the20samples is5.75,while

that for the weight of the fibers is 3.95. When individual 3σ limits are constructed

(α/2p= 0.0054/4= 0.0013, which yields a z-value of 3.00), the control limits are found as

follows.

For the single-strand break factor, the upper control limit is

UCL � X1 � A2R

� 82:46 � �0:729��5:75� 
� 86:652

For the fiber weight, the upper control limit is

UCL � X2 � A2R

� 20:17 � �0:729��3:95� 
� 23:050

Note that for sample 9 the single-strand break factor mean does not exceed the UCL of its

separate control chart. The fiberweight samplemean for sample 9 is also less than theUCL of

its own control chart. Hence, in this case, the joint control chart indicates an out-of-control

condition that individual control charts do not detect.

Our next step should be to determine what caused the single-strand break factor or fiber

weight to go out of control.Once the necessary corrective action has been taken, theHotelling

T
2 control limits should be revised by deleting sample 9 for both characteristics.
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If we had decided to use the individual control limits for a joint control procedure as given

by eq. (7-102), the limits would be as follows. For the single-strand break factor,

X1 � t0:0054=�2��2�;20�3� s1
19

�20��4� � 82:46 � t0:0013;60� 7:51
p 

� 0:2375
p 

� 82:46 � �3:189��1:3353� 
� �78:202; 86:718� 

The samplemean of sample 9 for this characteristic does not exceed the upper control limit of

86.718 and so would not be considered out of control. The control limits for the fiber weight

are found in a similar manner:

p19 � 20:17 � �3:189�� 3:29��0:4873�X2 � t0:0013;60 s2 �20��4� 
� �17:351; 22:989� 

For sample 9, the mean fiber weight is within these calculated limits and so would also be

considered in control.

Thus, based on the joint control procedure, this process has been identified as being out of

control. Remedial actions based on the special causes for sample 9 should be identified and

implemented. The control limits for Hotelling’s T2-chart should be revised by deleting the

observations for this sample.

Thisexample illustrates that a joint control chart can indicateanout-of-controlprocesseven

though the individual charts do not. It is thus imperative to control the quality characteristics

jointly. However, when the T2-chart shows an out-of-control process and an individual chart

plots points outside its control limits, we may have a possible cause, one that we can monitor

more closely and take remedial action on.

Example 7-18 Consider Example 7-17 and the data on the single-strand break factor and

weight of textile fibers as given in Table 7-17. Construct a generalized variance chart and

comment on the process.

Solution The calculations in Table 7-18 yield our sample estimate for the variance–

covariance matrix as

7:51 � 0:35
S � � 0:35 3:29

The determinant of S is obtained as jSj= 24.585. Computations for the constants produce

�3��2� 
b1 � � 0:667

32

�3��2��5�4� �  3�2�� 
b2 � � 1:037

32�2� 
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FIGURE 7-34 Generalized variance chart.

Hence, the centerline and control limits are

CL � 24:585

24:585
UCL � 0:667 � �3��1:037�1=2 � 137:189

0:667

24:585
LCL � 0:667 � �3��1:037�1=2 � � 88:019→0

0:667

The values of |Sj| for each sample are shown in Table 7-18. Note than none of the

generalized sample variances fall outside the control limits.

Minitabmay be used to construct the generalized sample variance plot.Aworksheet isfirst

created using the data in Table 7-17 and putting it in a format compatible to Minitab. Select

Stat>Control Charts>Multivariate Charts. Choose Generalized Variance. Under

Variables, input the column number or names of the two variables Break Factor and

Weight. Under Subgroup sizes, input the column number or name of the variable that

indicates the subgroup number that each observation belongs to. If desirable, underGenVar

Options, you may select Confidence Limits and identify the desired confidence level (say,

95%). Click OK.

Figure7-34 shows thegeneralizedvariance chart.Note that all of theplottedvaluesof jSjj are
well below the 95% confidence limit. As regards the impact on variability of the combined

effect of break factor and weight of fibers, we do not discern out-of-control conditions.

SUMMARY

This chapter has introduced different types of control charts that can be used with quality

characteristics that are variables (i.e., they are measurable on a numerical scale). Details as to



KEY TERMS 373

the construction, analysis, and interpretation of each chart have been presented. Guidelines

were provided for the appropriate settings in which each control chart may be used. The

rationale behind each type of control chart has been discussed.A set of general considerations

that deserve attention prior to the construction of a control chart was given. Statistical process

control by means of control charts for variables is the backbone of many processes.

Procedures to construct and maintain these control charts were discussed at length.

General guidelines are presented for selection of the type of control chart based on the

nature of the data collected. When the subgroup size is 1, a control chart for individuals and

moving range (I –MR) is used. For small subgroups (n< 10), charts for the mean and range

(X and R) are used; for larger subgroups (n� 10), charts for the mean and standard deviation

(X and s) are appropriate. When it is of interest to detect small deviations of a process from a

state of control, the cumulative sum chart is an option.We also discussedmultivariate control

charts where more than one product or process variables are of interest. A T
2-chart for

controlling the process mean vector and a generalized variance chart for monitoring the

process variability are presented.

An important concept in health care applications is that of risk-adjusted control charts.This

is necessitated due to the varying degree of severity of illness or risk associated with patients.

Hence, computation of predicted outcomes, such as mortality or length of stay in the facility,

and the associated control limits need to be adjusted based on the risk of each individual

patient.

KEY TERMS

attribute geometric moving-average chart

average run length risk-adjusted EWMA chart

causes Hotelling’s T2 control chart

common modified control chart

special moving-average chart

centerline R-chart

control chart patterns risk-adjusted sequential probability

bunches/groups ratio test

cyclic short production runs

freaks s-chart

gradual shift in level standardized

interaction variable life-adjusted (VLAD) chart

mixture or the effect of two or more X -chart

populations X-chart

natural Z-MR chart

stratification control limits

sudden shift in level lower

trend revised limits

wild trial limits

control charts for variables upper

acceptance control chart F-distribution

cumulative sum chart (cusum chart) geometric moving average

risk-adjusted cusum chart exponentially weighted moving

generalized variance chart average
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weighting factor frequency of

moving average rational selection of

span size

moving range specification limits

multivariate control charts standard deviation

control region population

out of control sample

rules sample mean

Pareto analysis standardized control chart

principle of least squares statistical control

process target value

mean 3σ control limits

shift in mean type I error

standard deviation overall rate

process capability type II error

proportion nonconforming V-mask

range lead distance

remedial actions angle of decision line

sample variable

EXERCISES

Discussion Questions

7-1 What are the advantages and disadvantages of using variables rather than attributes in

control charts?

7-2 Describe the use of the Pareto concept in the selection of characteristics for control

charts.

7-3 Discuss the preliminary decisions that must be made before you construct a control

chart. What concepts should be followed when selecting rational samples?

7-4 Discuss specific characteristics that couldbemonitored throughvariable control charts,

the form of data to collect, and the appropriate control chart in the following situations:

(a) Waiting time to check in baggage at an airport counter

(b) Product assembly time in a hardware company

(c) Time to develop a proposal based on customer solicitation

(d) Emission level of carbon monoxide for a certain model of automobile

(e) Detection of a change in average response time to customer queries when the

degree of change is small

(f) Changes in blood pressure of a patient over a period of time

(g) Acceptance of products manufactured in batches, where batch means of the

characteristic selected are determined, with the ability to detect a set proportion

nonconformance with a desired level of probability

(h) Mortality rate of cardiac surgery patients adjusting for individual patient risk

(i) Time to respond to customer queries received at a call center

(j) Downtime of Internet service provider to individual customers
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7-5 What are some considerations in the interpretation of control charts based on standard

values? Is it possible for a process to be in control when its control chart is based on

observations from the process but to be out of control when the control chart is based

on a specified standard? Explain.

7-6 A start-up company promoting the development of new products can afford only a

few observations from each product. Thus, a critical quality characteristic is selected

for monitoring from each product.What type of control chart would be suitable in this

context? What assumptions are necessary?

7-7 Patient progress in a health care facility is monitored over time for a certain diagnosis-

related group according to a few vital characteristics (systolic blood pressure,

diastolic blood pressure, total cholesterol, weight). The characteristics, however,

are not independent of each other. Target values for each characteristic are specified.

What is an appropriate control chart in this context?

7-8 Explain the difference in interpretation between an observation falling below the

lower control limit on an X-chart and one falling below the lower control limit on an

R-chart. Discuss the impact of each on the revision of control charts in the context of

response time to fire alarms.

7-9 A new hire has beenmade in amanagement consulting firm and data aremonitored on

response time to customer queries. Discuss what the patterns on an X- and R-chart

might look like as learning on the job takes place.

7-10 A financial institution wants to improve proposal preparation time for its clients.

Discuss the actions to be taken in reducing the average preparation time and the

variability of preparation times.

7-11 Control charts are maintained on individual values on patient recovery time for a

certain diagnosis-related group. What precautions should be taken in using such

charts and what are the assumptions?

7-12 Explain the concept of process capability and when it should be estimated.What is its

impact on nonconformance? Discuss in the context of project completion time of the

construction of an office building.

7-13 What are the advantages and disadvantages of cumulative sum charts compared to

Shewhart control charts?

7-14 What are the conditions under which a moving-average control chart is preferable?

Compare the moving-average chart with the geometric moving-average chart.

7-15 Discuss the importance of risk adjustment in monitoring mortality and related

measures in a health care setting.

7-16 Discuss the appropriate setting for using a modified control chart and an acceptance

control chart. Compare and contrast the two charts.

7-17 What is the motivation behind constructing multivariate control charts? What

advantages do they have over control charts for individual characteristics?

7-18 Lung congestion may occur in illness among infants. However, it is not easily

verifiable without radiography. To monitor an ill infant to predict whether lung

opacity will occur on a radiograph, data are kept on age, respiration rate, heart rate,
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temperature, and pulse oximetry. Target values for each variable are identified. What

control chart should you use in this context?

Problems

7-19 A soft drink bottling company is interested in controlling its filling operation. Random

samples of size 4 are selected and the fill weight is recorded. Table 7-19 shows the

data for 24 samples. The specifications on fill weight are 350± 5 grams (g). Daily

production rate is 20,000 bottles.

(a) Find the trial control limits for the X- and R-charts.

(b) Assuming special causes for out-of-control points, find the revised control limits.

(c) Assuming the distribution of fill weights to be normal, how many bottles are

nonconforming daily?

(d) If the cost of rectifying an underfilled bottle is $0.08 and the lost revenue of an

overfilled bottle is $0.03, what is monthly revenue lost on average?

(e) If the process average shifts to 342 g, what is the probability of detecting it on the

next sample drawn after the shift?

(f) What proportion of the output is nonconforming at the level of process average

indicated in part (e)?

TABLE 7-19

Sample Observations (g) Sample Observations (g)

1 352 348 350 351 13 352 350 351 348

2 351 352 351 350 14 356 351 349 352

3 351 346 342 350 15 353 348 351 350

4 349 353 352 352 16 353 354 350 352

5 351 350 351 351 17 351 348 347 348

6 353 351 346 346 18 353 352 346 352

7 348 344 350 347 19 346 348 347 349

8 350 349 351 346 20 351 348 347 346

9 344 345 346 349 21 348 352 351 352

10 349 350 352 352 22 356 351 350 350

11 353 352 354 356 23 352 348 347 349

12 348 353 346 351 24 348 353 351 352

7-20 Amajor automobile company is interested in reducing the time that customers have to

wait while having their car serviced with one of the dealers. They select four

customers randomly each day and find the total time that each customer has to wait

(in minutes) while his or her car is serviced. From these four observations, the sample

average and range are found. This process is repeated for 25 days. The summary data

for these observations are

25 25

Xi � 1000; Ri � 250
i�1 i�1

(a) Find the X- and R-chart control limits

(b) Assuming that the process is in control and the distribution of waiting time is

normal, find the percentage of customers who will not have to wait more than 50

minutes.
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(c) Find the 2σ control limits.

(d) The service manager is developing a promotional program and is interested in

reducing the average waiting time to 30 minutes by employing more mechanics.

If the plan is successful, what proportion of the customers will have to wait more

than 40 minutes? More than 50 minutes?

7-21 Flight delays are of concern to passengers. An airline obtained observations on the

average and range of delay times of flights (in minutes), each chosen from a sample of

size 4, as shown in Table 7-20. Construct appropriate control charts and comment on

the performance level. What are the chances of meeting a goal of no more than a

10-minute delay?

TABLE 7-20

Average Average

Observation Delay Range Observation Delay Range

1 6.5 2.1 14 9.2 3.5

2 11.1 3.8 15 7.8 2.2

3 15.8 4.6 16 10.6 4.1

4 10.9 4.2 17 10.7 4.2

5 11.2 4.0 18 8.8 3.8

6 5.6 3.5 19 9.8 3.6

7 10.4 4.1 20 10.2 3.6

8 9.8 2.0 21 9.0 4.2

9 7.7 3.2 22 8.5 3.3

10 8.6 3.8 23 9.8 4.0

11 10.5 4.2 24 7.7 2.8

12 10.2 3.8 25 10.5 3.2

13 10.5 4.0

7-22 In a textile company, it is important that the acidity of the solution used to dye fabric

be within certain acceptable values. Data values are gathered for a control chart by

randomly taking four observations from the solution and determining the average

pH value and range. After 25 such samples, the following summary information is

obtained: 25 25

Xi � 195; Ri � 10
i�1 i�1

The specifications for the pH value are 7.5± 0.5.

(a) Find the X- and R-chart control limits.

(b) Find the 1σ and 2σ X-chart limits.

(c) What fraction of the output is nonconforming (assuming a normal distribution of

pH values)?

7-23 The bore size on a component to be used in assembly is a critical dimension. Samples

of size 4 are collected and the sample average diameter and range are calculated. After

25 samples, we have
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25 25

Xi � 107:5; Ri � 12:5
i�1 i�1

The specifications on the bore size are 4.4± 0.2mm. The unit costs of scrap and

rework are $2.40 and $0.75, respectively. The daily production rate is 1200.

(a) Find the X- and R-chart control limits.

(b) Assuming that the process is in control, estimate its standard deviation.

(c) Find the proportion of scrap and rework.

(d) Find the total daily cost of scrap and rework.

(e) If the process average shifts to 4.5mm, what is the impact on the proportion of

scrap and rework produced?

7-24 The time to be seated at a popular restaurant is of importance. Samples of five

randomly selected customers are chosen and their average and range (in minutes) are

calculated. After 30 such samples, the summary data values are

30 30

Xi � 306; Ri � 24
i�1 i�1

(a) Find the X- and R-chart control limits.

(b) Find the 1σ and 2σ X-chart limits.

(c) The manager has found that customers usually leave if they are informed of an

estimated waiting time of over 10.5 minutes. What fraction of customers will this

restaurant lose? Assume a normal distribution of waiting times.

7-25 The thickness of sheet metal (mm) used for making automobile bodies is a

characteristic of interest. Random samples of size 4 are taken. The average and

standard deviation are calculated for each sample and are shown in Table 7-21 for 20

samples. The specification limits are 9.95± 0.3mm.

(a) Find the control limits for the X- and s-charts. If there are out-of-control points,

assume special causes and revise the limits.

(b) Estimate the process mean and the process standard deviation.

TABLE 7-21

Sample Sample Sample Sample

Average, Standard Average, Standard

Sample X Deviation, s Sample X Deviation, s

1 10.19 0.15 11 10.18 0.16

2 9.80 0.12 12 9.85 0.15

3 10.12 0.18 13 9.82 0.06

4 10.54 0.19 14 10.18 0.34

5 9.86 0.14 15 9.96 0.11

6 9.45 0.09 16 9.57 0.09

7 10.06 0.16 17 10.14 0.12

8 10.13 0.18 18 10.08 0.15

9 9.82 0.14 19 9.82 0.09

10 10.17 0.13 20 10.15 0.12
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(c) If the thickness of sheet metal exceeds the upper specification limit, it can be

reworked. However, if the thickness is less than the lower specification limit, it

cannot be used for its intended purpose and must be scrapped for other uses. The

cost of rework is $0.25 per linear foot, and the cost of scrap is $0.75 per linear foot.

The rolling mills are 100 feet in length. The manufacturer has four such mills and

runs 80 batches on each mill daily. What is the daily cost of rework? What is the

daily cost of scrap?

(d) If the manufacturer has the flexibility to change the process mean, should it be

moved to 10.00?

(e) What alternative courses of action should be considered if the product is

nonconforming?

7-26 Light bulbs are tested for their luminance,with the intensity of brightness desired to be

within a certain range. Random samples of five bulbs are chosen from the output, and

the luminance is measured. The sample mean X and the standard deviation s are

found. After 30 samples, the following summary information is obtained:

30 30

Xi � 2550; si � 195
i�1 i�1

The specifications are 90± 15 lumens.

(a) Find the control limits for the X- and s-charts.

(b) Assuming that the process is in control, estimate the process mean and process

standard deviation.

(c) Comment on the ability of the process to meet specifications. What proportion of

the output is nonconforming?

(d) If the process mean is moved to 90 lumens, what proportion of output will be

nonconforming?What suggestions would you make to improve the performance

of the process?

7-27 The advertised weight of frozen food packages is 16 oz and the specifications are

16± 0.3 oz. Random samples of size 8 are selected from the output and weighed. The

sample mean and standard deviation are calculated. Information on 25 such samples

yields the following:

25 25

Xi � 398; si � 3:00
i�1 i�1

(a) Determine the centerlines and control limits for the X- and s-charts.

(b) Estimate the process mean and standard deviation, assuming that the process is in

control.

(c) Find the 1σ and 2σ control limits for each chart.

(d) What proportion of the output is nonconforming? Is the process capable?

(e) What proportion of the output weighs less than the advertised weight?

(f) If the manufacturer is interested in reducing potential complaints and lawsuits

from customers who feel that they have been cheated by packages weighing less

than what is advertised, what action should the manufacturer take?
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7-28 The baking time of painted corrugated sheet metal is of interest. Too much time will

cause the paint to flake, and too little time will result in an unacceptable finish. The

specifications on baking time are 10± 0.2 minutes. Random samples of size 6 are

selected and their baking times noted. The sample means and standard deviations are

calculated for 20 samples with the following results:

20 20

Xi � 199:8; si � 1:40
i�1 i�1

(a) Calculate the centerline and control limits for the X- and s-charts.

(b) Estimate the process mean and standard deviation, assuming the process to be in

control.

(c) Is the process capable? What proportion of the output is nonconforming?

(d) If the mean of the process can be shifted to 10 minutes, would you recommend

such a change?

(e) If the process mean changes to 10.2 minutes, what is the probability of detecting

this change on the first sample taken after the shift? Assume that the process

variability has not changed.

7-29 The level of dissolved oxygen in water was measured every 2 hours in a river where

industrial plants discharge processed waste. Each observation consists of four

samples, from which the sample mean and range of the amount of dissolved oxygen

in parts per million are calculated. Table 7-22 shows the results of 25 such

observations. Discuss the stability of the amount of dissolved oxygen. Revise the

control limits, if necessary, assuming special causes for the out-of-control points.

Suppose that environmental standards call for a minimum of 4 ppm of dissolved

oxygen. Are these standards being achieved? Discuss.

TABLE 7-22

Average Level of Average Level of

Observation Dissolved Oxygen Range Observation Dissolved Oxygen Range

1 7.4 2.1 14 4.3 2.0

2 8.2 1.8 15 5.8 1.4

3 5.6 1.4 16 5.4 1.2

4 7.2 1.6 17 8.3 1.9

5 7.8 1.9 18 8.0 2.3

6 6.1 1.5 19 6.7 1.5

7 5.5 1.1 20 8.5 1.3

8 6.0 2.7 21 5.7 2.4

9 7.1 2.2 22 8.3 2.1

10 8.3 1.8 23 5.8 1.6

11 6.4 1.2 24 6.8 1.8

12 7.2 2.1 25 5.9 2.1

13 4.2 2.5

7-30 In a gasoline-blending plant, the quality of the output as indicated by its octane rating

is measured for a sample taken from each batch. The observations from 20 such

samples are shown in Table 7-23. Construct a chart for the moving range of two

successive observations and a chart for individuals.
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TABLE 7-23

Octane Octane Octane Octane

Sample Rating Sample Rating Sample Rating Sample Rating

1 89.2 6 87.5 11 85.4 16 90.3

2 86.5 7 92.6 12 91.6 17 85.6

3 88.4 8 87.0 13 87.7 18 90.9

4 91.8 9 89.8 14 85.0 19 82.1

5 90.3 10 92.2 15 91.5 20 85.8

7-31 Automatic machines that fill packages of all-purpose flour to a desired standard

weight need to be monitored closely. A random sample of four packages is selected

and weighed. The average weight is then computed. Observations from 15 such

samples are shown in Table 7-24. The desired weight of packages is 80 oz. Historical

information on the machine reveals that the standard deviation of the weights of

individual packages is 0.2 oz. Assume an acceptable type I error rate of 0.05. Also

assume that it is desired to detect shifts in the process mean of 0.15 oz. Construct a

cumulative sum chart and determinewhether themachine needs to be adjusted tomeet

the target weight.

TABLE 7-24

Average Average Average Average

Sample Weight Sample Weight Sample Weight Sample Weight

1 80.2 5 80.1 9 79.7 13 79.8

2 80.0 6 80.4 10 79.5 14 80.4

3 79.6 7 79.5 11 80.3 15 80.2

4 80.3 8 79.4 12 80.5

7-32 The bending strength of the poles is a consideration to a manufacturer of fiberglass

fishing rods. Samples are chosen from the process, and the average bending strength

of four samples is found. The target mean bending strength is 30 kg, with a process

standard deviation of 0.8 kg. Suppose that it is desired to detect a shift of �0:75σ�x
from the target value. If the process mean is not significantly different from the target

value, it is also desirable for the average run length to be 300. Find the parameters of an

appropriate V-mask. If the manufacturer desires that the average run length not

exceed 13 so as to detect shifts of themagnitude indicated, whatwill be the parameters

of a V-mask if there is some flexibility in the allowable ARL when the process is in

control?

7-33 The average time (minutes) that a customer has to wait for the arrival of a cab after

calling the company has been observed for random samples of size 4. The data for 20

such samples are shown in Table 7-25. Previous analysis gave the upper and lower

control limits for an X-chart when the process was in control as 10.5 and 7.7 minutes,

respectively. What is your estimate of the standard deviation of the waiting time for

a customer? Construct a moving-average control chart using a span of 3. What

conclusions can you draw from the chart?
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TABLE 7-25

Average Average Average Average

Sample Waiting Time Sample Waiting Time Sample Waiting Time Sample Waiting Time

1 8.4 6 9.4 11 8.8 16 9.9

2 6.5 7 10.2 12 10.0 17 10.2

3 10.8 8 8.1 13 9.5 18 8.3

4 9.7 9 7.4 14 9.6 19 8.6

5 9.0 10 9.6 15 8.3 20 9.9

7-34 Consider Exercise 7-33, which deals with the average wait time for the arrival of a

cab. Using the data in Table 7-25, construct a geometric moving-average control

chart. Use a weighting factor of 0.10. What conclusions can you draw from the

chart? How is it different from the moving-average control chart constructed in

Exercise 7-33?

7-35 Consider the data on purchase order processing time for customers shown in

Table 4-6. Construct an individuals and a moving-range chart on the data before

process improvement changes are made and comment on process stability.

7-36 Consider the data on the waiting time (seconds) of customers before speaking to a

representative at a call center, shown in Exercise 5-9. The data, in sequence, are to be

read across the row, before moving to the next row.

(a) Construct an individuals and moving-range chart and comment on the process.

(b) Construct a moving-average chart, with a window of 3, and comment on the

process.

(c) Construct an exponentially weighted moving-average chart, with a weighting

factor of 0.2, and comment on the process.

(d) Construct a cumulative sumchart, with a target value of 30 seconds, and comment

on the process. Assume a type I error level of 0.05.

7-37 The time from product inception and design to marketing and sales is important for

application software in mobile devices. For the last 20 products, Table 7-26 shows

such times (in weeks) for a software organization. Construct an appropriate control

chart and comment on the organization’s responsiveness to market needs.

TABLE 7-26 Time to Market Software

Product Time Product Time Product Time

1 12.5 8 10.5 15 22.0

2 8.0 9 12.0 16 17.5

3 14.5 10 16.0 17 15.0

4 23.0 11 19.5 18 13.5

5 20.0 12 10.0 19 18.5

6 35.5 13 8.5 20 16.0

7 18.5 14 13.5
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TABLE 7-27

Sample Sample Sample Sample

Sample Average, X (%) Range, R (%) Sample Average, X (%) Range, R (%)

1 23.0 1.9 14 23.6 2.0

2 20.0 2.3 15 20.8 1.6

3 24.0 2.2 16 20.2 2.1

4 19.6 1.6 17 19.5 2.3

5 20.5 1.8 18 22.7 2.5

6 22.8 2.4 19 21.2 1.9

7 19.3 2.3 20 22.9 2.2

8 21.6 2.0 21 20.6 2.1

9 20.3 2.1 22 23.5 2.4

10 19.6 1.7 23 21.6 1.8

11 24.2 2.3 24 22.6 2.3

12 21.9 1.8 25 20.5 2.2

13 20.6 1.8

7-38 The percentage of potassium in a compound is expected to be within the specification

limits of 18–35%. Samples of size 4 are selected, and the mean and range of 25 such

samples are shown in Table 7-27. It is desirable for the process nonconformance to be

within 1.5%. If the acceptable level of type I error is 0.05, find the modified control

limits for the process mean.

7-39 Refer to Example 7-12 and the data for the nitrogen content in a certain fertilizer mix.

If it is desired that the proportion nonconforming bewithin 0.5%and the level of type I

error be limited to 0.025, find the modified control limits for the process mean.

7-40 Refer to Exercise 7-38 and the data for the percentage of potassium content in a

compound. Suppose that we wish to detect an out-of-control condition with a

probability of 0.90 if the process is producing at a nonconformance rate of 4%.

Determine the acceptance control chart limits.

7-41 Refer to Example 7-13. If the nonconformance production rate is 2% and we wish to

detect thiswith aprobabilityof0.98,what shouldbe theacceptancecontrol chart limits?

7-42 A component to be used in the assembly of a transmission mechanism is manu

factured in a process for which the two quality characteristics of tensile strength (X1)

and diameter (X2) are of importance. Twenty samples, each of size 4, are obtained

from the process. For each component, measurements on the tensile strength and

diameter are taken and are shown in Table 7-28. Construct a multivariate Hotelling’s

T2 control chart using an overall type I error probability of 0.01.

7-43 It is desired to monitor project completion times by analysts in a consulting company.

The magnitude and complexity of the project influence the completion time. It is also

believed that the variability in completion time increases with the magnitude of the

completion time. Table 7-29 shows recent project completion times (days) alongwith

their complexity. Complexity is indicated by letters A, B, and C, with complexity

increasing from A to B and B to C. Construct an appropriate control chart and

comment on the process.
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TABLE 7-28

Sample Tensile Strength (1000 kg) Diameter (cm)

1 66 70 68 72 16 18 15 20

2 75 60 70 75 17 22 18 19

3 65 70 70 65 20 18 15 18

4 72 70 75 65 19 20 15 17

5 73 74 72 70 21 21 23 19

6 72 74 73 74 21 19 20 18

7 63 62 65 66 22 20 24 22

8 75 84 75 66 22 20 20 22

9 65 69 77 71 18 16 18 18

10 70 68 67 67 18 17 19 18

11 80 75 70 69 24 18 20 22

12 68 65 80 50 20 21 20 22

13 74 80 76 74 19 17 20 21

14 76 74 75 73 20 17 18 18

15 71 70 74 73 18 16 17 18

16 68 67 70 69 18 16 19 20

17 72 76 75 77 22 19 23 20

18 76 74 75 77 19 23 20 21

19 72 74 73 75 20 18 20 19

20 72 68 74 70 21 19 18 20

TABLE 7-29

Project Complexity Completion Time Project Complexity Completion Time

1 B 80 14 A 36

2 B 65 15 C 190

3 A 22 16 C 150

4 C 135 17 C 220

5 B 90 18 B 85

6 A 34 19 B 75

7 A 42 20 B 60

8 A 38 21 B 72

9 C 120 22 A 32

10 B 70 23 A 44

11 B 60 24 A 38

12 A 40 25 C 160

13 A 35

7-44 Consider the data on the parameters in a chemical process of temperature, pressure,

proportion of catalyst, and pH value of mixture as indicated in Table 3-15.

(a) Construct a Hotelling’s T2-chart and comment on process stability. Which

process parameters, if any, would you investigate further?

(b) Analyze process variability through a generalized variance chart.
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7-45 Consider the data on 25 patients, of a certain diagnosis-related group, on systolic

blood pressure, blood glucose level, and total cholesterol level as shown in Table 4-5.

The table shows values on these variables before and after administration of a certain

drug. Assume that these variables are not independent of each other. What is an

appropriate control chart to use?

(a) Construct a Hotelling’s T2-chart using data before drug administration and

comment on patient stability.

(b) Construct an individuals and amoving-range chart for blood glucose level before

drug administration and comment. Are the conclusions from parts (a) and (b)

consistent? Explain.

7-46 The time to evaluate and make a decision on mortgage loan applications is being

examined in a financial institution. Twenty-five mortgage applications are selected

from the previous month and the decision-making times, in days, are shown in

Table 7-30. Construct an appropriate control chart and comment on the timeliness of

the decision-making process. Revise the chart, if necessary, assuming special causes

for out-of-control points. What is the expected time to make a decision?What is your

estimate of the standard deviation of the time to make a decision?

TABLE 7-30 Time to Make Decisions on Mortgage Applications

Application Time (days) Application Time (days) Application Time (days)

1 16.5 10 34.5 19 19.0

2 8.0 11 20.0 20 14.5

3 14.0 12 16.0 21 18.0

4 22.0 13 13.5 22 15.0

5 24.5 14 12.0 23 13.5

6 15.0 15 20.5 24 12.5

7 18.5 16 18.5 25 16.0

8 10.5 17 16.5

9 14.5 18 14.0

7-47 Refer to Exercise 7-46. Demonstrate if the existing process in making a decision on

loan applications is capable of meeting a goal value of 12 weeks. Assuming a normal

distribution of the decision-making time, what proportion of the applications will not

meet this goal value?

7-48 Refer to Exercise 7-46. Construct an exponentially weighted moving-average chart

using aweighting constant of 0.2 for the decision-making process and comment. Is the

existing process capable of meeting a goal value of 12 weeks?

7-49 An investment bank is interested in monitoring the weekly amount (in millions of

dollars) invested in volatile stocks so as tomaintain a stable rate of return on a selected

fund. Table 7-31 shows 25 consecutive weeks of the amount invested ($M) in the

fund. Construct appropriate control charts and comment on the stability of invest

ment. Revise the chart, if necessary, assuming special causes for out-of-control

points. What is your estimate of the standard deviation of the weekly amount

invested?
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TABLE 7-31 Weekly Investment in Volatile Stocks

Week Investment ($M) Week Investment ($M) Week Investment ($M)

1 16.2 10 12.9 19 16.3

2 10.8 11 28.5 20 14.2

3 18.9 12 23.3 21 21.5

4 14.4 13 20.2 22 18.6

5 15.7 14 19.3 23 20.9

6 25.3 15 14.8 24 22.4

7 20.4 16 18.7 25 21.8

8 22.6 17 20.4

9 17.8 18 21.2

7-50 Refer to Exercise 7-49 and the revised process. Is this process capable of meeting a

goal value of $1.5M for the standard deviation of the weekly amount invested?

Construct an appropriate chart and discuss.

7-51 Refer to Exercise 7-49. Construct an exponentially weighted moving-average chart

using a weighting constant of 0.2 for the weekly amount invested. Comment on the

process. If it is desired to have a goal value of $1.5M for the standard deviation, using

the constructed chart, comment on the ability of the process to achieve this goal.

7-52 The predicted mortality of cardiac surgery patients in an intensive care unit, based on

their APACHE score, is found based on a logistic regressionmodel applied to patients

over a four-year period. Table 7-32 shows the predictive pre-operative mortality for

25 recent patients, along with the observed outcome after surgery, where a value of 0

indicates that the patient survived while a value of 1 indicates that the patient died.

Construct a risk-adjusted cumulative sum chart for patient mortality to determine if

there has been an improvement. (Use the odds ratio under the alternative hypothesis to

be Ra= 0.6.) Comment on the performance of the surgical team.

TABLE 7-32 Predicted and Observed Mortality of Patients

Patient Predicted Observed

Number Mortality Mortality

1 0.28 0

2 0.62 0

3 0.45 1

4 0.36 0

5 0.72 0

6 0.84 1

7 0.26 0

8 0.54 0

9 0.40 0

10 0.74 1

11 0.49 0

12 0.55 0

13 0.37 0

Patient Predicted Observed

Number Mortality Mortality

14 0.44 0

15 0.58 0

16 0.32 0

17 0.75 0

18 0.84 0

19 0.69 0

20 0.82 1

21 0.72 0

22 0.64 0

23 0.62 0

24 0.73 0

25 0.82 0
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7-53 Refer to Exercise 7-52 and the data in Table 7-32 on cardiac surgery patients. Conduct

a risk-adjusted sequential probability ratio test using a false-alarm rate of 0.005.

Assume that the chance of failing to detect a decrease in the odds ratio of mortality

from 1 to 0.6 is 0.05.

7-54 For the patient data in Exercise 7-52 as shown in Table 7-32, construct a risk-adjusted

exponentially weighted moving average (RAEWMA) chart using a weighting

constant of 0.2 and a false-alarm rate of 0.10. Comment on the performance of the

surgical team.
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8-1 INTRODUCTION AND CHAPTER OBJECTIVES

In Chapter 7 we discussed statistical process control using control charts for variables. In this

chapter we examine control charts for attributes. An attribute is a quality characteristic for

which a numerical value is not specified. It ismeasured on a nominal scale; that is, it does or does

not meet certain guidelines or it is categorized according to a scheme of labels. For instance, the

taste of a certain dish is labeled as acceptable or unacceptable or is categorized as exceptional,

good, fair, or poor. Our objective is to present various types of control charts for attributes.

A quality characteristic that does not meet certain prescribed standards (or specifications)

is said to be anonconformity (or defect). For example, if the length of steel bars is expected to

be 50± 1.0 cm, a length of 51.5 cm is not acceptable. A product with one or more

nonconformities such that it is unable to meet the intended standards and is unable to

function as required is a nonconforming item (or defective). It is possible for a product to

have several nonconformities without being classified as a nonconforming item.

The different types of control charts considered in this chapter are grouped into three

categories. The first category includes control charts that focus on proportion: the

proportion of nonconforming items (p-chart) and the number of nonconforming items

(np-chart). These two charts are based on binomial distributions. The second category deals

with two charts that focus on the nonconformity itself. The chart for the total number of

nonconformities (c-chart) is based on the Poisson distribution. The chart for nonconfor

mities per unit (u-chart) is applicable to situations inwhich the size of the sample unit varies

from sample to sample. In the third category, the chart for demerits per unit (U-chart) deals

with combining nonconformities on a weighted basis, such that the weights are influenced

by the severity of each nonconformity. The concept of risk adjustment in attribute charts,

especially as appropriate to health care applications, is discussed. Since the severity of risk

varies from patient to patient, risk-adjusted p-charts and risk-adjusted u-charts are

presented. In the situation when nonoccurrence of nonconformities are not observable,

a modified c-chart is introduced. Finally, we include a section on charts for highly

conforming processes. In this context, a control chart for the time or cases between

successive occurrences of a nonconforming item is presented through a g-chart.

8-2 ADVANTAGES AND DISADVANTAGES OF ATTRIBUTE CHARTS

Advantages

Certain quality characteristics are best measured as attributes. For instance, the taste of a food

item is specified as acceptable or not. There are circumstances inwhich a quality characteristic

can be measured as a variable but is instead measured as an attribute because of limited time,

money,workeravailability,orother resources.Let’sconsider the insidediameterofahole.This

characteristic couldbemeasuredwith an insidemicrometer, but itmay bemore convenient and

cost-effective to use a go/no-go gage. Of course, the assumption is that attribute information is

sufficient; otherwise, the quality characteristic may have to be dealt with as a variable.

In most manufacturing and service operations there are numerous quality characteristics

that can be analyzed. If a variable chart (such as anX�- orR-chart) is selected, one variable chart

is needed for each characteristic. The total number of control charts being constructed and

maintained can be overwhelming. A control chart for attributes can provide overall quality

information at a fraction of the cost.

Let’s consider a simple component for which the three quality characteristics of length L,

widthW, and heightH are important. If variable charts are constructed,wewill need three charts.
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However,we can get bywith one attribute chart if an item is simply classified as nonconforming

when the length, width, or height does not conform to specifications. The attribute chart thus

summarizes the information for all three characteristics. An attribute chart can also be used to

summarize information about several components that make up a product.

Attributes are encountered at all levels of an organization: the company, plant, department,

work center, andmachine (or operator) level.Variable charts are typically used at the lowest

level, themachine level.Whenwedonot knowwhat is causing a problem, it is sensible to start

at a general level and work to the specific. For example, we know that a high proportion of

nonconforming items is being detected at the company level, so we keep an attribute chart at

the plant level to determine which plants have high proportions of nonconforming items.

Once we have identified these plants, we might use an attribute chart for output at the

departmental level to pinpoint problem areas. When the particular work center thought to be

responsible for the increase in the production of nonconforming items is identified, we could

then focus on the machine or operator level and try to further pinpoint the source of the

problem. Attribute charts assist in going from the general to a more focused level. Once the

lowest problem level has been identified, a variable chart is then used to determine specific

causes for an out-of-control situation.

Disadvantages

Attribute information indicates whether a certain quality characteristic is within specification

limits. It does not state the degree to which specifications are met or not met. For example, the

specification limits for the diameter of a part are 20± 0.1mm. Two parts, one with diameter

20.2mm and the other with diameter 22.3mm, are both classified as nonconforming, but their

relative conformance to the specifications is not noted on attribute information.

Variable information, on the other hand, indicates the level of the data values. Variable

control charts thus provide more information on the performance of a process. Specific

information about the process mean and variability can be obtained. Furthermore, for out-of

control situations, variable plots generally providemore information as to the potential causes

and hence make identification of remedial actions easier.

If we can assume that the process is very capable (i.e., its inherent variability is much less

than the spread between the specification limits), variable charts can forewarn us when the

process is about to go out of control. This, of course, allows us to take corrective action before

any nonconforming items are produced. A variable chart can indicate an upcoming out-of

control condition even though items are not yet nonconforming.

Figure 8-1 depicts this situation. Suppose that the target value of the processmean is atA, the

process is very capable (note the wide spread between the distribution and the specification

limits), and the process is in control. The process mean now shifts to B. The variable chart

indicates an out-of-control condition. Because of the wide spread of the specification limits, no

nonconforming items are producedwhen theprocessmean is atB, even though the variable chart

is indicating an out-of-control process. The attribute chart, say, a chart for the proportion of

nonconforming items, does not detect a lack of control until the process parameters are

sufficiently changed such that some nonconforming items are produced. Only when the process

mean shifts to C does the attribute chart detect an out-of-control situation. However, were the

specifications equal to or tighter than the inherent variability of the process, attribute charts

would indicate an out-of-control process in a time frame similar to that for the variable chart.

Attribute charts require larger sample sizes than variable charts to ensure adequate

protection against a certain level of process changes. Larger sample sizes can be problematic

if the measurements are expensive to obtain or the testing is destructive.
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FIGURE 8-1 Forewarning of a lack of process control as indicated by a variable chart.

8-3 PRELIMINARY DECISIONS

The choice of sample size for attribute charts is important. It should be large enough to allow

nonconformities or nonconforming items to be observed in the sample. For example, if a

process has a nonconformance rate of 2.5%, a sample size of 25 is not sufficient because the

average number of nonconforming items per sample is only 0.625. Thus, misleading

inferences might be made, since no nonconforming items would be observed for many

samples. We might erroneously attribute a better nonconformance rate to the process than

what actually exists. A sample size of 100 here is satisfactory, as the average number of

nonconforming items per sample would thus be 2.5.

For situations in which summary measures are required, attribute charts are preferred.

Information about the output at the plant level is often best described by proportion-nonconform

ing charts or charts on the number of nonconformities. These charts are effective for providing

information to uppermanagement. On the other hand, variable charts aremoremeaningful at the

operator or supervisor level because they provide specific clues for remedial actions.

What is going to constitute a nonconformity should be properly defined. This definition

will depend on the product, its functional use, and customer needs. For example, a scratch

mark in amachine visemight not be considered anonconformity,whereas the same scratch on

a television cabinet would. One-, two-, or three-sigma zones and rules pertaining to these

zones (discussed in Chapter 6) will not be used because the underlying distribution theory is

nonnormal.

8-4 CHART FOR PROPORTION NONCONFORMING: p-CHART

A chart for the proportion of nonconforming items (p-chart) is based on a binomial

distribution. For a given sample, the proportion nonconforming is defined as

x
^ �8-1�p � 

n
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where x is the number of nonconforming items in the sample and n represents the sample

size.

For a binomial distribution to be strictly valid, the probability of obtaining a non

conforming itemmust remain constant from item to item. The samples must be identical and

are assumed to be independent.

Recall from Chapter 4 that the distribution of the number of nonconforming items in a

sample, as given by a binomial distribution, is

n! x n�xP�X � x� �  p �1 � p� ; x � 0; 1; 2; . . . ; n �8-2� �n � x�! x!
where p represents the probability of getting a nonconforming item on each trial or unit

selected. Given the mean and standard deviation of X, the mean of the sample proportion

nonconforming is

E�p̂� � p �8-3� 

and the variance of p̂ is

p�1 � p� 
Var�p̂� � �8-4� 

n

These measures are used to determine the centerline and control limits for p-charts.

Ap-chart is oneof themost versatile control charts. It is used to control the acceptability of a

single quality characteristic (say, the width of a part), a group of quality characteristics of the

same typeoron the samepart (the length,width,orheight of a component), or anentireproduct.

Furthermore, a p-chart can be used to measure the quality of an operator or machine, a work

center, a department, or an entire plant. A p-chart provides a fair indication of the general state

of the process bydepicting the average quality level of theproportion nonconforming. It is thus

a good tool for relating information about the average quality level to top management.

For that matter, a p-chart can be used as ameasure of the performance of topmanagement.

For instance, the performance of the chief executive officer of a company can be evaluated by

considering the proportion of nonconforming items produced at the company level. Com

paring this information with historical values indicates whether improvements for which the

CEOcan take credit have occurred.Values of the proportion nonconforming can also serve as

a benchmark against which to compare future output.

A p-chart can provide a source of information for improving product quality. It can be used

to develop new concepts and ideas. Current values of the proportion nonconforming indicate

whether a particular idea has been successful in reducing the proportion nonconforming.

Use of ap-chartmay, as a secondary objective, identify the circumstances forwhichX�- and

R-charts should beused.Variable charts aremore sensitive to variations in process parameters

and are useful in diagnosing causes; a p-chart is more useful in locating the source of the

difficulty. The p-charts are based on the normal approximation to the binomial distribution.

For approximately large samples, for a process in control, the average run length is

approximately 385 for 3σ control charts.

Construction and Interpretation

The general procedures from Chapters 6 and 7 for the construction and interpretation of

control charts apply to control charts for attributes as well. They are summarized here.
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Step 1: Select the objective. Decide on the level at which the p-chart will be used (i.e., the

plant, the department, or the operator level). Decide to control either a single quality

characteristic, multiple characteristics, a single product, or a number of products.

Step 2: Determine the sample size and the sampling interval. An appropriate sample size is

related to the existing quality level of the process. The sample size must be large enough to

allow the opportunity for some nonconforming items to be present on average. The sampling

interval (i.e., the time between successive samples) is a function of the production rate and the

cost of sampling, among other factors.

A bound for the sample size, n, can be obtained using these guidelines. Let �p represent the

process average nonconforming rate. Then, based on the number of nonconforming items

that youwish to be represented in a sample—say five, on average—the bound is expressed as

5
n�p � 5 or n � �8-5� 

p

Step 3: Obtain the data and record on an appropriate form. Decide on the measuring

instruments in advance.

A typical data sheet for a p-chart is shown in Table 8-1. The data and time at which the

sample is taken, along with the number of items inspected and the number of noncon

forming items, are recorded. The proportion nonconforming is found by dividing the

number of nonconforming items by the sample size. Usually, 25–30 samples should be

taken prior to performing an analysis.

Step 4: Calculate the centerline and the trial control limits. Once they are determined, draw

them on the p-chart. Plot the values of the proportion nonconforming �p̂� for each sample on

the chart. Examine the chart to determine whether the process is in control.

The rules for determining out-of-control conditions are the same as those we discussed in

Chapters 6 and 7, so are not repeated in this chapter. As usual, the most common criterion for

an out-of-control condition is the presence of a point plotting outside the control limits. The

means of calculating the centerline and control limits are as follows.

No Standard Specified When no standard or target value of the proportion non

conforming is specified, it must be estimated from the sample information. Recall that for

each sample, the sample proportion nonconforming �p̂� is given by eq. (8-1). The average of
the individual sample proportion nonconforming is used as the centerline (CLp). That is,

g g

^ xipi
i�1 i�1

CLp � p� � � �8-6� 
g ng

TABLE 8-1 Data for a p-Chart

Sample Date Time

Number of

Items

Inspected, n

1 10/15 9:00 A.M. 400

2 10/15 9:30 A.M. 400

3 10/15 10:00 A.M. 400

. . . .

. . . .

. . . .

Number of

Nonconforming

Items, x

12

10

14

.

.

.

Proportion

Nonconforming,

0.030

0.025

0.035

.

.

.

p̂ Comments

New vendor

.

.

.
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where g represents the number of samples. The variance of p̂ is given by eq. (8-4). Since

the true value of p is not known, the value of �p given by eq. (8-6) is used as an estimate. In

accordancewith the concept of 3σ limits discussed in previous chapters, the control limits are

given by

p�1 � �� p� 
UCLp � �p � 3

n
�8-7� 

� p�p�1 � �
LCLp � �p � 3

n

Standard Specified If the target value of the proportion of nonconforming items is known

or specified, the centerline is selected as that target value. In other words, the centerline is

given by

CLp � p0 �8-8� 
wherep0 represents the standardor target value. The control limits in this case are alsobased

on the target value. Thus,

p0�1 � p0� UCLp � p0 � 3
n

�8-9� 
p0�1 � p0� LCLp � p0 � 3

n

If the lower control limit for p turns out to be negative for eq. (8-7) or (8-9), the lower

control limit is simply counted as zero because the smallest possible value of the proportion

nonconforming is zero.

Step 5: Calculate the revised control limits. Analyze the plotted values of p̂ and the pattern of

theplot forout-of-controlconditions.Typically,oneora fewof the rulesareusedconcurrently.

On detection of an out-of-control condition, identify the special cause and propose remedial

actions.Theout-of-control point or points forwhich remedial actionshavebeen taken are then

deleted, and the revised process average �p is calculated from the remaining number ofr

samples.

The investigation of special causes must be conducted in an objective manner. If a

special cause cannot be identified or a remedial action not implemented for an out-of

control sample point, that sample is not deleted in the calculation of the new average

proportion nonconforming.

The revised centerline and control limits are given by

CLp � �pr
� �1 � � �r rUCLp � �p � 3
p p

r
n �8-10� 

p �1 � �p �r rLCLp � �p � 3r
n

For p-charts based on a standard p0, the revised limits do not change from those given by

eq. (8-9).
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Step 6: Implement the chart. Use the revised centerline and control limits of the p-chart for

future observations as they become available. Periodically revise the chart using guidelines

similar to those discussed for variable charts.

A few unique features are associated with implementing a p-chart. First, if the p-chart

continually indicates an increase in the value of the average proportion nonconforming,

management should investigate the reasons behind this increase rather than constantly

revising upward the centerline and control limits. If such an upward movement of the

centerline is allowed to persist, it will become more difficult to bring down the level of

nonconformance to the previously desirable values. Only if you are sure that the process

cannot be maintained at the present average level of nonconformance given the resource

constraints should you consider moving the control limits upward.

Possible reasons for an increased level of nonconforming items include a lower incoming

quality from vendors or a tightening of specification limits. An increased level of noncon

formance can also occur because existing limits are enforced more stringently.

Since the goal is to seek quality improvement continuously, a sustained downward

trend in the proportion nonconforming is desirable. Management should revise the

average proportion-nonconforming level downward when it is convinced that the

proportion nonconforming at the better level can be maintained. Revising these limits

provides an incentive not only to maintain this better level but also to seek further

improvements.

Example 8-1 Twenty-five samples of size 50 are chosen from a plastic-injection molding

machine producing small containers. The number of nonconforming containers for each

sample is shown in Table 8-2, as is the proportion nonconforming for each sample, using

eq. (8-1). The average proportion nonconforming, using eq. (8-6), is

90
� � 0:072p � 

1250

This is the centerline of the p-chart. Next, the trial control limits are found using eq. (8-7):

CLp � 0:072
�0:072��1 � 0:072� 

UCLp � 0:072 � 3 � 0:182
50

�0:072��1 � 0:072� 
LCLp � 0:072 � 3 � �0:038→0

50

Since the calculated value of the lower control limit is negative, it is converted to zero.

This p-chart is shown in Figure 8-2. UsingMinitab, a worksheet listing the number inspected

and number of nonconforming items for each sample is first created. Select Stat>Control

Charts>AttributeCharts>p. In theVariableswindow, input the column number or name of

the variable representing the number of nonconforming items. Under Subgroup sizes, enter the

column number or name of the corresponding variable. Click OK. Note that the process is in

control with the exception of sample 18, which has a proportion nonconforming of 0.20—above

theupper control limit.Assume thatupon investigating special causes for sample18we found that

cause to be a drop in pressure inside the mold cavity, as indicated by the comments in Table 8-2.
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TABLE 8-2 Data for Nonconforming Containers

Number of Number of

Items Nonconforming Proportion

Sample Date Time Inspected, n Items, x Nonconforming, p̂ Comments

1 10/6 8:30 50 4 0.08

2 10/6 9:30 50 2 0.04

3 10/6 10:00 50 5 0.10

4 10/6 10:20 50 3 0.06

5 10/7 8:40 50 2 0.04

6 10/7 9:50 50 1 0.02

7 10/7 10:10 50 3 0.06

8 10/7 10:50 50 2 0.04

9 10/8 9:10 50 5 0.10

10 10/8 9:40 50 4 0.08

11 10/8 10:40 50 3 0.06

12 10/8 11:20 50 5 0.10

13 10/9 8:20 50 5 0.10

14 10/9 9:10 50 2 0.04

15 10/9 9:50 50 3 0.06

16 10/9 10:20 50 2 0.04

17 10/10 8:40 50 4 0.08

18 10/10 9:30 50 10 0.20 Drop in

19 10/10 10:10 50 4 0.08 pressure

20 10/10 11:30 50 3 0.06

21 10/11 8:20 50 2 0.04

22 10/11 9:10 50 5 0.10

23 10/11 9:50 50 4 0.08

24 10/11 10:20 50 3 0.06

25 10/11 11:30 50 4 0.08

1250 90

FIGURE 8-2 Proportion-nonconforming chart for containers.
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Remedial action is taken to eliminate this special cause, sample 18 is deleted, and the revised

centerline and control limits are then found:

90 � 10
CLp � � 0:067

1200

�0:067��1 � 0:067� 
UCLp � 0:067 � 3 � 0:173

50

�0:067��1 � 0:067� 
LCLp � 0:067 � 3 � �0:039→0

50

The remaining samples are now in control.

Example 8-2 Management has decided to set a standard of 3% for the proportion of

nonconforming test tubes produced in a plant. Data collected from 20 samples of size 100 are

shown in Table 8-3, as is the proportion of nonconforming test tubes for each sample. The

centerline and control limits, based on the specified standard, are found to be

CLp � p0 � 0:030
�0:03��1 � 0:03� 

UCLp � 0:030 � 3 � 0:081
100

TABLE 8-3 Da

LCLp

ta for No

� 0:030 � 3
�0:03��1 � 0:03� 

100

nconforming Test Tubes

� �0:021→0

Number of Number of

Items Nonconforming Proportion

Sample Date Time Inspected, n Items, x Nonconforming, p̂ Comments

1 9/8 8:20 100 4 0.04

2 9/8 8:45 100 2 0.02

3 9/8 9:10 100 5 0.05

4 9/8 9:30 100 3 0.03

5 9/9 9:00 100 6 0.06

6 9/9 9:20 100 4 0.04

7 9/9 9:50 100 3 0.03

8 9/9 10:20 100 9 0.09 Die not

9 9/10 9:10 100 5 0.05 aligned

10 9/10 9:40 100 6 0.06

11 9/10 10:20 100 9 0.09

12 9/10 10:45 100 3 0.03

13 9/11 8:30 100 3 0.03

14 9/11 8:50 100 4 0.04

15 9/11 9:40 100 2 0.02

16 9/11 10:30 100 5 0.05

17 9/12 8:40 100 3 0.03

18 9/12 9:30 100 1 0.01

19 9/12 9:50 100 4 0.04

20 9/12 10:40 0.03

2000 84

100 3
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A p-chart using these limits is shown inFigure 8-3. From thefigurewe can see that the process

is out of control; samples 8 and11plot above theupper control limit. The special cause for sample

8 is improper alignment of the die, for which remedial action is taken. For sample 11, no special

cause is identified. Hence, the process is viewed to be out of control with respect to the current

standard. From Figure 8-3, observe that the general level of the proportion nonconforming does

not match the standard value of 3%; the actual proportion nonconforming appears higher. Using

the data from Table 8-3, the process average proportion nonconforming is

84
� � 0:042p � 

2000

This value exceeds the desired standard of 3%. From Figure 8-3 only three points are below

the standard of 3%. This confirms our suspicion that the process mean is greater than the

desired standard value. If sample 8 is eliminated following removal of its special cause, the

revised process average is

84 � 9
� � 0:039p � 

1900

When the control limits are calculated based on this revised average, we have

CLp � 0:039
�0:039��1 � 0:039� 

UCLp � 0:039 � 3 � 0:097
100

�0:039��1 � 0:039� 
LCLp � 0:039 � 3 � �0:019→0

100

FIGURE 8-3 Proportion-nonconforming chart for test tubes (centerline and control limits based on a

standard).
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If a control chart were constructed using these values, the remaining samples (including

sample 11) would indicate a process in control, with the points hovering around 0.039, the

calculated average.

With the standard of 3% in mind, we must conclude that the process is currently out of

control because sample 11 would plot above the upper control limit value of 0.081, as found

using the standard. We have no indication of the special causes for the out-of-control point

(sample 11), so we cannot take remedial action to bring the process to control. Furthermore,

theprocess averageproportionnonconforming shouldbe reduced; it is too far from thedesired

value of 3%. Actions to accomplish this task must originate from management and may

requiremajor changes in theproduct, process, or incomingmaterial quality.Operator-assisted

measures are not sufficient to bring the process to control.

Another way to view this situation would be to conclude that the present process is not

capable of meeting the desired standard of a 3% nonconformance rate. In this case, basic

changes that requiremanagement input are needed to improvequality. Ifmanagement decides

not to allocate resources to improve the process, they may have to increase the 3% value to a

more realistic standard.Otherwise, the control chart will continue to indicate a lack of control,

and unnecessary blame may be assigned to operators.

Variable Sample Size

There are many reasons why samples vary in size. In processes for which 100% inspection is

conducted to estimate the proportion nonconforming, a change in the rate of production may

cause the sample size to change. A lack of available inspection personnel and a change in the

unit cost of inspection are other factors that can influence the sample size.

A change in sample size causes the control limits to change, although the centerline

remains fixed. As the sample size increases, the control limits become narrower. As stated

previously, the sample size is also influenced by the existing average process quality

level. For a given process proportion nonconforming, the sample size should be chosen

carefully so that there is ample opportunity for nonconforming items to be represented.

Thus, changes in the quality level of the process may require a change in the sample size.

Control Limits for Individual Samples Control limits can be constructed for individual

samples. If no standard is given and the sample average proportion nonconforming is �p, the

control limits for sample i with size ni are

p�1 � �� p� 
UCL � �p � 3

ni
�8-11� 

p�1 � �� p� 
LCL � �p � 3

ni

Example 8-3 Twenty random samples are selected from a process that makes vinyl tiles.

The sample size and the number of nonconforming tiles are shown in Table 8-4. First, we

construct the control limits for each sample in a proportion-nonconforming chart. The

centerline is

353
CL � �p � � 0:0726

4860
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TABLE 8-4 Vinyl Tile Data for Individual Control Limits

Number of Number of Upper Control Lower Control

Tiles Nonconforming Proportion Limit Limit

Sample, i Inspected, ni Tiles Nonconforming, p̂i Based on ni Based on ni

1 200 14 0.070 0.128 0.018

2 180 10 0.056 0.131 0.015

3 200 17 0.085 0.128 0.018

4 120 8 0.067 0.144 0.002

5 300 20 0.067 0.118 0.028

6 250 18 0.072 0.122 0.023

7 400 25 0.062 0.112 0.034

8 180 20 0.111 0.131 0.015

9 210 27 0.129 0.126 0.019

10 380 30 0.079 0.113 0.033

11 190 15 0.079 0.129 0.016

12 380 26 0.068 0.113 0.033

13 200 10 0.050 0.128 0.018

14 210 14 0.067 0.126 0.019

15 390 24 0.061 0.112 0.033

16 120 15 0.125 0.144 0.002

17 190 18 0.095 0.129 0.016

18 380 19 0.050 0.113 0.033

19 200 11 0.055 0.128 0.018

20 0.067 0.131 0.015180 12

4860 353

The control limits for each sample, given by eq. (8-11), are

�0:0726��0:9274� 
UCL � 0:0726 � 3

ni

0:7784� 0:726 � p
ni

0:7784
LCL � 0:0726 � p

ni

Table 8-4 shows the sample proportion nonconforming and the control limits for each sample.

The p-chart with the individual control limits plotted is shown in Figure 8-4. From this figure

we can see that sample 9 is out of control. The proportion-nonconforming value of 0.129 plots

above the upper control limit of 0.126 for that sample. Special causes should be investigated

for this sample and remedial actions taken.When the centerline and control limits are revised,

this sample is then deleted.

Standardized Control Chart Another approach to varying sample size is to construct a

chart ofnormalizedor standardizedvalues of the proportion nonconforming. Thevalue of the

proportion nonconforming for a sample is expressed as the sample’s deviation from the

average proportion nonconforming in units of standard deviations. In Chapter 4we discussed
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FIGURE 8-4 Proportion-nonconforming chart for variable sample sizes.

the sampling distribution of a sample proportion nonconforming �p̂�. It showed that the mean

and standard deviation of p̂ are given by

E�p̂� �  p �8-12� 

p�1 � p� �8-13�σp̂ � 
n

respectively, where p represents the true process nonconformance rate and n is the sample

size. In practice, p is usually estimated by �p, the sample average proportion nonconforming.

So, in the working versions of eqs. (8-12) and (8-13), p is replaced by �p.

The standardized value of the proportion nonconforming for the ith sample may be

expressed as
p̂i � �p

Z � p �8-14� 
� p�=nip�1 � �

where ni is the size of ith sample. One of the advantages of a standardized control chart for

the proportion nonconforming is that only one set of control limits needs to be constructed.

These limits are placed±3 standarddeviations from the centerline.Additionally, tests for runs

and pattern recognition are difficult to apply to circumstances in which individual control

limits change with each sample. They can, however, be applied in the same manner as with

other variable charts when a standardized p-chart is constructed. The centerline on a

standardized p-chart is at 0, the UCL is at 3, and the LCL is at –3.

Example 8-4 Use the vinyl tile data in Table 8-4 to construct a standardized p-chart.

Solution The standard deviation of the sample proportion nonconforming �p̂i� for the
ith sample is

�p�1 � p�� �0:0726��0:9274� 0:2595
σ^ � � � ppi ni ni ni
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TABLE 8-5 Standardized p-Chart Data for the Vinyl Tile Example

Number of Number of

Tiles Nonconforming Proportion Standard Standardized

pi pi pi, Z-Value^

1 200 14 0.070 0.0183 �0.142
^

2 180 10 0.056 0.0193 �0.858
3 200 17 0.085 0.0183 0.678

4 120 8 0.067 0.0237 �0.236
5 300 20 0.067 0.0150 �0.373
6 250 18 0.072 0.0164 �0.037
7 400 25 0.062 0.0130 �0.815

^

8 180 20 0.111 0.0193 1.990

9 210 27 0.129 0.0179 3.151

10 380 30 0.079 0.0133 0.481

11 190 15 0.079 0.0188 0.340

12 380 26 0.068 0.0133 �0.346
13 200 10 0.050 0.0183 �1.235
14 210 14 0.067 0.0179 �0.313
15 390 24 0.061 0.0131 �0.885
16 120 15 0.125 0.0237 2.211

17 190 18 0.095 0.0188 1.191

18 380 19 0.050 0.0133 �1.699
19 200 11 0.055 0.0183 �0.962
20 180 12 0.067 0.0193 �0.290

Sample, i Inspected, ni Tiles Nonconforming, Deviation, σ

^p̂i
pi

p � 0:0726. Table 8-5 shows the standardized Z-values of the proportion nonconforming.

The standardized p-chart is shown in Figure 8-5. The control limits are at ±3, and the

centerline is at 0. From Figure 8-5, observe that sample 9 is above the upper control limit,

For this value of σ , the standardized value of is calculated using eq. (8-14) with

FIGURE 8-5 Standardized p-chart for vinyl tile data.
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indicating anout-of-control situation. This is in agreementwith the conclusionswe reached in

Example 8-3 using individual control limits.

Risk-Adjusted p-Charts in Health Care

In health care applications, situations arise where the proportion of adverse outcomes is to be

monitored. Examples include the proportion ofmortality in patients who undergo surgery for

heart disease, proportion ofmorbidity in patients undergoing cardiac surgery, and proportion

of Caesarian sections for newborn deliveries in a hospital. Uniquely different from the

manufacturing or service sector, the product units studied (in this case patients) are not

homogeneous. Patients differ in their severity of illness on admission. This inherent

difference between patients could impact the observed adverse outcomes, which are above

and beyond process-related issues.Hence, an adjustment needs to bemade in the construction

ofp-charts that incorporates suchdifferences betweenpatients in impacting the riskof adverse

outcomes.

Severalmeasures could be used for the development of risk-adjustedp-charts.Onemethod

of stratificationof risk for open-heart surgery results in adults is through the use of aParsonnet

score (Parsonnet et al. 1989). For patients on admission to a hospital, the Parsonnet score is

calculated based on numerous patient characteristics such as age, gender, level of obesity,

degree of hypertension, presence of diabetes, level of reoperation, dialysis dependency, and

other rare circumstances such as paraplegia, pacemaker dependency, and severe asthma,

amongothers. Thehigher the Parsonnet score, themore the severity of risk associatedwith the

patient. A typical range of the Parsonnet scores of patients could be 0–80. Using such patient-

related factors, a logistics regression model (see Chapter 13) is used to predict postoperative

mortality ormorbidity. Suchapredictionwill vary frompatient topatient basedon the severity

of risk related to the particular patient.

^As a simplemodel, the predictedmortality (πij) for patient j in subgroup i, basedon severity

of illness, could be given by

π̂ij�� � a � b PSij

where a and b are estimated regression coefficients and PSij represents the Parsonnet score of

the particular patient. Hence, the centerline and the control limits on the risk-adjusted p-chart

will be influenced by the severity of risk of the patients. The observed mortality or morbidity

rate will be compared to such risk-adjusted control limits (expected rate) tomake an inference

on the performance of the process; in this case it could be for a selected health care facility or a

chosen surgeon.

Suppose that there are i subgroups, across time, each of size denoted by ni patients, where

i= 1, 2, . . . , g. As previously stated, the subgroup sizes should be large enough to observe

adverse outcomes. The expected number of adverse outcomes, say mortality, should be at

least five for each subgroup. Based on the Parsonnet score for patient j in subgroup i, let the

predicted (or expected) mortality, based on the patient’s identified risk prior to the operation,

^ln�πij=�1 � �8-15� 

be denoted by

^

π̂ij. This is usually found from a logistic regression model that utilizes the

Parsonnet score of the patient. For an individual patient j in subgroup i, the variance in the

predicted mortality is given by

πij�Var�π̂ij� �  π̂ij�1 � �8-16� 
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The predicted (or expected) mortality for all patients in subgroup i, based on the severity of

illness, which also represents the centerline for the ith subgroup, is

ni

πij

πi � 
ni

Thevariance in predictedmortality for all patients in subgroup i, assuming that the patients are

independent of each other, is given by

ni

^

^
j�1

CLi � �8-17� 

Var�πi� �^

� 

Var�πij� 

^

j�1
^

2ni
^j πij�1 � πij� �8-18�

2ni

-

Hence, for large sample sizes, the control limits for the predicted proportion of mortality, for

subgroup i, are given by

1=2ni

1 � π̂ij�^

^

πij�
πi� 

where zα/2 represents the standard normal variate based on a chosen type I error (or false-alarm

rate) of α.

Note that for each patient j, in subgroup i, the observed value of the adverse event (say,

mortality) is

Yij � 1

0

if patient j in subgroup i dies

if patient j in subgroup i survives
�8-20� 

For subgroup i, the observed mortality is

ni

Yi � Yij �8-21� 

and the corresponding proportion of mortality is

Ri � Yi=ni �8-22� 

On a risk-adjusted p-chart, for each subgroup, the observed proportion of mortality, as

given by eq. (8-22), is compared to the control limits, based on the predicted risk of individual

patients in that subgroup, given by eq. (8-19). If the observed proportion of mortality falls

above the upper control limit, onewould look for special causes in the process (i.e., the health

care facility, its staff, or the surgeon) to determine possible remedial actions thatmight reduce

the mortality proportion. On the other hand, for a surgeon who handles high-risk patients, if

the observed mortality proportion is below the lower control limit, this indicates better

zα=2p j�1
UCLi ; LCLi� �  �π̂ zi 2α= � π̂i � 8-19�Var�� �

ni

j�1
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TABLE 8-6 Mortality Data of Cardiac Surgery Patients

Summary
By Subgroup Number

1 2 3 4 5 6 7 8

Number of deaths 2 1 1 2 3 1 2 1

Number of patients 10 10 8 9 10 8 8 10

Observed proportion 0.200 0.100 0.125 0.222 0.300 0.125 0.250 0.100

of mortality (Ri)

Patient ExpectedRisk ofMortality (PredictedMortality Based on Illness Severity) π̂ij

1 0.6 0.5 0.3 0.2 0.4 0.1 0.1 0.4

2 0.4 0.2 0.5 0.4 0.6 0.1 0.1 0.2

3 0.8 0.4 0.6 0.7 0.4 0.2 0.3 0.5

4 0.3 0.6 0.4 0.6 0.4 0.4 0.2 0.6

5 0.2 0.3 0.7 0.2 0.6 0.1 0.3 0.4

6 0.3 0.7 0.2 0.3 0.3 0.2 0.3 0.5

7 0.2 0.3 0.3 0.1 0.5 0.4 0.1 0.2

8 0.1 0.4 0.1 0.4 0.2 0.2 0.1 0.5

9 0.6 0.2 0.2 0.1 0.4

10 0.4 0.2 0.3 0.3

performance than expected when adjustment is made for the risk of severity in illness

associated with the patients.

It is easy to ascertain the importance of risk adjustment in the health care environment. If an

ordinary p-chart were constructed to monitor proportion of mortality, a high observed

proportion of mortality may indeed be a reflection of the criticality of illness of the patients

and not necessarily a measure of the goodness of the facility and its processes or the surgeon

and the technical staff. A wrong inference could be made on the process. A risk-adjusted

p-chart, on the other hand, makes an equitable comparison between the observed proportion

of mortality and the predicted proportion, wherein an adjustment is made to incorporate the

severity of illness of the patients.

Example 8-5 Data on mortality are collected for a selected surgeon for patients who

have gone through cardiac surgery in a health care facility. Table 8-6 shows the data for

eight subgroups collected over a period of time. In addition to the observed proportion of

mortality, for each subgroup, the predicted mortality for each patient based on their illness

severity is also shown. Such values of predicted mortality are obtained from a logistic

regression model that uses the Parsonnet score assigned to the patient. Construct a risk-

adjusted p-chart for the mortality proportion and comment on the performance of the

surgeon and the team.

Solution For each subgroup, the observed proportion ofmortality (Ri) is shown in Table 8-6.

The predicted (or expected) mortality, π̂i, for each subgroup is calculated based on the illness

severity of the patients in that subgroup. As an example, for subgroup 1,

^ =10 � 0:39π1 � �0:6 � 0:4 � 0:8 � 0:3 � 0:2 � 0:3 � 0:2 � 0:1 � 0:6 � 0:4�
Similarly, we obtain π̂2 � 0:38, π̂3 � 0:31, π̂4 � 0:31, π̂5 � 0:38, π̂6 � 0:17, π̂7 � 0:15,

and π̂8 � 0:40. Next we demonstrate the computation of the variance of the predicted

mortality rates.
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For subgroup 1,

��0:6��0:4� � �0:4��0:6� � �0:8��0:2� � �0:3��0:7� � �0:2��0:8� 
Var�π1� �  � �0:3��0:7� � �0:2��0:8� � �0:1��0:9� � �0:6��0:4� � �0:4��0:6��=102

� 0:0189
^

Assume a chosen level of significance (α) of 5% yields a standard normal variate of ±1.96.

Hence, the risk-adjusted control limits for subgroup 1 are given by

p
�UCL1;LCL1� � 0:39 � 1:96 0:0189 � 0:39 � 0:2695 � �0:6595; 0:1205� 

Along similar lines, for the other subgroups, the following variances of the predicted

mortality rates are obtained: Var�π2� � 0:0208,^ Var�π3� � 0:0252,^ ^Var�π4� � 0:0211,
Var� ^π5� � 0:0212, Var�π6� � 0:0192, Var�π7� � 0:0180, and Var�π8� � 0:0224. The risk-

adjusted centerline and control limits for the subgroups are shown in Table 8-7.

A risk-adjusted control chart for the mortality proportion is shown in Figure 8-6. In

this figure, the observed proportion of mortality is plotted along with the risk-adjusted

^

TABLE 8-7 Risk-AdjustedCenter Line andControl Limits

for Mortality Data

^^

Subgroup Number Centerline Control Limits

1 0.39 (0.6595, 0.1205)

2 0.38 (0.6627, 0.0973)

3 0.31 (0.6211, 0.)

4 0.31 (0.5947, 0.0253)

5 0.38 (0.6654, 0.0946)

6 0.17 (0.4416, 0.)

7 0.15 (0.4130, 0.)

8 0.40 (0.6933, 0.1067)

FIGURE 8-6 Risk-adjusted p-chart for mortality proportion.



408 CONTROL CHARTS FOR ATTRIBUTES

centerline and the risk-adjusted control limits, both of which incorporate the severity of

illness of the patients in the particular subgroup. It is found from Figure 8-6 that just

about all the values of the observed proportion of mortality are well within the control

limits. There is also a run of six points below the centerline, indicating that surgeon and

team performance seems to be better than expected when severity of illness is taken into

account. For subgroup 8, the observed proportion of mortality is just below the risk-

adjusted lower control limit. This indicates that the surgeon and associated team

performance is likely better than what is expected based on the severity of illness of

the patients in that subgroup. Perhaps, a further look at the process may indicate some

desirable steps to be emulated in the future.

Special Considerations for p-Charts

Necessary Assumptions Recall that the proportion of nonconforming items is based on a

binomial distribution. With this distribution, the probability of occurrence of

nonconforming items is assumed to be constant for each item, and the items are

assumed to be independent of each other with respect to meeting the specifications. The

latter assumption may not be valid if products are manufactured in groups. Let’s suppose

that for a steel manufacturing process a batch produced in a cupola does not have the correct

proportion of an additive. If a sample steel ingot chosen from that batch is found to be

nonconforming, other samples from the same batch are also likely to be nonconforming, so

the samples are not independent of each other. Furthermore, the likelihood of a sample

chosen from the bad batch being nonconforming will be different from that of a sample

chosen from a good batch.

Observations Below the Lower Control Limit The presence of points that plot below

the lower control limit on a p-chart, even though they indicate an out-of-control situation,

aredesirablebecause theyalso indicatean improvement in theprocess.Once thespecial causes for

such points have been identified, these points should not be deleted. In fact, the process should

be set to the conditions that led to these points in thefirst place.Wemust be certain, however, that

errors in measurement or recording are not responsible for such low values.

Comparison with a Specified Standard Management sometimes sets a standard value for

the proportion nonconforming (p0).When control limits are based on a standard, caremust be

exercised in drawing inferences about the process. If the process yields points that fall above

the upper control limit, special causes should be sought. Once they have been found and

appropriate actions have been taken, the process performance may again be compared to the

standard. If the process is still out of control even though no further special causes can

be located, management should question whether the existing process is capable of meeting

the desired standards. If resource limitations prevent management from being able to

implement process improvement, it may not be advisable to compare the process to the

desirable standards. Only if the standards are conceivably attainable should the control limits

be based on them.

Impact of Design Specifications Since a nonconforming product means that its quality

characteristics do not meet certain specifications, it is possible for the average proportion

nonconforming to be too high even though the process is stable and in control. Only a

fundamental change in the design of the product or in the specifications can reduce the
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proportion nonconforming in this situation. Perhaps tolerances should be loosened; this

approach should be taken only if there is no substantial deviation in meeting customer

requirements. Constant feedback between marketing, product/process design, and

manufacturing will ensure that customer needs are met in the design and manufacture of

the product.

InformationAboutOverall Quality Level A p-chart is ideal for aggregating information.

For a plant withmany product lines, departments, andwork centers, a p-chart can combine

information and provide a measure of the overall product nonconformance rate. It can

also be used to evaluate the effectiveness of managers and even the chief executive

officer.

8-5 CHART FOR NUMBER OF NONCONFORMING ITEMS: np-CHART

As an alternative to calculating the proportion nonconforming, we can count the number of

nonconforming items in samples and use the count as the basis for the control chart.Operating

personnel sometimes find it easier to relate to the number nonconforming than to the

proportion nonconforming. The assumptions made for the construction of proportion-

nonconforming charts apply to number-nonconforming charts as well. The number of

nonconforming items in a sample is assumed to be given by a binomial distribution. The

same principles apply to number-nonconforming charts also, and constructing an np-chart is

similar to constructing a p-chart.

There is onedrawback to thenp-chart: If the sample size changes, the centerline andcontrol

limits change as well. Making inferences in such circumstances is difficult. Thus, an np-chart

should not be used when the sample size varies.

No Standard Given

The centerline for an np-chart is given by

xi
i�1

CLnp � � n�p �8-23� 
g

wherexi represents thenumbernonconformingfor the ith sample,g is thenumberof samples,

n is thesamplesize,and�p is thesampleaverageproportionnonconforming.Since thenumber

of nonconforming items is n times the proportion nonconforming, the average and standard

deviation of the number nonconforming are n times the corresponding value for the

proportion nonconforming. Thus, the standard deviation of the number nonconforming is

p
σnp � n�p�1 � p�� �8-24� 

The control limits for an np-chart are

p
UCLnp � np� � 3 np��1 � �p� p �8-25� 
LCLnp � np� � 3 np��1 � �p� 

If the lower control limit calculation yields a negative value, it is converted to zero.

g
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TABLE 8-8 Number of Dissatisfied Customers

Number of Dissatisfied Number of Dissatisfied

Sample Customers Sample Customers

1 10 11 6

2 12 12 19

3 8 13 10

4 9 14 7

5 6 15 8

6 11 16 4

7 13 17 11

8 10 18 10

9 8 19 6

10 9 20

184

7

Standard Given

Let’s suppose that a specified standard for the number of nonconforming items is np0. The

centerline and control limits are given by

CLnp � np0 p
UCLnp � np0 � 3 np0�1 � p0� �8-26� p
LCLnp � np0 � 3 np0�1 � p0� 

Example 8-6 Data for the number of dissatisfied customers in a department store observed

for 25 samples of size 300 are shown in Table 8-8. Construct an np-chart for the number of

dissatisfied customers.

Solution The centerline for the np-chart is

184
CLnp � � 9:2

20

The control limits are found using eq. (8-25):

9:2
UCLnp � 9:2 � 3 9:2 1 � � 18:159

300

9:2
LCLnp � 9:2 � 3 9:2 1 � � 0:241

300

This np-chart is shown in Figure 8-7. Note that sample 12 plots above the upper control

limit and so indicates an out-of-control state. Special causes should be investigated, and after
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FIGURE 8-7 Number-nonconforming chart for dissatisfied customers.

remedial actions have been taken, limits are revised by deleting sample 12. The revised

centerline and control limits are

184 � 19
CLnp � � 8:684

19

UCLnp � 8:684 � 3 � 17:396

LCLnp � 8:684 � 3 � �0:028→0

8:684 1 � 8:684
300

8:684 1 � 8:684
300

These limits should be used for future observations.

8-6 CHART FOR NUMBER OF NONCONFORMITIES: c-CHART

Anonconformity is defined as a quality characteristic that does notmeet some specification.A

nonconforming item has one or more nonconformities that make it nonfunctional. It is also

possible for a product to have oneormore nonconformities and still conform to standards. The

p- and np-charts deal with nonconforming items. A c-chart is used to track the total number of

nonconformities in samples of constant size.When the sample size varies, a u-chart is used to

track the number of nonconformities per unit.

In constructing c- and u-charts, the size of the sample is also referred to as the area of

opportunity. The area of opportunity may be single or multiple units of a product (e.g., 1 TV

set or a collection of 10 TV sets). For items produced on a continuous basis, the area of
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opportunity could be 100m2 of fabric or 50m2 of paper. As with p-charts, wemust be careful

about our choice of area of opportunity. When both the average number of nonconformities

per unit and the area of opportunity are small, most observations will show zero nonconfor

mities, with one nonconformity showing up occasionally and two or more nonconformities

even less frequently. Such information can be misleading, so it is beneficial to choose a large

enough area of opportunity so that we can expect some nonconformities to occur. If the

average number of nonconformities per TV set is small (say, about 0.08), it wouldmake sense

for the sample size to be 50 sets rather than 10.

The occurrence of nonconformities is assumed to follow a Poisson distribution. This

distribution is well suited to modeling the number of events that happen over a specified

amount of time, space, or volume.Certain assumptionsmust hold for a Poisson distribution to

be used. First, the opportunity for the occurrence of nonconformities must be large, and the

average number of nonconformities per unitmust be small.An example is the number offlaws

in 100m2of fabric. Theoretically, this number could be quite large, but the average number of

flaws in 100m2 of fabric is not necessarily a large value. The second assumption is that the

occurrences of nonconformities must be independent of each other. Suppose that 100m2 of

fabric is the sample size. A nonconformity in a certain segment of fabric must in no way

influence the occurrence of other nonconformities. Third, each sample should have an equal

likelihood of the occurrence of nonconformities; that is, the prevailing conditions should be

consistent from sample to sample. For instance, if different rivet guns are used to install the

rivets in a ship, the opportunity for defects may vary for different guns, so the Poisson

distribution would not be strictly applicable.

Because the steps involved in the construction and interpretation of c-charts are similar to

those for p-charts,we only point out the differences in the formulas. If x represents the number

of nonconformities in the sampleunit and c is themean, then thePoissondistributionyields (as

discussed in Chapter 4)
�c xe c

p�x� �  �8-27� 
x! 

where p(x) represents the probability of observing x nonconformities. Recall that in the

Poisson distribution the mean and the variance are equal.

No Standard Given

The average number of nonconformities per sample unit is found from the sample observa

tions and is denoted by �c. The centerline and control limits are

CLc � �c p
UCLc � �c � 3 �c �8-28�p
LCLc � �c � 3 �c

If the lower control limit is found to be less than zero, it is converted to zero.

Standard Given

Let the specified goal for the number of nonconformities per sample unit be c0. The centerline

and control limits are then calculated from

CLc � c0 p
UCLc � c0 � 3 c0 �8-29�p
LCLc � c0 � 3 c0
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TABLE 8-9 Foreign Matter Data

Sample Nonconformities Sample Nonconformities

1 5 14 11

2 4 15 9

3 7 16 5

4 6 17 7

5 8 18 6

6 5 19 10

7 6 20 8

8 5 21 9

9 16 22 9

10 10 23 7

11 9 24 5

12 7 25 7

13 8

Many of the special considerations discussed for p-charts, such as observations below the

lower control limit, comparisonwith a specified standard, impact of design specifications, and

information about overall quality level, apply to c-charts as well.

Example 8-7 Samples of fabric from a textile mill, each 100m2, are selected, and the

number of occurrences of foreign matter is recorded. Data for 25 samples are shown in

Table 8-9. Construct a c-chart for the number of nonconformities.

Solution The average number of nonconformities based on the sample information is

found as follows. The centerline is given by

189
�c � � 7:560

25

The control limits are given by

p
UCLc � 7:560 � 3 7:560 � 15:809p
LCLc � 7:560 � 3 7:560 � �0:689→0:

The c-chart is shown in Figure 8-8. We used Minitab to construct this chart. We selected

Stat >Control Charts >Attribute Charts > c, indicated the name of the variable (in this

case, Nonconformities), and clicked OK. For sample 9, the number of nonconformities

is 16, which exceeds the upper control limit of 15.809. Assuming remedial action

has been taken for the special causes, the centerline and control limits are revised as

follows (sample 9 is deleted):

189 � 16
�c � � 7:208

24 p
UCLc � 7:208 � 3 7:208 � 15:262p
LCLc � 7:208 � 3 7:208 � �0:846→0

After this revision, the remaining sample points are found to be within the limits.
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FIGURE 8-8 c-Chart for foreign matter data.

Probability Limits

The c-chart is basedon thePoissondistribution.Thus, for a chosen level of type I error [i.e., the

probability of concluding that a process is out of control when it is in control (a false alarm)],

the control limits should be selected using this distribution.

The 3σ limits, shown previously, are not necessarily symmetrical. This means that the

probability of an observation falling outside either control limit may not be equal. Appendix

A-2 lists cumulative probabilities for the Poisson distribution for a given mean. Suppose that

the process mean is c0 and symmetrical control limits are desired for type I error of α. The

control limits should then be selected such that

α
P�X > UCL j c0� � P�X < LCL j c0� �  �8-30� 

2

Since the Poisson distribution is discrete, the upper control limit is found from the smallest

integer x+ such that

P�X � x�� � 1 � α �8-31� 
2

Similarly, the lower control limit is found from the largest integer x� such that

P�X � x�� �  α �8-32� 
2

Example 8-8 The average number of surface imperfections in painted sheet metal of size

200m2 is 9. Find the probability limits for a type I error of 0.01.

Solution From the information given, c0= 9 and α= 0.01. Using Appendix A-2 and

incorporating eqs. (8-31) and (8-32), we have

P�X � 17 j c0 � 9� � 0:995
P�X � 1 j c0 � 9� � 0:001
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The upper control limit is chosen as 17 and the lower control limit as 1. Note that, strictly

speaking, these are not symmetrical probability limits because P(x � 1) = 0.001 < 0.005,

while P(x > 17) = 0.005. These are the 0.001 and 0.995 probability limits. The designed

type I error is 0.006, which is less than the prescribed level of 0.01.

Applications in Health Care When Nonoccurrence of Nonconformities Are

Not Observable

In certain health care applications, if no nonconformities or defects occur, the outcome is not

observable. Examples could be the number of needle sticks, the number of medical errors, or

the number of falls, where it is assumed that the sample size or area of opportunity remains

constant from sample to sample.

Assuming that the number of occurrences of nonconformities still follows the Poisson

distribution, in this situation, the valueX= 0 is not observable. If λ represents the constant rate

of occurrence of nonconformities, we have, for the positive or zero-truncated Poisson

distribution, the probability mass function given by

�λλx1 e
�λ ; x � 1; 2; . . .  

1 � e x!
P�X � x� � �8-33� �λ � 1��1λx�e

; x � 1; 2; . . .  
x! 

It can be shown that the mean and variance of X are given by

�λ�E�X� � λ=�1 � e �8-34� 

�λ�Var�X� � λ=�1 � e�λ� � λ2e�λ=�1 � e
2 �8-35� 

respectively. Hence, if a sample of n independent and identically distributed observations

X1, X2, . . . Xn is observed, the maximum-likelihood estimator (λ̂) of λ is obtained from

n

Xj ^j�1 λ
X � � �8-36�

^�λn 1 � e

Equation (8-36) may be solved numerically to obtain an estimate λ̂, given by

1 
j j�1

λ̂ � X � �Xe�X�j �8-37� 
j! 

j�1

An approximate bound for λ̂, given by Kemp and Kemp (1989), is

6�X � 1� 
< λ̂ < X 1 � �eX � X��1 �8-38� 

X � 2

Once an estimate λ̂ has been obtained, the center line on a c-chart is

CL � λ̂ � c0 �8-39� 
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TABLE 8-10

Sample

1

2

3

4

5

6

7

8

9

10

11

12

13

Data on Medical Errors

Number of

Medical Errors Sample

12 14

8 15

15 16

16 17

9 18

10 19

15 20

12 21

13 22

10 23

19 24

16 25

8

Number of

Medical Errors

13

15

25

18

16

17

14

12

15

16

12

12

λ̂ found fromProbability limits, using previously described concepts and eq. (8-33) with

eq. (8-37),maybe found for a chosen false-alarm rateα. The upper control limit is found as the

smallest integer x+ such that

λ̂
j

� 1 � �8-40� 
j! 2

j�1

The lower control limit is found as the largest integer x�, such that

�
λ̂ � 1��1x

α�e

^jλ � �8-41� 
j! 2

j�1

Example 8-9 Data on the number of medical errors are observed for 25 samples in a health

care facility. Each sample is observed over 3000 patient-hours and is shown in Table 8-10.

Construct an appropriate control chart and comment on the patient care process in the facility.

Use a false-alarm rate of 0.01.

Solution Note that if there are nomedical errors, it is not observable.On the other hand, for

a given patient or prescription, there could be multiple errors. From the data, the average

number of medical errors per 3000 patient-hours is

X � 348=25 � 13:92

x� λ̂ � 1��1 α�e

λ̂Using eq. (8-37), we obtain an estimate of the error rate ( ) as follows:

�13:92� �13:92�� 13:92 � �13:92e�13:92 � �13:92e 2 � 1:5�13:92e 3 � ∙ ∙ ∙ :� 
� 13:91999

λ̂

Hence, the centerline on a c-chart � λ̂ ' 13:91999. The control limits are found using

λ̂

eqs. (8-40) and (8-41) for a false-alarm rate α= 0.01. Using the positive Poisson distribution

with a mean rate ( ) of 13.91999, we find the following [using eq. (8-33)]:

λ̂P�
λ̂

X � 24j � 13:91999� � 0:995314 > 0:995

� 13:91999� � 0:001914 < 0:005P�X � 4j



CHART FOR NUMBER OF NONCONFORMITIES PER UNIT: u-CHART 417

FIGURE 8-9 c-Chart for medical errors.

Since these bounds satisfy the desired false-alarm rate, the upper control limit is chosen as 24

and the lower control limit as 4. The control chart for the number of medical errors per 3000

patient-hours is shown in Figure 8-9. Sample number 16 with 25 errors plots above the upper

control limit. Special causeswould be investigated for this observation and appropriate remedial

measures such as validation of physician/pharmacy prescription, ensuring no interaction effects

between medications, and procedures for nurse alert/assistance could be proposed.

8-7 CHART FOR NUMBER OF NONCONFORMITIES PER UNIT: u-CHART

A c-chart is used when the sample size is constant. If the area of opportunity changes from one

sample to another, the centerline and control limits of a c-chart change aswell. For situations in

which the sample size varies, a u-chart is used. For companies that inspect all items produced or

services rendered for the presence of nonconformities, the output per production run can vary

becauseoffluctuating suppliesof labor,machinery,and rawmaterial; consequently, thenumber

inspected per production run changes, thus causingvarying sample sizes.When the sample size

varies, a u-chart is constructed tomonitor the number of nonconformities per unit. Even though

the control limits change as the sample size varies, the centerline of a u-chart remains constant,

which permits meaningful comparisons between the samples.

Variable Sample Size and No Specified Standard

When the sample size varies, the number of nonconformities per unit for the ith sample is

given by

ui � ci �8-42� 
ni

where ci is the number of nonconformities in the ith sample and ni is the size of the ith sample.

Note that the sample size ni need not always be an integer. Let’s suppose the number of
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weaving nonconformities is being counted from finished pieces of cloth such that 100m2

represents 1 unit. If three samples of 250, 100, and 350m2 are inspected, the corresponding

values of the sample size are 2.5, 1, and 3.5 units, respectively.

The average number of nonconformities per unit ��u�, which is also the centerline of a

u-chart, is given by

ci
i�1

� �8-43�u � g

ni

The control limits are given by i�1

UCLu � �u � 3

�8-44� 
LCLu � �u � 3

It can been seen from eq. (8-44) that the control limits draw closer as the sample size

increases. The same behavior is observed for p-charts for variable sample sizes. Thus, the

options discussed previously for p-charts with variable sample sizes apply to u-charts as well.

Equation (8-44) provides control limits that vary basedoneach sample size.Note that ifni= 1,

all formulas for u-charts equal those for c-charts.

Example 8-10 The number of nonconformities in carpets is determined for 20 samples, but

the amount of carpet inspected for each sample varies. Results of the inspection are shown in

Table 8-11. Construct a control chart for the number of nonconformities per 100m2.

Solution With 100m2 as a unit, the sample sizes are computed for each sample.

Table 8-12 shows the sample sizes and the number of nonconformities per unit for

each sample. Equation (8-42) is used to calculate ui. For example, for the first sample,

u1= 5/2= 2.5. The centerline u� is found by using eq. (8-43):

g

�u

ni

�u

ni

ci 192
u � � � 4:683

ni 41

TABLE 8-11 Data for Nonconformities in Carpets

Amount Number of

Sample, i Inspected (m2) Nonconformities, ci

1 200

2 300

3 250

4 150

5 250

6 100

7 200

8 150

9 150

10 250

5

14

8

8

12

6

20

10

6

10

Amount Number of

Sample, i Inspected (m2) Nonconformities, ci

11

12

13

14

15

16

17

18

19

20

300 9

250 16

200 12

250 10

100 6

200 8

200 5

100 5

300 14

200

192

8
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TABLE 8-12 Control Limits for Nonconformities per Unit in Carpets

Nonconformities Upper Lower

Sample, i Sample size, ni per 100m2, ui Control Limit Control Limit

1 2 2.500 9.274 0.092

2 3 4.667 8.431 0.935

3 2.5 3.200 8.789 0.577

4 1.5 5.333 9.984 0

5 2.5 4.800 8.789 0.577

6 1 6.000 11.175 0

7 2 10.000 9.274 0.092

8 1.5 6.667 9.984 0

9 1.5 4.000 9.984 0

10 2.5 4.000 8.789 0.577

11 3 3.000 8.431 0.935

12 2.5 6.400 8.789 0.577

13 2 6.000 9.274 0.092

14 2.5 4.000 8.789 0.577

15 1 6.000 11.175 0

16 2 4.000 9.274 0.092

17 2 2.500 9.274 0.092

18 1 5.000 11.175 0

19 3 4.667 8.431 0.935

20 2 4.000 9.274 0.092

41

The control limits are found by using eq. (8-44). Table 8-12 shows the control limits for each

sample. For instance, for the first sample, the control limits are found as follows:

4:683
UCLu � 4:683 � 3 � 9:274

2

4:683
LCLu � 4:683 � 3 � 0:092

2

The control limits for the other samples are calculated in the same manner. If a lower control

limit calculation is a negative value, the limit is converted to zero.

Figure 8-10 shows this control chart for the number of nonconformities per unit. We used

Minitab to construct this chart. To do this, we selected Stat >Control Charts >Attribute

Charts >U, indicated names for the variables that represent the number of nonconformities

and the subgroup size, and then clickedOK. We can see that sample 7 plots above the upper

control limit. After the special cause has been identified and appropriate corrective action

taken, the revised centerline is found by deleting sample 7:

192 � 20
� � 4:410u � 

39

The revised control limits are found using this revised value of �u in eq. (8-44). The

remaining samples are within these revised control limits.
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FIGURE 8-10 u-Chart for carpet data.

Attribute charts have the potential for numerous applications in the nonmanufacturing

sector as well. Table 8-13 shows some examples of application of p-, c-, and u-charts in the

service sector.

Risk-Adjusted u-Charts in Health Care

As discussed in the context of p-charts, risk adjustments may be made in creating c-charts or

u-charts since patients differ in their severity of illness.An example could be the occurrence of

pressure ulcers in hospitalized patients. When the area of opportunity for occurrence of

nonconformities, say, for example, patient-days, remains constant from one subgroup to

another, the c-chart may be utilized.However, if the area of opportunity varies from subgroup

to subgroup, the u-chart is appropriate. The procedure followed could be similar to the risk-

adjusted p-chart, where for each patient the expected number of nonconformities (say

pressure ulcers) is computed based on the risk level for that particular patient.

Based on patient characteristics such as mobility, the ability to change and control body

position, thedegreeof physical activity, sensoryperception indicating the ability to respond to

TABLE 8-13 Attribute Control Chart Applications in the Service Sector

Quality Characteristic Control Chart

Proportion of income tax returns that have errors p-chart

Proportion of billing errors by a service provider p-chart

Proportion of on-time shipments by a logistics company p-chart

Proportion of payments in Medicare/Medicaid in error p-chart

Proportion of clinical tests performed inaccurately p-chart

Proportion of cases with side effects of medication and treatment p-chart

Number of billing errors per 100 accounts c- or u-chart

Number of errors per week in deliveries to patients u-chart

Number of daily customer complaints per occupant in a hotel u-chart
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pressure-related discomfort, tissue tolerance consisting of intrinsic factors such as nutrition

and arterial pressure, and extrinsic factors such as moisture, friction, and shear, a pressure

score such as the Braden score (Bergstrom et al. 1987; Braden and Bergstrom 1987) could be

developed. TheBraden score ranges from6 to 23,with lower values implying a higher risk for

development of pressure ulcers. Typically, values above 18 represent low risk, values

between 15 and 18 represent mild risk, values between 13 and 14 represent moderate risk,

values between10and12 represent high risk, andvalues�9 represent very high risk.Utilizing
a logistic regression model (see Chapter 13), the predicted probability or rate of nonconfor

mance (λ̂ij) for patient j in subgroup i could be given by

λ̂ij
ln � a � b BSij �8-45� 

1 � λ̂ij

where a and b are estimated regression coefficients and BSij represents the Braden pressure

score for that particular patient. The value λ̂ij, estimated from eq. (8-45), is therefore the risk-

adjusted probability for the particular patient.

The centerline and the control limits for each subgroup iwill be influenced by the severity

of risk of the patients in that subgroup. Suppose that there are i subgroups, across time, each

consisting of ni patients, where i= 1, 2, . . . , g. To demonstrate the computations, suppose

thenumber of days spent in thehealth care facilitybypatient j in subgroup i isnij. The expected

number of nonconformities, for example, pressure ulcers, is given by

^ĉij � nijλij �8-46� 

assuming that the occurrence of nonconformities for that patient is influenced by the number

of days spent in the facility by that patient. Hence, for subgroup i, the centerline representing

the expected number of nonconformities per unit, accounting for the severity of risk for each

patient, is given by

^
j ĉij j λijnij

^ � ; i � 1; 2; . . . ; g �8-47�ui � CLi � 
j nij ni

where

nij �8-48�ni � 

represents the area of opportunity, for example, total number of days spent by all the patients

in subgroup i, that is, the size of the subgroup. The variance of ûi that incorporates an

individual patient’s risk is given by

j

2 ^nij Var�λij� 
Var�ûi� �  j 2nij �8-49� 

2 ^ 1 � ^
j nij λij � λij� � ; i � 1; 2; . . . ; g

2ni

For large subgroup sizes, approximate control limits for subgroup i are given by
p

�UCLi;LCLi; � � ûi � zα=2 Var�ûi�; i � 1; 2 . . . ; g �8-50� 
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TABLE 8-14 Pressure Ulcer Data for Subgroup

Predicted

Subgroup i

Patient

j

Probability of

Ulcer, ^ λij

Number of Days

in Facility, nij

Expected Number

of Ulcers, ĉij

Observed Number

of Ulcers, cij

1 1 0.10 4 0.40 0

2 0.30 6 1.80 1

3 0.05 5 0.25 3

4 0.60 10 6.00 8

5 0.40 8 3.20 5

where zα/2 represents the standard normal variate for a tail area of α/2, where α is the chosen

level of type I error. The observed number of nonconformities per unit for subgroup i is

obtained from

j cij
ui � ; i � 1; 2; . . . ; g �8-51� 

ni

where cij represents the observed number of nonconformities for patient j in subgroup i. For

subgroup i, ui is compared to the risk-adjusted control limits given by eq. (8-50) and an

inference is made on that subgroup.

Example 8-11 The number of pressure ulcers are observed for patients in a heath care

facility. With the patients varying in their risk for the development of pressure ulcers, the

predicted pressure ulcer rate per day spent in the facility is computed froma logistic regression

model based on the patient’s Braden pressure score. Table 8-14 shows the predicted

probability of developing a pressure ulcer as found from a logistic regression model, the

number of days spent by the patient in the facility, and the observed number of pressure ulcers

for the patient. The table depicts observations for five patients. For this first subgroup of

observations, construct a risk-adjustedu-chart thatmonitors the number of pressure ulcers per

day of patients and comment.

Solution Given the predicted probability (λ̂ij) of a pressure ulcer for each patient and the

number of days (nij) spent in the facility by the corresponding patient, the expected number of

ulcers for that patient is obtainedbymultiplying λ̂ij bynij.Usingeq. (8-46), these computedvalues

are also shown inTable 8-14.Note that the total area of opportunity for subgroup 1 is found using

eq. (8-48) and found to be 33. Hence, the centerline for subgroup 1 using eq. (8-47) is

^ =33 � 11:65=33 � 0:353u1 � �0:40 � 1:80 � 0:25 � 6:00 � 3:20�
The variance of û1, using eq. (8-49), is found to be

Var�û1� � �42�0:1��0:9� � 62�0:3��0:7� � 52�0:05��0:95� � 102�0:6��0:4� 
� 82�0:4��0:6��=332 � 0:0455

Using a false-alarm rate α of 0.05, we have z0.025= 1.96. The control limits for subgroup 1 are

given by p
0:353 � �1:96� 0:0455 � ��0:065; 0:0771� � �0; 0:771� 

From the data given, the observed number of ulcers per patient-day (u1)= 17/33= 0.515. This

value fallswithin the control limits, and so a signal indicating a special cause in the quality of care

administered by the nursing staff would not be indicated.
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8-8 CHART FOR DEMERITS PER UNIT: u-CHART

The regular c- andu-charts treat all types of nonconformities equally regardless of their degree of

severity.Let’s suppose that in inspecting computermonitorswefind that onemonitor has trouble

retainingconsistent color anda secondmonitor hasfive scratchmarkson its surface.Usingeither

a c- or u-chart, the relative importance of monitor 2’s defects, in terms of the number of

nonconformities, isfive times as great as that ofmonitor 1.However, the single defect associated

with monitor 1 is much more serious than monitor 2’s scratch marks. An alternative approach

assigns weights to nonconformities according to their relative degree of severity (Besterfield

2012). This quality rating system, which rates demerits per unit and is called the U-chart, thus

overcomes the deficiency of the c- and u-charts. These are often helpful in service applications.

Classification of Nonconformities

Several systems classify nonconformities according to their degree of seriousness. A defect

that causes severe injury compared to that which may lead to minor problems in the

functioning of a product is obviously of different degrees of importance. Using this analogy,

defectsmaybe classified into the categories of critical, serious,major, orminor as an example.

The definition for each of these categories will be influenced by the product/service and the

user who makes a determination of the severity of each type of defect.

Once a classification of defects or nonconformities has been established, demerits

per unit are assigned to each class. Control charts are then constructed for demerits

per unit. The definitions of the classes are not rigid; users adapt them as they see fit.

The classification systemmentioned here is but one example. The number of categories and

the definitions of each should relate specifically to the problem environment. One

organization may have three categories of nonconformities—critical, major, and

minor—each with its own definitions. Another organization may define nonconformities

as either serious or not serious. The assignedweights for defects from each category is user

dependent. For example, a weight system of 100, 50, 10, and 1 could be chosen for the

categories of very serious, serious, major, and minor, respectively.

Construction of a U-Chart

Suppose that we have four categories of nonconformities. In general, the procedure described

in this section can be applied to any given number of categories. Let the sample size be n, and

let c1, c2, c3, and c4 denote the total number of nonconformities in a sample for the four

categories. Let w1, w2, w3, and w4 denote the weights assigned to each category. We assume

that nonconformities in each category are independent of defects in the other categories.We’ll

also assume that the occurrence of nonconformities in any category is represented by a

Poisson distribution. The applicability of a Poisson distribution to such circumstances is

discussed in Section 8-6 (c-charts).

For a sample of size n, the total number of demerits is given by

D � w1c1 � w2c2 � w3c3 � w4c4 �8-52� 

The demerits per unit for the sample are given by

D w1c1 � w2c2 � w3c3 � w4c4
U � � �8-53� 

n n
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where the quantity U is a linear combination of independent Poisson random variables. The

centerline of the U-chart is given by

U�� w1�u1 � w2�u2 � w3u�3 � w4�u4 �8-54� 
where �u1; u�2; �u3; and u�4 represent the average number of nonconformities per unit in their

respective classes. Computation of �u1; u�2; �u3; and �u4 is similar to the calculation of �u

discussed in Section 8-7. If the control limits are based on standard values, those values

(say u10; u20; u30; and u40) should be substituted for �u in each category.

The estimated standard deviation of U is given by

2 2 2 2w u�1 � w u�2 � w u�3 � w u�4
σ̂U � 1 2 3 4 �8-55� 

n

The control limits for the U-chart are given by

UCLU � U�� 3σ̂U �8-56� 
LCLU � U�� 3σ̂U

If the lower control limit is calculated to be less than zero, it is converted to zero.

Example 8-12 A department store obtains feedback on customer satisfaction regarding a

certain product. Twenty random samples, each involving 10 customers, are taken in which

customers are asked about the number of serious,major, andminor nonconformities that they

have experienced. Clear definitions of each category are provided. The results are shown in

Table 8-15. The weights assigned to a serious, major, and minor nonconformity are 50, 10,

and 1, respectively. Construct a control chart for the number of demerits per unit.

Solution For each sample, the total number of demerits given by eq. (8-52) is shown in

Table 8-15. The table also shows the number of demerits per unit U, given by eq. (8-53). To

find the centerlineU�, the average number of nonconformities per unit for each defect category

is calculated. For “serious” nonconformities

9
� � 0:045u1 � �20��10� 

Similarly,

74 114
� � 0:37 and � � 0:57u2 � u3 � 

200 200

Using eq. (8-54), the centerline of the U-chart is

U � �50��0:045� � �10��0:37� � �1��0:57� � 6:52

The estimated standard deviation of U, using eq. (8-55), is

σ̂U � �50�2�0:045� � �10�2�0:37� � �1�2�0:57� 
10

� 3:874

Hence, the control limits are

UCLU � 6:52 � �3��3:874� � 18:142
LCLU � 6:52 � �3��3:874� � �5:102→0

Figure 8-11 shows this U-chart. Note that all the points plot within the control limits.



CHART FOR DEMERITS PER UNIT: u-CHART 425

TABLE 8-15 Data for Nonconformities in a Department Store Customer Survey

Serious Major Minor

Nonconformities, Nonconformities, Nonconformities, Total Demerits

Sample c1 c2 c3 Demerits, D per Unit, U

1 1 4 2 92 9.2

2 0 3 8 38 3.8

3 0 5 10 60 6.0

4 1 2 5 75 7.5

5 0 6 2 62 6.2

6 0 0 8 8 0.8

7 0 7 5 75 7.5

8 1 1 1 61 6.1

9 1 3 2 82 8.2

10 0 4 12 52 5.2

11 1 5 3 103 10.3

12 2 0 2 102 10.2

13 0 0 9 9 0.9

14 0 6 8 68 6.8

15 1 12 10 180 18.0

16 0 5 7 57 5.7

17 0 1 1 11 1.1

18 1 2 5 75 7.5

19 0 5 6 56 5.6

9 74 114

20 0 3 8 38 3.8

FIGURE 8-11 U-chart for department store customer survey.
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8-9 CHARTS FOR HIGHLY CONFORMING PROCESSES

The p-chart for proportion nonconforming, discussed previously, was based on the normal

distribution as an approximation to the binomial distribution. When p is neither too large nor

too small and n is large such that np� 5, the normal distribution serves as an adequate

approximation. So, the 3σ limits based on the normal distribution restrict the type I error to

about 0.0027.When p is very small, say in the parts-per-million (ppm) range and n is not very

large, the normal distribution is not a good approximation to the binomial. Thus, for highly

conforming processes, an alternative to the p-chart is necessary. Similarly, for monitoring

nonconformities (as in a c- oru-chart) for processeswith very lowdefect rates, an alternative is

desirable. Other drawbacks of the traditional p- or u-chart for highly conforming processes

include an increased false-alarm rate (type I error) and an increased probability of failing to

detect a process change (type II error). Further, when the proportion nonconforming is very

small, the calculated lower control limitmay turnout tobenegative,which is thenconverted to

zero. In such cases, an observation cannot fall below the lower control limit. This leads to an

inability to detect process improvement if in fact one does occur. Given the drawbacks of a p-,

c-, or u-chart for very good processes, a few alternative approaches are suggested.

Transformation to Normality

Suppose we assume that the occurrence of nonconforming items or nonconformities is

modeled by aPoisson distributionwith a constant rate of occurrence. It is known that the times

between the occurrences of events (in this case, between the occurrence of nonconforming

items or nonconformities) are independent and exponentially distributed. The number of

conforming itemsproducedbetweenoccurrences of nonconforming itemswill be the variable

to bemonitored. This variable, which has an exponential distribution, can be transformed into

a Weibull distribution, which resembles a normal distribution. Denoting Xi as the number of

conforming items produced between successive nonconforming items, it has been shown

(Nelson 1994a,b) that the power transformation

1=3:6 � X 0:277Yi � X �8-57�i i

yields values of Y that are approximately normally distributed. Hence, an individuals and

moving-range chart for the Y-values could be monitored. If we denote the mean of Y by Y�

and the mean of the moving ranges of the Y-values with a window of 2 byMR, the centerline

and control limits on an individuals chart for Y are (for n= 2, d2= 1.128)

CL � Y� �8-58� �UCL;LCL� � �Y� � 2:66MR; Y� � 2:66MR� 

Note that values of Y above the upper control limit indicate an improvement in quality,

while values of Y below the lower control limit indicate a deterioration in quality.

Use of Exponential Distribution for Continuous Variables

When the process under consideration is continuous, an alternative under the assumption that

the occurrence of nonconformities conforms to a Poisson process with mean λ is to monitor

the time or number of items required (Q) to observe exactly one nonconformity. It is known
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that the distribution ofQ is exponential with parameter λ (mean= 1/λ). Hence, the probability

of observing Q units in order to observe a defect is

�λQF�Q� � 1 � e ; Q � 0 �8-59� 

Probability limits may be calculated based on a chosen type I error rate, α. Here, because the

exponential distribution is not symmetrical, probability limits rather than 3σ limits for Q are

preferred. The centerline and control limits are given as

1 1 0:6931
CL � �  ln � �8-60� 

λ 2 λ

1 α
LCL � �  ln 1 � �8-61� 

λ 2

1 α
UCL � �  ln �8-62� 

λ 2

InmonitoringQ,which is either the timeor number of items to observing anonconformity,we

can detect process improvement as well as deterioration. When Q>UCL, a likely improve

ment has takenplace.Any time that a nonconformity is detected, the quantityQ is reset to zero,

to keep track of the subsequent conforming items prior to a nonconformity being observed.

When the processmean is not known, itmaybe estimated fromprior samples as the average of

observed Q values.

Use of Geometric Distribution for Discrete Variables

For a highly conforming process, nonconforming items are few and far between. This

implies that monitoring the number of nonconforming items will yield most observations

with values of zero, which prevents the detection of a change in the nonconformance rate.

An alternative is to monitor the number of items until a nonconforming item is found,

sometimes referred to as the number of trials up to the first success (X). When a

nonconforming item is found, the count starts anew. The discrete variable X, as defined,

has a geometric distribution given by

P�X � x� � �1 � p�x�1p; x � 1; 2; . . .  �8-63� 

where p represents the probability of success (nonconforming item) on each trial. Themean

and variance of X, which counts the number of trials to the first success, including the trial

when the success occurs, are given by

1 1 � p
E�X� �  and Var�X� �  �8-64� 

2p p

Probability Limits

Let us assume that the probability of a type I error (α) will be divided equally on both sides of

the control limits. The centerline and control limits for the count to a nonconforming item are
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given by (Xie et al. 2002)

1
CL � 

p

ln�α=2� 
UCL � �8-65�ln�1 � p� 

ln�1 � α=2� 
LCL � 

ln�1 � p� 

These control limits are highly asymmetric, and a logarithmic scale for the vertical axis

for monitoring X is recommended. Detection of improvement in the process is usually

associated with a value of X falling above the UCL.

A bound can be established for the minimum sample size (n) necessary to detect

improvement if the current level of proportion nonconforming is p. The probability of no

nonconforming items in a sample of size n is

nP�0 nonconforming items� � �1 � p� �8-66� 

Assuming that a one-sided limit is being used to detect improvement, with a type I error

of α, we have a lower bound for n given by

ln�α�n�1 � p� < α or n > �8-67� 
ln�1 � p� 

Example 8-13 In a microelectronics manufacturing process, the defect sequence and the

count of the number of items until a nonconforming item is found are shown in Table 8-16.

Based on past data from the process, the process nonconformance rate is believed to be 800

parts per million (ppm). Using a type I error of 0.0027, construct an appropriate control chart

and comment if the process is in control.

TABLE 8-16 Number of Items Until a Nonconforming Item

Defect Number Defect Number Defect Number

Sequence of Items Sequence of Items Sequence of Items

1 256 11 919 21 387

2 85 12 851 22 172

3 2013 13 3780 23 1386

4 2080 14 157 24 1927

5 696 15 1112 25 731

6 2548 16 1294 26 884

7 572 17 2078 27 342

8 135 18 555 28 1479

9 656 19 288 29 2640

10 1686 20 2156 30 1845
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Solution The centerline and control limits for monitoring the number of items until a

nonconforming item is found are calculated using a nonconformance rate of 800 ppm:

1
CL � � 1250

0:0008

ln�0:00135� 
UCL � � 8256:26

ln�0:9992� 

ln�0:99865� 
LCL � � 1:69

ln�0:9992� 
If a plot is constructed of the observed values (vertical axis on a logarithmic scale), no

points are outside the control limits and no discernible patterns are visible. We conclude that

the process is in control for an assumed nonconformance rate of 800 ppm.

Applications in Health Care of Low-Occurrence Nonconformities

In certain health care applications, the rate of occurrence of nonconformities such as surgical

wound infections, pneumonia, catheter infections, or gastrointestinal infections may be quite

low. In such situations, the variable to be monitored is the number of events or surgeries or

days between infections, not counting the day on which the next infection occurs. Such a

randomvariable ismodeled by the geometric distribution, whose probabilitymass function is

given by

xP�X � x� � �1 � p� p; x � 0; 1; 2 . . .  �8-68� 
where p represents the probability of “success” (or a nonconforming item) on each trial (such

as surgeries). The mean and variance of the random variable X are given by

1 � p 1 � p
E�X� �  ; Var�X� �  �8-69�

2p p

Since the distribution of the random variable X for small values of p is quite asymmetric,

rather than create control limits that are equidistant from the centerline, such limits are

calculated using the concept of probability limits, discussed earlier, based on a chosen level of

false alarm, α. The cumulative distribution function of X is given by

F�X� � P�X � x� � 1 � �1 � p�x�1; x � 0; 1; 2; 3; . . .  �8-70� 
The upper and lower control limits, using eq. (8-70), are obtained as

ln�α=2� 
UCL � � 1 �8-71� 

ln�1 � p� 

ln�1 � α=2� 
LCL � � 1 �8-72� 

ln�1 � p� 
In the event that a target occurrence rate (p0) of a nonconforming item is specified, the

centerline is
1 � p0CL � �8-73� 
p0
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TABLE 8-17 Number of Surgeries Between Gastrointestinal Infections

Infection Number of Infection Number of Infection Number of

Sequence Surgeries Sequence Surgeries Sequence Surgeries

1 80 8 125 15 94

2 120 9 95 16 108

3 90 10 150 17 132

4 110 11 122 18 143

5 80 12 86 19 125

6 130 13 94 20 96

7 145 14 112

and the control limits are found from eqs. (8-71) and (8-72) by using the specified value p0.

When such a target value is not specified, it is usually estimated from sample values of the

number of cases or time between successive occurrences of the nonconforming item, for

example, infection. Here, an estimate of p is obtained, based on X, the average time or cases

between successive infections, say, and is given by

^
1

p � �8-74� 
1 � X

^

^

p is used. A

control chart for the time or cases between successive occurrence of a nonconforming

item is often referred to as a g-chart. A point above the upper control limit may signal an

improvement in the process.

Example 8-14 In a health care facility, a count of the number of surgeries between

gastrointestinal infections is shown in Table 8-17 for 20 observations. Construct an

appropriate control chart and comment on the process. Use a false-alarm rate of 0.005.

Solution From Table 8-17, the average number of surgeries between the occurrence of

gastrointestinal infections is

2237
X � � 111:85 � centerline

20

An estimate of the probability of a gastrointestinal infection is obtained as

1
p � 

Control limits may be found using eqs. (8-71) and (8-72), where the estimate

� 0:00886
1 � 111:85

The control limits are given by

ln�0:0025� 
UCL � � 1 � 673:236

ln�0:99114� 

ln�0:9975� 
LCL � � 1 � 0:281

ln�0:99114� 
If a plot is constructed of the number of surgeries between gastrointestinal infections,

along with the centerline and control limits, no points are found to be outside the control
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limits and no identifiable patterns are observed. The process is deemed to be in a stable

condition with an expected probability of occurrence of a gastrointestinal infection as

0.886%.

8-10 OPERATING CHARACTERISTIC CURVES FOR ATTRIBUTE

CONTROL CHARTS

An operating characteristic (OC) curve plots the probability of incorrectly concluding

that a process is in control as a function of a process parameter. In other words, it is a

graph of the probability of a type II error (denoted by β) versus the value of a process

parameter.

The choice of process parameter depends on the type of attribute chart under

consideration. For a p-chart, the parameter of interest is usually the true process

proportion nonconforming (p). An OC curve represents a measure of goodness of a

control chart. It can be used to gauge the ability of a chart to detect changes in the process

parameter values (Wadsworth et al. 2001). The probability of a change in a process

parameter not being detected is related to the probability of a plotted point falling within

the control limits. An OC curve is a measure of the sensitivity of a control chart in

detecting small changes in process parameters.

The location of the control limits influences the probability of a type I error α, which is

the probability of incorrectly concluding that a process is out of control when it is really in

control. A type I error is thus a false alarm. For a process in control, a measure of

goodness of the control chart is a large value of the average run length as discussed in

Chapter 6. In this situation, ARL= 1/α. So choosing a small value of α and widening the

control limits will increase the ARL. For example, if α is 0.05, the ARL is 20. If such a

small value of ARL is not acceptable and we reduce α to 0.005 by making the control

limits wider, the ARL increases to 200. This implies that with these wider control limits,

on average, 1 out of every 200 samples will plot outside the control limits and indicate an

out-of-control condition.

For a p-chart, if the process proportion nonconforming is somevalue p, the probability of a

type II error is

β � P�p̂ < UCLp

X <
j p� � P�
j

p̂ � LCLp

p� � P�X �
j p� �8-75�� P� nUCL nLCL j p� 

where n is the sample size, p̂ is the sample proportion nonconforming, and X represents

the number of nonconforming items. Recall that X is a binomial random variable

with parameters n and p. The probability values needed for eq. (8-75) are found from

the binomial tables inAppendixA-1. SinceX has to be an integer and neither nUCLnor nLCL

are necessarily integers, an adjustment must be made. Let r1 and r2 be defined as follows:

r1 � dnUCLe, r2 � bnLCLc �8-76� 

where dnUCLedenotes the largest integer less thanor equal tonUCLand bnLCLcdenotes the
smallest integer greater than or equal to nLCL. The probability of a type II error may then be

expressed as

β � P�X � r1� � P�X � r2� �8-77� 
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Example 8-15 Refer to Example 8-1, which deals with the number of nonconforming

containers produced by a plastic-injection molding process. The revised control limits for

the p-chart are UCLp= 0.173 and LCLp= 0, with the revised centerline at 0.067. The

sample size is 50. Construct an OC curve as a function of the process average proportion

nonconforming.

Solution The calculations correspond to a true process proportion nonconforming

of 0.10. We assume that a type II error is committed when an observation falls strictly

within the control limits. The probability of a type II error found using a binomial dis

tribution is

β � P�X < �50��0:173� j p � 0:10� � P�X � 50�0� j p � 0:10� 
� P�X < 8:65 j p � 0:10� � P�X � 0 j p � 0:10� 
� P�X � 8 j p � 0:10� � P�X � 0 j p � 0:10� 

8
i� 50 �0:10� �0:90�50�i � 0:937

i
i�1

If a Poisson approximation to the binomial is usedwhenn is large and p is small (such that np

is less than or equal to 5), we have np= (50)(0.10)= 5. Next, using the Poisson cumulative

probability tables in Appendix A-2, we get

β � P�X � 8 j np � 5� � P�X � 0 j np � 5� 
� 0:932 � 0:007 � 0:925

We can repeat this approach for other values of p to obtain P (type II error) for each case.

Table 8-18 shows the probability of a type II error for several values of p.

A plot of β versus p gives us an OC curve for the p-chart in Example 8-1. This gives an

indication of the effectiveness of the p-chart in detecting changes in the process proportion

nonconforming. For instance, if the proportion nonconforming changes from the current

value of 0.067 to 0.08, there is only a 3.9% probability of detecting this change by the first

sample taken after the change. This p-chart is thus not very sensitive to small changes in p. On

the other hand, if the value of p changes to 0.15, the chart has a 33.9% chance of detecting this

change by the first sample. As the value of p deviates further from its current state, the

probability of detection improves. If the value of p changes to 0.28, there is a 93.8% chance of

detecting this by the first sample after the change takes place.

TABLE 8-18 Data for Constructing an OC Curve

Process Proportion

Nonconforming, p P(X� 8 p) P(X� 0 p) P (type II error), β

0.08 0.979 0.018 0.961

0.09 0.960 0.011 0.949

0.10 0.932 0.007 0.925

0.15 0.662 0.001 0.661

0.20 0.333 0.000 0.333

0.28 0.062 0.000 0.062

0.40 0.002 0.000 0.002
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This example demonstrates the construction of one segment of the OC curve, the region

where p increases. The same procedure can be used to calculate the OC curve for the region

where the value of p decreases.

Operating characteristic curves for the other attribute charts are constructed similarly.

Let’s consider a chart for the number of nonconformities. If the process average number of

nonconformities is c, the probability of a type II error is

β � P�X < UCLc j c� � P�X � LCLc j c� �8-78� 

whereX represents the number of nonconformities for aprocess averageof c. Incidentally,X is

distributed according to a Poisson random variable with mean c. Since the value ofXmust be

an integer and UCLc and LCLc need not be integers, we have

β � P�X � dUCLe j c� � P�X � bLCLcj c� �8-79� 

where dUCLe represents the largest integer less than or equal to the UCL and bLCLc 
represents the smallest integer greater than or equal to the LCL.

Example8-16 Refer toExample 8-7,whichdealswith the number of occurrences of foreign

matter in fabric samples. The revised centerline of the c-chart is 7.208, and the revised control

limits are UCLc= 15.262, LCLc= 0. Construct an OC curve for this c-chart.

Solution We assume that a type II error is committed when an observation falls strictly

within the control limits. Table 8-19 gives the probabilities for various values of c. Using

eq. (8-79), we get

β � P�X < 15:262 j c� � P�X � 0 j c� 
� P�X � 15 j c� � P�X � 0 j c� 

Using Appendix A-2, we find the probabilities shown in Table 8-19. Figure 8-12 shows the

OC curve for this c-chart. The same line of reasoning usedwithOC curves for p-charts can be

used to make inferences from the OC curve in Figure 8-12.

TABLE 8-19 Data for the OC Curve for a c-Chart for the Foreign Matter Example

c P(X� 15 c) P(X� 0 c) P (type II error), β

0.5 1.000 0.607 0.393

1 1.000 0.368 0.632

3 1.000 0.050 0.950

5 1.000 0.007 0.993

7 0.998 0.001 0.997

9 0.978 0.000 0.978

10 0.951 0.000 0.951

12 0.844 0.000 0.844

14 0.669 0.000 0.669

18 0.287 0.000 0.237

20 0.157 0.000 0.157
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FIGURE 8-12 Operating characteristic curve for a c-chart for the foreign matter example.

SUMMARY

This chapter has introduced a variety of control charts for attributes. Although attribute charts

do not provide as much information as variable charts for the same sample size, they have

certain advantages. They are a good tool for summarizing information and for providing data

at the aggregate level. Attribute charts are useful when starting a quality control program.

They provide guidance as to where variable charts can eventually be used.

Three main categories of attribute charts have been discussed in this chapter. The first

deals with products or services that are nonconforming. The p-chart for the proportion

nonconforming and the np-chart for the number nonconforming are in this category. The

second category involves the number of nonconformities, or defects, and includes the

c-chart for the number of nonconformities and the u-chart for the number of nonconfor

mities per unit. For highly conforming processes, a p-chart or c-chart may not be

appropriate since the majority of the samples will have no nonconforming items or no

nonconformities. In this context, a chart for the number of items until a nonconforming item

is found is introduced. The third category involves aweighting scheme for classifications of

nonconformities based on their severity. TheU-chart for demerits per unit was discussed in

this section.

The concept of risk adjustment, especially in the context of applications in health care, is

very appropriate and is dealt with in several attribute charts. Since patients vary in their

severity of illness, adequate adjustments to the p-, c-, and u-charts are demonstrated. Further,

for health care processes where defects occur few and far between, the application of the

g-chart is presented.

When making inferences from any control chart, there is always the risk of incorrectly

declaring aprocess tobeout of control (a type I error) or incorrectly declaring aprocess tobe in

control (a type II error). For a process in control, ameasure of goodness of a control chart is the

probability of a type I error or, implicitly, the average run length,which is the reciprocal of the

probability of a type I error. Another measure of goodness of a control chart’s performance is
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its operating characteristic curve,which shows the probability of a type II error as a function of

the value of a process parameter such as the process proportion nonconforming or the process

average number of nonconformities.

KEY TERMS

attribute defect

binomial distribution major

control chart minor

attributes serious

c-chart when 0 defects are not observable very serious

demerits per unit (U-chart) defective

highly conforming processes demerits

g-chart exponential distribution

number of nonconformities (c-chart) geometric distribution

number of nonconformities nonconformance classification

per unit (u-chart) nonconforming item

risk-adjusted u-chart nonconformity

number of nonconforming items operating characteristic curve

(np-chart) Poisson distribution

proportion nonconforming (p-chart) probability limits

risk-adjusted p-chart standard or target

standardized p-chart weights for defects

variables

EXERCISES

Discussion Questions

8-1 Distinguish between a nonconformity and a nonconforming item. Give examples of

each in the following contexts:

(a) Financial institution

(b) Hospital

(c) Microelectronics manufacturing

(d) Law firm

(e) Nonprofit organization

8-2 What are the advantages and disadvantages of control charts for attributes over those

for variables?

8-3 Discuss the significance of an appropriate sample size for a proportion-nonconform

ing chart.

8-4 The CEO of a company has been charged with reducing the proportion nonconform

ing of the product output. Discuss which control charts should be used andwhere they

should be placed.

8-5 How does changing the sample size affect the centerline and the control limits of a

p-chart?
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8-6 What are the advantages and disadvantages of the standardized p-chart as compared to

the regular proportion-nonconforming chart?

8-7 Discuss the assumptions that must be satisfied to justify using a p-chart. How are they

different from the assumptions required for a c-chart?

8-8 Is it possible for a process to be in control and still not meet some desirable standards

for the proportion nonconforming? Howwould one detect such a condition, and what

remedial actions would one take?

8-9 Discuss the role of the customer in influencing the proportion-nonconforming chart.

How would the customer be integrated into a total quality systems approach?

8-10 Discuss the impact of the control limits on the average run length and the operating

characteristic curve.

8-11 Explain the conditions under which a u-chart would be used instead of a c-chart.

8-12 Explain why a p- or c-chart is not appropriate for highly conforming processes.

8-13 Distinguish between 3σ limits and probability limits. When would you consider

constructing probability limits?

8-14 Meeting customer due dates is an important goal. What attribute or variables control

charts would you select to monitor? Discuss the underlying assumptions in each case.

8-15 Explain the setting under which a U-chart would be used. How does the U-chart

incorporate the user’s perception of the relative degree of severity of the different

categories of defects?

8-16 Which type of control chart (p, np, c, u,U, or charts for highly conforming processes)

is most appropriate to monitor the following situations?

(a) Number of potholes in highways

(b) Proportion of customers who are satisfied with the operation of the local housing

authority

(c) Satisfaction of customers at a restaurant where customers consider the quality of

food and attitude of the server to be more important than the décor

(d) Number of errors in account transactions at a bankwhere the number of accounts

varies from month to month

(e) Number of automobile accident claims filed per month at an insurance dealer,

assuming a stable number of insured persons

(f) Responsiveness to customer needs of a local library where customers value the

longer hours over short lines to check out books

(g) Needlestick in patients in a hospital

(h) Loan defaults in a financial institution in a year

(i) Number of surgical errors in a health care facility per month

(j) Number of thefts in a city over a period of time

(k) Proportion of people that favor the construction of condominiums in a certain

neighborhood

(l) Number of weld defects in the construction of aircraft

(m) Number of seeds that germinate from a large pack of seeds sold by a nurserywhen

the number of seeds in a packet may vary
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(n) Performance of the braking mechanism of a certain model of automobile (the car

is expected to stop within a certain distance)

(o) Number offiremen to have on duty to provide an acceptable level of service (each

fire usually requires four firemen; the department has data on the number of calls

they receive during the specified period of time)

(p) Performance of data-entry operators (if one ormore input errors aremade, thefile

is rendered useless and a revision is necessary)

(q) Control of the number of typographical errors per page at a document preparation

center (data are chosen randomly and obtained daily on the number of errors in 30

pages)

(r) Control of the wiring and transistor defects in an electronic component (wiring

defects are considered more serious)

(s) Number of traffic accidents in a city per month

(t) Proportion of successful patent applications by a drug manufacturer

(u) Time between surgical errors in a health care facility

(v) Number of in-patients who develop catheterization infections

(w) Proportion of orders not shipped on time

Problems

8-17 Every employee in a check-processing department goes through a four-month training

period, after which the employee is responsible for their operation. The work of one

employeewho has been on the job for eightmonths is being studied. Table 8-20 shows

the number of errors and the number of items sampled over a period of two months.

The first 16 samples were each chosen from 400 items, and the remaining 9 samples

were each chosen from 300 items. Determine whether the employee’s performance

can be judged stable. Comment on the capability of the employee.

8-18 The number of customers who are not satisfied with the service provided in a retail

store is found for 20 samples of size 100 and is shown in Table 8-21. Construct a

control chart for the proportion of dissatisfied customers. Revise the control limits,

assuming special causes for points outside the control limits.

TABLE 8-20

Items Items

Sample Errors Sampled Sample Errors Sampled

1 12 400 14 18 400

2 9 400 15 8 400

3 13 400 16 6 400

4 7 400 17 4 300

5 6 400 18 6 300

6 10 400 19 5 300

7 14 400 20 8 300

8 7 400 21 10 300

9 5 400 22 7 300

10 6 400 23 4 300

11 4 400 24 5 300

12 9 400 25 3 300

13 11 400
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TABLE 8-21

Number of Number of

Sample Dissatisfied Customers Sample Dissatisfied Customers

1 2 11 5

2 5 12 4

3 4 13 2

4 3 14 5

5 4 15 3

6 2 16 12

7 3 17 3

8 2 18 2

9 4 19 5

10 11 20 2

8-19 Refer to Exercise 8-18. Management believes that the dissatisfaction rate is 3%, so

establish control limits based on this value. Comment on the ability of the store to

meet this standard. If management were to set the standard at 2%, can the store meet

this goal? What actions would you recommend?

8-20 Health care facilities must conform to certain standards in submitting bills to

Medicare/Medicaid for processing. The number of bills with errors and the number

sampled are shown in Table 8-22. Construct an appropriate control chart and

comment on the performance of the billing department. Revise the control limits, if

necessary, assuming special causes for out-of-control points. Comment on the

capability of the department.

8-21 Observations are taken from the output of a company making semiconductors.

Table 8-23 shows the sample size and the number of nonconforming semiconductors

for each sample. Construct a p-chart by setting up the exact control limits for each

sample. Are any samples out of control? If so, assuming special causes, revise the

centerline and control limits.

TABLE 8-22

Bills with

Observation Errors

1 8

2 6

3 4

4 9

5 7

6 5

7 5

8 7

9 4

10 15

11 6

12 7

13 4

Number

Sampled

400

400

400

400

400

400

300

300

300

300

300

300

300

Bills with Number

Observation Errors Sampled

14

15

16

17

18

19

20

21

22

23

24

25

3 300

5 300

8 300

11 500

13 500

8 500

7 500

8 500

4 500

3 500

7 500

6 500
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TABLE 8-23

Items Nonconforming Items Nonconforming

Observation Inspected Items Observation Inspected Items

1 80 3 14 90 4

2 120 6 15 160 5

3 60 4 16 230 3

4 150 5 17 200 12

5 140 8 18 150 8

6 150 10 19 210 6

7 160 7 20 190 4

8 90 6 21 160 9

9 100 5 22 100 8

10 160 12 23 100 12

11 110 8 24 90 7

12 100 5 25 160 10

13 200 14

TABLE 8-24

Medication

Sample Errors (%)

1

2

3

4

5

6

7

8

9

10

11

12

13

2.6

1.9

2.8

2.9

2.4

1.8

2.3

2.1

1.4

1.7

2.2

2.0

1.2

Medication

Sample Errors (%)

14 2.0

15 4.2

16 2.2

17 1.8

18 2.4

19 2.3

20 1.6

21 1.9

22 2.0

23 2.2

24 2.1

25 2.3

8-22 Refer to Exercise 8-21 and the data shown in Table 8-23. Construct a standardized

p-chart and discuss your conclusions.

8-23 The quality of service in a hospital is tracked by determining the proportion of

medication errors; this is done by dividing the number of medication errors by 1000

patient-days for each observation. The results of 25 such samples (in percentage of

medication errors) are shown in Table 8-24. Construct an appropriate control chart

and comment on the quality level. Is a goal of error-free performance reasonable to

expect from this system?

8-24 A health care facility is interested in monitoring the primary C-section rate. Monthly

data on the number of primaryC-sections collected over the last two and a half years is

shown in Table 8-25.

(a) Is the process in control?
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TABLE 8-25

Month C-Sections Deliveries

1 54 350 16 70 449

2 50 384 17 62 366

3 63 415 18 65 405

4 69 422 19 52 386

5 55 395 20 55 392

6 63 412 21 61 408

7 67 407 22 66 442

8 67 415 23 53 426

9 51 377 24 47 385

10 62 404 25 79 413

11 64 377 26 60 388

12 62 382 27 69 411

13 62 425 28 61 378

14 55 410 29 70 392

15 68 426 30 65 420

Month C-Sections Deliveries

(b) There is pressure to make these data public. Can we conclude that the C-section

rates had shifted to a higher level in the last six months relative to the previous six

months?

(c) What is your prediction on the C-section rate if no changes are made in current

obstetrics practices?

(d) Based on benchmarking with comparable facilities in similar metropolitan areas,

is it feasible currently to achieve a C-section rate of 10%?

8-25 Refer to Exercise 8-18 and the data shown in Table 8-21. Construct a control chart for

the number of dissatisfied customers. Revise the chart, assuming special causes for

points outside the control limits.

8-26 The number of processing errors per 100 purchase orders is monitored by a company

with the objective of eliminating such errors totally. Table 8-26 shows samples that

TABLE 8-26

Sample Processing Errors Sample Processing Errors

1 6 14 3

2 4 15 6

3 2 16 1

4 3 17 5

5 4 18 2

6 7 19 6

7 5 20 4

8 7 21 2

9 11 22 3

10 4 23 2

11 2 24 1

12 5 25 2

13 4
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TABLE 8-27

Number of Number of

Sample Number Dietary Errors Sample Number Dietary Errors

1 9 14 8

2 6 15 8

3 4 16 7

4 7 17 6

5 5 18 4

6 6 19 12

7 16 20 7

8 8 21 6

9 7 22 8

10 9 23 6

11 3 24 8

12 6 25 5

13 10

were selected randomly from all purchase orders. The company is in the process of

testing the effects of a new purchase order form that it has designed. The last five

samples were made using the new form. Construct a control chart that the company

can use for monitoring the quality characteristic selected. What is the effect of the

newly designed purchase order form? Is the company capable of achieving the desired

goal?

8-27 The number of dietary errors is found from a random sample of 100 trays chosen

on a daily basis in a health care facility. The data for 25 such samples are shown in

Table 8-27.

(a) Construct an appropriate control chart and comment on the process.

(b) How many dietary errors do you predict if no changes are made in the process?

(c) Is the system capable of reducing dietary errors to 2, on average, per 100 trays, if

no changes are made in the process?

8-28 A building contractor subcontracts to a local merchant a job involving hanging

wallpaper. To have an idea of the quality level of the merchant’s work, the contractor

randomly selects 300m2 and counts the number of blemishes. The total number of

blemishes for 30 samples is 80. Construct the centerline and control limits for an

appropriate chart. Is it reasonable for the contractor to set a goal of an average of 0.5

blemish per 100m2?

8-29 The number of imperfections in bond paper produced by a paper mill is observed over

a period of several days. Table 8-28 shows the area inspected and the number of

imperfections for 25 samples. Construct a control chart for the number of imperfec

tions per square meter. Revise the limits, if necessary, assuming special causes for the

out-of-control points.

8-30 Refer to Exercise 8-29. If we want to control the number of imperfections per 100m2,

howwould this affect the control chart?What would the control limits be? In terms of

decisionmaking,would there be a difference between this problemandExercise 8-29,

depending on which chart is constructed? What conclusions can you draw from this?
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TABLE 8-28

Area

Sample Inspected (m2) Imperfections

1 150

2 100

3 200

4 150

5 250

6 100

7 150

8 200

9 300

10 250

11 100

12 200

13 250

TABLE 8-29

6

8

5

4

10

11

3

5

10

10

5

4

12

Area

Sample Inspected (m2) Imperfections

14 300 8

15 300 12

16 200 6

17 150 4

18 200 7

19 150 14

20 100 4

21 100 8

22 200 9

23 300 12

24 250 7

25 200 5

Number of Number of Number of Number of

Sample Orders Medication Sample Orders Medication

Number Filled Errors Number Filled Errors

1 1200 11 14 1200 16

2 1160 10 15 1150 14

3 1210 12 16 1100 23

4 1300 9 17 1160 14

5 1120 10 18 1300 16

6 1150 12 19 1100 10

7 1100 14 20 1180 12

8 1320 12 21 1220 14

9 1240 10 22 1240 13

10 1180 15 23 1120 16

11 1140 4 24 1150 13

12 1120 13 25 1180 12

13 1220 7

8-31 The director of a pharmacy department is interested in benchmarking the level of

operations in theunit.Thedirectorhasdefinedmedicationerrorsasbeinganyoneof the

following:wrongmedication;wrong dose; administered to thewrongpatient; adminis

teredat thewrongtime; incorrectlyrepeatingthemedication;oromittingthemedication.

Thenumberofordersfilledperdaybythepharmacyvaries.Table8-29showsthenumber

ofordersfilledandthenumberofmedicationerrorsfor25days.Constructanappropriate

control chart and comment on the stability of the process.

8-32 Nonconformities in automobiles fall into three categories: serious, major, and minor.

Twenty-five samples of five automobiles are chosen, and the total number of

nonconformities in each category is reported. Table 8-30 shows the results. Assuming

a weighting system of 50, 10, and 1 for serious, major, and minor nonconformities,

respectively, construct a demerits per unit control chart. Revise the control limits if

necessary, assuming special causes for points that are out of control.
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TABLE 8-30

Serious Major Minor

Sample Defects Defects Defects

1 0

2 0

3 1

4 1

5 0

6 0

7 0

8 1

9 0

10 2

11 1

12 0

13 0

TABLE 8-31

5

3

0

2

6

3

1

2

4

6

3

5

0

8

2

6

1

8

3

10

5

9

6

2

8

9

Serious Major Minor

Sample Defects Defects Defects

14

15

16

17

18

19

20

21

22

23

24

25

0 7 12

0 2 8

0 4 3

1 0 5

0 3 2

0 5 8

0 2 6

1 1 4

0 3 10

0 2 12

0 4 7

0 2 4

Orders Significant Orders Significant

Sample Filled Errors Sample Filled Errors

1 80 3 14 90 4

2 120 6 15 160 5

3 60 4 16 230 3

4 150 5 17 200 12

5 140 8 18 150 8

6 150 10 19 210 6

7 160 7 20 190 4

8 90 6 21 160 9

9 100 5 22 100 8

10 160 12 23 100 12

11 110 8 24 90 7

12 100 5 25 160 10

13 200 14

8-33 Refer to Exercise 8-32. If theweighting systemswere different (i.e., 10, 5, and 1), how

would the centerline and the control limits change for theU-chart?Discuss changes, if

any, in the inferences made about the process.

8-34 The Joint Commission on Accreditation of Healthcare Organizations (JCAHO)

requires an accounting of significant medication errors. Data collected over the last

25 months, shown in Table 8-31, indicate the number of orders filled and the number

of significant medication errors. Each order is classified either as having or as not

having significant medication errors.

(a) Construct an appropriate control chart and comment on the process.

(b) If the process is not in control, assuming special causes and appropriate remedial

actions, revise the centerline and control limits.

(c) What is your level of expectation from this process?
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(d) What would you do if the goal is to reduce the proportion of significant

medication errors to 1%. Is this currently achievable?

8-35 Refer to Exercise 8-18. Construct an OC curve for the p-chart. If the process

proportion of dissatisfied customers were to rise to 7%, what is the probability of

not detecting this shift on the first sample drawn after the change has taken place?

What is the probability of detecting the shift by the third sample?

8-36 Refer to Exercise 8-27. Construct an OC curve for the c-chart. If the process average

number of dietary errors per 100 trays increases to 10, what is the probability of

detecting this on the first sample drawn after the change?

8-37 Refer to Exercise 8-36. Set up 2σ control limits. What is the probability of detecting a

change in the process average number of dietary errors per 100 trays to 8 on the first

sample drawn after the change? Explain under what conditions you would prefer to

have these 2σ control limits over the traditional 3σ limits.

8-38 The number of heart surgery complications is rare. To monitor the effectiveness

of such surgeries, data are recorded on the number of such procedures until a

complication occurs. These complications occur independently with a constant

probability of occurrence and follow a geometric distribution. Table 8-32 shows

such data for a sequence of 25 complications. It is estimated from past data that the

complication rate is 0.1%. Construct an appropriate control chart and comment on the

process assuming a type I error rate of 0.005. What would the control limits be for a

type I error rate of 0.05?What factorswould influence your selection of the type I error

rate?

8-39 Consider Exercise 8-38. If you were interested in detecting an improvement in the

process using a one-sided limit, what should the minimum sample size be for an α of

0.005?What should it be for an α of 0.05?What conclusions can you draw from these

results?

8-40 Consider Exercise 8-38 under the assumption that the complication rate is 0.1%. If

you were to construct a p-chart using two-sided 3σ limits, what would the minimum

sample size be to detect an improvement in the process?

TABLE 8-32

Complication Number of Complication Number of Complication Number of

Sequence Procedures Sequence Procedures Sequence Procedures

1 654 10 1654 18 1794

2 981 11 892 19 1112

3 1508 12 750 20 652

4 436 13 1333 21 1050

5 1202 14 1404 22 1085

6 889 15 909 23 1422

7 1854 16 822 24 688

8 3068 17 1609 25 1095

9 704
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TABLE 8-33

Number Number of Items Number Number of Items

Sample Restrained Not Checked Sample Restrained Not Checked

1 100 4 14 40 3

2 50 3 15 80 2

3 80 8 16 80 4

4 60 4 17 120 6

5 120 14 18 100 8

6 100 8 19 120 10

7 80 4 20 80 5

8 100 5 21 60 8

9 60 2 22 100 4

10 80 12 23 100 5

11 100 7 24 80 4

12 120 5 25 120 5

13 60 15

8-41 Consider Exercise 8-38. Determine the sensitivity of the control limits

complication rate using values of 0.2% and 0.5%.

on the

8-42 Consider Exercise 8-38 under the assumption that the complication rate is 0.1% and a

type I error of 0.005. If you reduced the upper control limit to half of its previous value,

what type of process complication rates, on average, will this new limit be able to

detect improvements?

8-43 Consider Exercise 8-38. However, now assume that the interval between complica

tions follows an exponential distribution. Construct an appropriate control chart and

comment on the process assuming a type I error rate of 0.005.

8-44 The JCAHO has standards pertaining to patient restraint use. A checklist has been

developed that is to be used each time a restraint is used. The checklist contains five

items, all of which should be checked. Table 8-33 shows data collected for 25months

that indicate the number of patients restrained and the number of items that were not

checked prior to restraint use.

(a) Is the process stable?

(b) If not, assuming identifiable remedial actions with the special causes, revise the

centerline and control limits.

(c) What is your expectation from this process?

8-45 Mortality data for patients in the intensive care unit (ICU) in a health care facility,

collected over 8-hour intervals, are shown in Table 8-34. Since patients have varying

risks, the predicted mortality from a logistic regression model that uses the patient’s

APACHE score (severity of disease) is also shown. Construct a risk-adjusted chart for

the mortality proportion and comment on the ICU performance.

8-46 In a health care facility, it is known that nosocomial infections are rare. Table 8-35

shows the number of admissions between occurrences of nosocomial infections.

Construct an appropriate control chart and comment on the performance of the health

care team.



446 CONTROL CHARTS FOR ATTRIBUTES

TABLE 8-34 Mortality Data on ICU Patients

Summary
Subgroup Number

1 2 3 4 5

Number of deaths 2 1 2 2 1

Number of patients 8 6 8 7 8

Patient Predicted Mortality Based on Severity of Disease

6

1

8

1 0.5 0.6 0.3 0.4 0.7 0.6

2 0.8 0.5 0.7 0.6 0.3 0.4

3 0.4 0.8 0.5 0.5 0.6 0.8

4 0.6 0.4 0.5 0.8 0.5 0.6

5 0.8 0.6 0.5 0.4 0.7 0.7

6 0.3 0.8 0.6 0.6 0.4 0.6

7 0.5 0.8 0.3 0.5 0.8

8 0.4 0.8 0.4 0.7

TABLE 8-35 Number of Admissions Between Nosocomial Infections

Infection Number of Infection Number of Infection Number of

Sequence Admissions Sequence Admissions Sequence Admissions

1 120 8 95 15 145

2 100 9 115 16 160

3 150 10 135 17 170

4 140 11 120 18 185

5 90 12 100 19 190

6 100 13 90 20 200

7 110 14 140

8-47 Data from a city bank showing monthly loan applications for home mortgage and the

number rejected are given in Table 8-36. Construct an appropriate control chart and

comment on the loan approval process.

TABLE 8-36 Data on Loan Applications

Number of Number Number of Number

Month Applications Rejected Month Applications Rejected

1 52 3 11 76 5

2 45 4 12 68 5

3 68 5 13 70 4

4 74 4 14 58 4

5 50 3 15 62 5

6 66 5 16 65 4

7 75 4 17 72 3

8 60 12 18 78 3

9 55 3 19 70 4

10 48 4 20 67 4
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TABLE 8-37 Number of Error-Free Orders Between Mistakes

Error Orders Error Orders Error Orders

Sequence Filled Sequence Filled Sequence Filled

1 150 8 200 15 210

2 120 9 140 16 240

3 90 10 165 17 285

4 140 11 180 18 290

5 110 12 150 19 320

6 85 13 155 20 340

7 160 14 170

8-48 An organization that accepts orders via the Web, processes it, and has delivery

scheduled based on its inventory levels is known to be proficient in its service. Errors

in orders received could be due to wrong shipment of product, incorrect quantity, or

not meeting promised delivery date. Given the track record of the organization,

Table 8-37 shows the number of error-free ordersfilled between successive orders that

have at least one error. Construct an appropriate control chart and comment on the

performance of the organization. Use a level of significance of 0.05.

8-49 A major airline surveys passengers to monitor the satisfaction level of its customers.

Even though the airline uses afive-pointLikert scale (5: outstanding service; 4: good; 3:

average; 2: below average; 1: poor), it wants tomonitor the proportion that consider the

service level as either outstanding or good. Table 8-38 shows the number of passengers

respondingtothesurveyandthenumberthatconsidertheserviceaseitheroutstandingor

good. Construct an appropriate control chart and comment on the service level of the

airline.

8-50 The marketing department of a large organization is interested in being responsive to

its customers’ needs. Accordingly, each week it monitors the number of complaints

TABLE 8-38 Passenger Satisfaction Survey in Airline

Number Checking Number Checking

Number “Outstanding” or Number “Outstanding” or

Week Responded “Good” Week Responded “Good”

1 80 65 14 135 105

2 110 80 15 125 90

3 250 210 16 150 118

4 150 130 17 100 82

5 90 70 18 110 75

6 100 85 19 85 64

7 140 108 20 140 114

8 220 202 21 165 122

9 200 184 22 185 148

10 180 140 23 130 105

11 70 55 24 125 114

12 95 70 25 120 105

13 115 82
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TABLE 8-39 Customer Complaints in an Organization

Sample

Number

Responded

Number of

Complaints Sample

1 75 8 14

2 120 12 15

3 110 6 16

4 135 15 17

5 150 12 18

6 175 28 19

7 80 11 20

8 70 14 21

9 130 20 22

10 105 10 23

11 118 26 24

12 130 18 25

13 125 16

Number

Responded

90

145

150

124

108

115

88

92

95

120

135

130

Number of

Complaints

10

18

20

16

12

15

12

14

15

18

6

5

received. It is possible for a customer to have more than one complaint. Table 8-39

shows the feedback from its customers. Construct an appropriate control chart and

comment on the level of customer service by the organization.
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9
PROCESS� CAPABILITY� ANALYSIS

9-1 Introduction and chapter objectives

9-2 Specification limits and control limits

9-3 Process capability analysis

9-4 Natural tolerance limits

9-5 Specifications and process capability

9-6 Process capability indices

9-7 Process capability analysis procedures

9-8 Capability analysis for nonnormal distributions

9-9 Setting tolerances on assemblies and components

9-10 Estimating statistical tolerance limits of a process

Summary

Symbols

μ Process mean

σ Process standard deviation

σX Standard deviation of sample mean

X Sample mean

R Sample range

s Sample standard deviation

m Target value of characteristic

k Scaled distance of process mean from target

value

Z Standard normal value

Xi Individual ( i�th) observation

n Sample size

Fi Probability plotting position of ith ranked

observation

R

s

g

X

σY

μY
γ

1 � α

Average of sample ranges

Average of sample standard

deviations

Number of samples

Average of sample averages

Standard deviation of

characteristic Y

Mean of characteristic Y

Probability level associated with a

statistical tolerance interval

Proportion of the population

distribution contained within the

statistical tolerance interval

9-1� INTRO�DUC�TION� AND� CHAPT�ER� OBJE�CTIVE�S

In Chapters 6, 7, and 8 we discussed various methods of monitoring a process using control

charts. In this chapter we analyze whether a process or product or service meets the

specifications required by the customer. We defi ne measures that indicate the ability of the

process to meet specifications; these are, in some sense, measures of process performance.
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This chapter also deals with determining tolerances on assemblies when those of individual

components are known, and vice versa. Note that process capability analysis should be

conducted only when a process is in a state of statistical control.

The objectives of this chapter are to present some of the commonly used process capability

measures, demonstrate procedures for their computation, interpret them, and discuss any

associated assumptions. While many of the measures are interpreted in the context of

normality of the distribution of the characteristic, methods are presented for dealing with

nonnormality. For discrete variables satisfying the binomial or Poisson distribution, capa

bility measures are also discussed. Since observed values of the quality characteristic

are influenced by the measuring instrument, measures of precision of the instrument as well

as the impact of various operators who use the instrument are also of interest, and appropriate

measures are presented.

9-2 SPECIFICATION LIMITS AND CONTROL LIMITS

The terms specifications limits and tolerance limits are often used interchangeably and

are defined as the acceptable bounds on quality characteristics. Such bounds could be based

on meeting customer needs or functional requirements of the product/service.

Tolerance limits are generally preferred in evaluating manufacturing or service require

ments, whereas specification limits aremore appropriate for categorizingmaterials, products,

or services in terms of their stated requirements.

For example, one specification for a building crane is a hoist load of 5000± 300 kg. To

satisfy this criterion, the diameter of the steel cable has to be 4± 0.2 cm. This manufacturing

requirement for the cable diameter can also be viewed as a tolerance. In general, tolerances are

a subset of specifications. Usually, tolerances pertain to physical requirements (such as

length, diameter, thickness, etc.), whereas specifications include all requirements.

Tolerance limits can be two-sided (with upper and lower limits) or one-sided with either

upperor lower limits.A lower tolerance limitdefines the lower conformanceboundary for an

individual unit of manufacturing or service operation; an upper tolerance limit defines the

upper conformance boundary. For example, a hub diameter requirement of 4± 0.1mm is a

two-sided tolerance limit. A cable tensile strength requirement of (500 – 20) kg is a one-sided

limit for which the lower tolerance limit is 480 kg.

Specification limits are determined by the needs of the customer.What the customerwants

in a product or service is analyzed throughmarket research and incorporated through product

or service design. These limits are placed on a product characteristic by designers and

engineers to ensure adequate functioning of the product.

As discussed in previous chapters, control limits identify the variation that exists between

samples, or subgroups, of measurements. They do not apply to individual units except in the

case of control charts for individualmeasurements. Control limits reflect the variability of the

process and have no relationship to specification limits, which are chosen to meet customer

needs for the product or service.

To clarify the difference between specification limits and control limits, let’s consider a

situation in which the process is in control but some of the product does not meet specifications.

We will assume that the distribution of the quality characteristic X is normal. We have control

charts for the mean X� and range R, from which we have found the process to be in control.

Figure 9-1a shows the X�-chart control limits, which are three standard deviations of the sample

mean (3σX� ) from the process average. From the central limit theoremwe know that the standard
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FIGURE 9-1 Difference between control limits and specification limits.

deviation of the individual items, σ, is related to the standard deviation of the sample mean byp p
σX� = σ/ n, where n is the sample size; thus, σ= n σX�.

Figure 9-1b shows the distribution of X (assuming a normal distribution) of individual

items. This figure indicates the expected degree of variation of individual items if the process

is in control. The process spread (i.e., the distance expected between the maximum and

minimum values of the characteristic, assuming normality) is 6σ. The normality assumption

implies that about 99.74% of the individual items will lie in a range of ±3σ about the mean,

a value that we assume constitutes practically all items produced by the process. If

we superimpose the upper and lower specification limits (USL and LSL) on Figure 9-1b,

we see that some items lie outside the specifications. The control limits are influenced by the

process spread but are unrelated to the specification limits.

Because of the conceptual difference between control limits and specification limits, the

latter should not be superimposed on control charts for the average X� . Remember that the

control limits on an X�-chart are a measure of variability of the sample means. Specification

limits represent the acceptable bounds of variability for individual items.

9-3 PROCESS CAPABILITY ANALYSIS

The determination of process capability begins only after the process has been brought to a state

of statistical control. A process is said to be in statistical control when the only sources of

variation in the system are common causes. Details as to how this state is achieved are discussed

inChapters 6, 7, and8. Identifying special causes is thefirst step toward achieving this objective.

Taking corrective action to eliminate special causes gets us to a process in statistical control.



452 PROCESS CAPABILITY ANALYSIS

FIGURE 9-2 Natural tolerance limits and process spread.

Process Capability

Process capability represents the performance of a process in a state of statistical control. It is

determined by the total variability that exists because of all common causes present in the

system. As we’ve discussed previously, common causes are inherent to a system—they

always exist. Thus, process capability can also be viewed as the variation in the product

quality characteristic that remains after all special causes have been removed. The product’s

performance is then predictable because the special causes are gone. This allows us to

determine the ability of the product to meet customer expectations.

A common measure of process capability is given by 6σ, which is also called the process

spread (seeFigure 9-2).Weassume that thedistanceof 6σ encompasses virtually all values of the

output quality characteristic. If a normal distribution for the output quality characteristic can be

assumed, 99.74%of the distributionwill liewithin the bounds of±3σ on either side of themean.

Process Capability Analysis Process capability analysis estimates process capability. It

involves estimating the process mean and standard deviation of the quality characteristic.

Additionally, the form of the relative frequency distribution of the characteristic of interest is

estimated. If specification limits are known, aprocess capability analysiswill also estimate the

proportion of nonconforming product.

Frequently, a process capability study involves observing a quality characteristic of the

product. For example, the mean and standard deviation of the bore size of a component

are found to be 12 and 0.1 cm, respectively. Since this information usually pertains to the

product rather than the process, this analysis should, strictly speaking, be called a product

analysis study. A true process capability study in this context would involve collecting and

analyzing data that relate to process parameters. These parameters could be the depth of cut,

the type of tool used, the tool material, the type of jigs or fixtures, or the rate of feed of the tool.

The objective is to find the relationship between the process parameters (or process settings)

and the product characteristics. Any problems with product characteristics can then be related

to process parameters, and remedial actions can be identified on a timely basis.

Benefits of Process Capability Analysis An ongoing quality improvement program

requires continual estimation of the process parameters. Monitoring these parameters will

ensure the best performance that the process is capable of achieving. These may include
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centering the process average on the target value and determining whether the process spread

can be reduced by buying new equipment or procuring higher-quality raw materials.

Analyzing the flexibility of the specifications by identifying customer needs is another

possibility. Here are some benefits of process capability analysis:

1. Uniformity of output. By conducting process capability studies and making neces

sary adjustments in the process parameters, variability is closely controlled. Any

undesirable shape in the distribution of the quality characteristic is evaluated, and

feasible changes in the process parameters are made early on.

2. Maintained or improved quality. This is consistent with the goal of ongoing quality

improvement. Process capability analysis indicates whether new equipment is neces

sary. As these changes occur, the new capability can be determined.

3. Product and process design facilitated. Information obtained fromprocess capability

analysis provides vital feedback for design. This is essential because product designers

must be aware of inherent variation in the process. Designing product tolerances that the

process is not capable of achieving makes for longer lead times in the design.

4. Assistance in vendor selection and control. Companies can require their vendors to

report process capability information to guide them in choosing vendors. Moreover,

for vendors already selected, regular reporting of process capability information is an

effective way to control and improve quality at the vendor’s premises.

5. Reduction in total cost. This occurs because internal and external failure costs are

lowered. By constantlymonitoring process parameters, fewer nonconforming items are

produced.

9-4 NATURAL TOLERANCE LIMITS

Natural tolerance limits, also known as process capability limits, are established or

influenced by the process itself. They represent the inherent variation in the quality

characteristic of the individual items produced by a process in control. They are estimated

based on the population of values or, more typically, from large representative samples.

Assuming a normal distribution of the quality characteristicX, the upper natural tolerance

limit (UNTL), or the upper process capability limit (UPCL), is three standard deviations

above the process mean; the lower natural tolerance limit (LNTL), or the lower process

capability limit (LPCL), is three standard deviations below the process mean. Thus, we have

UNTL � μ � 3σ; LNTL � μ � 3σ �9-1� 
where μ represents the processmean andσ represents the process standard deviation,which is

the standard deviation of the individual items.

Figure 9-2 shows the upper and lower natural tolerance limits, or process capability limits.

The assumption of a normal distribution of characteristic X implies that nearly all (approxi

mately 99.74%) the items produced will have a value within the bounds of the natural

tolerance limits. Thus, for all practical purposes, these limits indicate the degree of inherent

variation that exists in the process.

If the distribution were nonnormal, we would first determine whether it conforms to any

well-known distribution. In Chapter 4 we discuss some common distributions. Then, using

the type of distribution that models the characteristic, the natural tolerance limits would be

found such that nearly the entire distribution is contained within those limits.
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The population values for the process mean μ and standard deviation σ needed in

eq. (9-1) are usually estimated from samples. Hence, the sample mean X� and the sample

standard deviation s are often used to obtain the natural tolerance limits. Estimates of the

process mean and standard deviation can also be obtained from control chart information.

Example 9-1 The diameter of a part has to fit an assembly. The specifications for the

diameter are 5± 0.015 cm.The samples taken from the process in control yield a samplemean

X of4.99 cmanda sample standarddeviation sof0.004 cm.Find thenatural tolerance limits of

the process. Would you consider adjusting the process center?

Solution The upper and lower natural tolerance limits based on the sample estimates are

found using eq. (9-1):

UNTL � 4:99 � �3��0:004� � 5:002
LNTL � 4:99 � �3��0:004� � 4:978

Assuming a normal distribution of diameters, the process spread is (6)(0.004)= 0.024 cm,

which is the difference between the natural tolerance limits. For the current process,wewould

expect the diameters to lie between 5.002 and 4.978 cm.

The difference between the specification limits is 0.03 cm. If the process were left in its

original state, some proportion of the parts would fall below the lower specification limit of

4.985 cm. To calculate this proportion, the standardized normal value at the LSLmust first be

found as follows:

LSL � X� 4:985 � 4:99
z � � � � 1:25

s 0:004
ThisZ-value is found inAppendixA-3, and the proportion below the LSL is 0.1056. Thus,

it would be desirable to adjust the process center to the target value of 5 cm. If this is done,

since the process spread is 0.024 cm and the difference between the specification limits is

0.03 cm, virtually all parts would fall between the specification limits, and we would have a

capable process.

Statistical Tolerance Limits

Statistical tolerance limits are the limits of an interval that (with agiven level of confidenceγ)

contains at least a specified proportion (1� α) of the population. These limits are found from

sampling information. For example, if we conclude, using a level of confidence of 0.98 and

samples of size 10, that 95% of the part lengths fall between 30 and 35mm, the statistical

tolerance limits are 30 and 35mm. Sample estimates are used to infer population parameters;

the limits are influenced by the sample size. As the sample size becomes large, the statistical

tolerance limits approach the values found using the population parameters. Estimation of

statistical tolerance limits is discussed in Section 9-10. Estimation of these limits is based on a

normal distribution and on nonparametric methods.

9-5 SPECIFICATIONS AND PROCESS CAPABILITY

Technically, there might not be any mathematical relationship between the process

capability limits (or the natural tolerance limits) and the specification limits. The former

are determined by the condition of the process and its inherent variability; the latter are

influenced by the needs of the customer. There is, however, a desired relationship between

these two sets of limits. The specification limits are preferably outside the natural tolerance
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FIGURE 9-3 Case I: Process spread is less than specification spread.

limits, in which case most of the units produced will be acceptable. There are three cases

that arise regarding this relationship. In our discussion of these cases, we assume a normal

distribution of the quality characteristic of interest.

Case I: Process Spread Less Than Specification Spread If the process spread is less than

the difference between the specification limits, the process is quite capable. This case,

shown in Figure 9-3a, represents the preferred situation. If the processmeanμ is at the target

value (assumed to be midway between the specification limits), all items produced are well

within specifications. In fact, there is someflexibility for the process to go out of control and

still produce items within specifications. For instance, the process mean could shift to μ1
(Figure 9-3b) or the process standard deviation could increase to σ1 (Figure 9-3c), yet the

items producedwould still meet specifications. Of course, if a control chart is kept, any time

that an out-of-control signal is observed, action is taken to bring the process back to control.

Case II: Process Spread Equal to Specification Spread If the process spread is the same as

the difference between the specification limits, we have an acceptable or adequate situation in
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FIGURE 9-4 Case II: Process spread is equal to specification spread.

which there is no room for error. If the distribution of the characteristic can be assumed to

be normal and the process is in control, virtually all (99.74%) of the items produced will be

within specifications. Figure 9-4a shows this situation. However, if such a process goes out

of control (say, the process mean shifts from μ to μ1), a proportion of the product will

immediately be nonconforming (below the LSL), as shown in Figure 9-4b. An increase in

the standard deviation will also result in a proportion of the product being nonconforming.

Case III: Process Spread Greater Than Specification Spread An undesirable situation

exists when the process spread is greater than the difference between the specification limits.

The inherent variability in the process exceeds the specification spread even though the

process is in control. Figure 9-5 depicts this situation, for which some proportion of the items

produced will not meet specifications. If there is a shift in the mean or an increase in the

standard deviation, an increasing proportion of the product will not meet specifications. Such

a process is not capable. There are several corrective approaches.

1. The possibility of increasing the specification limits can be explored. Careful con

sideration must be given to meeting the needs of the customer, however, for these

needs determine the specification limits.

2. Measures to reduce the process spread can be investigated. Investing in new equip

ment, better raw material, or experienced operators can achieve this reduction. The

FIGURE 9-5 Case III: Process spread is greater than specification spread.
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financial aspects of the investment decision are usually dealt with prior to implement

ing these measures.

3. If it is not economically feasible to reduce the process variability through large capital

investments, an alternative may be to shift the process average to achieve a desirable

balance in the proportion of scrap and rework. The cost of scrap per unit is usuallymore

than that of rework; producing less scrap and more rework is thus a feasible short-term

plan. Of course, in the long run a company must strive for no scrap or rework.

9-6 PROCESS CAPABILITY INDICES

A process should first be analyzed to verify that it is in control before its capability is

estimated. In this sectionwe assume that the process output (i.e., the distribution of the quality

characteristic under consideration) is normal. This enables us to estimate the proportion of

nonconforming product. The assumption of normality can be validated by empirical plots of

histograms, normal probability plots, or statistical tests for goodness offit such as chi-squared

tests or the Kolmogorov–Smirnov test (Cochran 1952; Duncan 1986; Mage 1982; Massey

1951; Nelson 1979; Shapiro 1980).

The process capability index is an easily understood aggregate measure of the goodness

of the process performance. The ability to meet specifications is the criterion used for

measuring the attractiveness of the process. The capability indices we describe here are

nondimensional, which makes them even more versatile and appealing because they do not

depend on the specific process parameter units (Kane 1986). The indices incorporate the

location and/or the variation in the process.

Cp Index

A common measure for describing the potential of a process to meet specifications is the Cp

index. It relates the process spread (the difference between the natural tolerance limits) to

specification spread, assuming two-sided specification limits. It is given by

USL � LSL
Cp � �9-2� 

6σ

where USL and LSL represent the upper and lower specification limits, respectively, and σ

represents the process standard deviation.

When σ is unknown, it is replaced by its estimate, σ̂. The sample standard deviation s is one

estimate of σ. Another estimate of σ can be obtained from the control chart information for the

range chart when the process is in control. It is given by σ̂ � R�=d2, where R� is the mean of the

ranges and d2 is a factor for constructing the control chart (seeAppendixA-7). If a chart for the

standard deviation s is constructed, σ̂ canbe obtained from σ̂ � �s=c4, where�s is themean of the

sample standard deviations and c4 is a factor for constructing control charts (Appendix A-7).

A process that is centered between the specification limits will produce a minimum

proportion of items that fall outside those limits. Note that it is desirable to haveCp� 1.When

Cp= 1, the process spread equals the specification spread, and the process is said to be barely

capable. If the process is centered, only 0.26% of the parts will fall outside the specification

limits. Such a case was demonstrated in case II in Section 9-5 . Figure 9-4a shows that when

Cp= 1 the natural tolerance limits coincide with the specification limits. The Cp-value thus

represents the process potential.
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If the process is not centered, it is possible that even for a process with Cp> 1 some

proportion of the product will be nonconforming. However, when Cp> 1, as shown in

Figure 9-3, there is some flexibility; that is, the process can go out of control yet still produce

conforming items.

IfCp< 1, it implies that the inherent variability in the process, as measured by the process

spread 6σ, is greater than the specification spread. For this situation, a process canbe in control

and still not meet specifications, as described in case III and shown in Figure 9-5.

Equation 9-2 shows thatCp is the ratio of the allowable process spread to the actual process

spread. SinceCp does not take into account the location of the process, it is really ameasure of

process potential and not process performance. Other capability indices, such as CPU, CPL,

Cpk, Cpm, and Cpmk, measure process performance.

Upper and Lower Capability Indices

Suppose that only a single specification limit is given. Indices can be derived that measure

shifts in the process mean μ relative to the process spread. For a given upper specification

limit, the upper capability index (CPU, or Cp upper) is given by

USL � μ
CPU � �9-3� 

3σ

It is desirable to have CPU� 1. Note that the denominator of eq. (9-3) is half the pro

cess spread. Because nonconformance occurs only if the quality characteristic value

exceeds the USL, the farther the USL is from the process mean μ, the less the chance for

any nonconforming product.Assumingnormality, if CPU= 1, only 0.13%of the productwill

be above the USL and thus nonconforming.

Similarly, if only the lower specification limit is given, the lower capability index (CPL,

or Cp lower) is given by

μ � LSL
CPL � �9-4� 

3σ

Along the same lines, it is desirable to haveCPL� 1. For eqs. (9-3) and (9-4), if the process

parameters μ and σ are unknown, the sample mean X� and the sample standard deviation s,

respectively, are used as estimates.

The indices CPU and CPL are useful in evaluating the process performance relative to the

specification limits. They also aid in determining process parameter settings (such as the

processmeanμ) or process parameter requirements (such as the process standarddeviationσ).

Some recommended values for the process capability indices are shown in Table 9-1.

TABLE 9-1 Recommended Minimum Values for the Process Capability Indices

Two-Sided One-Sided

Process Specifications Specification

Existing process 1.33 1.25

New process 1.50 1.45

Safety, strength, or critical parameter

Existing process 1.50 1.45

New process 1.67 1.60

Source: Adapted from D. C. Montgomery, Introduction to Statistical Quality Control, 3rd ed., 1996. Reprinted by

permission of John Wiley & Sons, Inc.
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ACp-value of at least 1.33 for a process with two-sided specifications implies that the process

standard deviation σ will be no more than one-eighth of the specification spread. Many

companies prefer Cp� 1.33. This ensures an extremely low (0.007%) nonconformance rate.

Furthermore, aCp-value of at least 1.67 implies a process standard deviation of no more than

one-tenth of the specification spread. Companies desiring a goal of a “six sigma process” are

aiming for a Cp-value of 2.

Example 9-2 The relative humidity in a greenhouse is expected to be between 65 and 85%.

Random samples taken over a span of oneweek yield the following values: 60, 78, 70, 84, 81,

80, 85, 60, 88, 75. Find and interpret the process capability index.

Solution The specification limits are LSL= 65% and USL= 85%. Assume that the

process is in control. The sample mean and standard deviation are found as 76.1 and 9.905,

respectively.

The Cp index is

USL � LSL 85 � 65
Cp � � � 0:337

6s �6��9:905� 
This valueofCp,which is less than1, indicates that theprocess is not capableofmeeting the

specifications. Remedial actions that will reduce the process variability must be identified.

Suppose that the only specification is the lower limit of 65%. Let’sfind the lower capability

index. Using eq. (9-4) and replacing μ and σ by their estimates X� and s, respectively, give

X � LSL 76:1 � 65
CPL � � � 0:374

3s �3��9:905� 
The calculated value of CPL, which is less than 1, is undesirable. However, if the process

variabilitycannotbereduced,anotheroptionwouldbetoincreasetheprocessmeansuchthat it is

sufficiently above the LSL; that is, the average humidity levelwill be significantly above 65%.

To increase the CPL to 1, assuming that the process standard deviation cannot be reduced,

the target value of the process mean should be

μ � LSL � 3s � 65 � �3��9:905� �  94:715% 

Cpk Index

Weknow that process variability is not the only parameter that influences aprocess’s ability to

produce a conforming product. The location of the process mean is another parameter that

affects process capability (Gunter 1989). Although the Cp index does not incorporate the

process location, other indices do.

One index that accounts for this location, theCpk index, is used when the process mean is

not at the target value, which is assumed to be halfway between the specification limits. The

Cpk index is given by

USL � μ μ � LSL
Cpk � min ; �9-5� 

3σ 3σ

� min CPU;CPLgf 
It can be seen from eq. (9-5) that Cpk represents the scaled distance, relative to three

standard deviations (i.e., half the process spread), between the process mean and the closest

specification limit. Desirable values areCpk� 1.Whereas theCp index represents the process
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FIGURE 9-6 Process that is not capable (Cpk< 1).

potential, the Cpk-value represents the actual capability of the process with the existing

parameter values; it measures process performance.

Figure 9-6 shows the distribution of the quality characteristic X for a process that is not

capable (Cpk< 1). Note that the process spread (6σ) is less than the specification spread. The

value of Cp is greater than 1, indicating that the process can potentially meet specifications.

However, the process mean μ is shifted to the right and is closer to the USL. The distance

between the USL and μ is less than 3σ, which is half the process spread. Hence, some

proportion of the product will lie above theUSL.A correctivemeasure in this case could be to

adjust theprocessmeandownward toward themidpointmof the specification limits.Virtually

all the product will then be conforming.

Ifmanagement assigns equal significance to values falling above theUSLor below theLSL,

the optimal setting for the processmean ismidway between the specification limits. Ameasure

of the deviation of the process mean from this target valuem is given by the scaled distance k:

jm � μj
k � �9-6� �USL � LSL�=2

where m= (USL+LSL)/2. Note that the denominator of eq. (9-6) is half the allowable

process spread. An estimate of k is obtained by using the sample mean X� as an estimate of

the process mean μ in eq. (9-6). The relationship between Cp and Cpk is given by

Cpk � Cp�1 � k� �9-7� 
If LSL � μ� USL, we observe that 0� k� 1. If the process mean is at the target value m,

then k= 0 and Cpk=Cp. If the process mean is at the USL or LSL, k= 1 and Cpk= 0.

Howdo theCp andCpk indices compare?TheCp-value is ameasure of theprocess potential; it

does not change as the process mean changes. A Cp� 1 is desirable, and a value of Cp< 1

indicates that the process is not capable. The Cpk-value incorporates both the process mean and

the standard deviation tomeasure actual process performance. If the process is centered (i.e., the

process mean is equal to the target value),Cpk=Cp. A standard for benchmarking processes is a

value of Cpk= 1, in which case practically all the product is conforming. Note that Cpk�Cp—

always. When the process mean is outside the specifications, Cpk is negative.

Example 9-3 In an electrical circuit, the capacitance of a component should be between 25

and 40 picofarads (pF). A sample of 25 components yields a mean of 30 pF and a standard

deviation of 3 pF. Calculate the process capability index Cpk and comment on the process
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performance. If the process is not capable, what proportion of the product is nonconforming,

assuming a normal distribution of the characteristic?

Solution The Cpk index is estimated as

40 � 30 30 � 25
Cpk � min ;

3�3� 3�3� 
� min 1:111; 0:556g � 0:556f 

Because Cpk< 1, the process is unable to produce only conforming product at its current

setting. Corrective actions would be tomove the processmean toward the target value of 32.5

pF or, if feasible, to reduce the process variability.

The standardized normal value (Z-value) at the LSL is

25 � 30 � 5
ZLSL � � � �1:67

3 3

The standardized value at the USL is

40 � 30
ZUSL � � 3:33

3

After checking the standardized normal distribution inAppendixA-3,wefind the area below

the LSL to be 0.0475 and that above the USL to be 1�0.9996= 0.0004 (which is negligible).

Thus, 4.75%of the product lies below theLSL.The process performance can be improved if the

processmean is shifted to the target valueof32.5pF. In this case, theZ-value at theLSLwouldbe

ZLSL= (25–32.5)/3=�2.50, and that at the USL would be ZUSL= 2.50. According to

AppendixA-3, the proportion of the product below the LSL is 0.0062,with the same proportion

above the USL. The total proportion nonconforming would be 0.0124, or 1.24%.

Capability Ratio

Ameasure of the ability of a process to produce items within specification limits is based on

the amount of the specification range, USL� LSL, that is used by the process. As the process

spread increases, it tends to use more of this specification band. The capability ratio (CR) is

defined as

6σ
CR � �9-8� 

USL � LSL

We can see from eq. (9-8) that the capability ratio is the reciprocal of theCp index: that is,

CR= 1/Cp. An estimate of CR is obtained by substituting an estimate s for the process

standard deviation σ. Often, CR is expressed as a percentage to indicate the percentage of

specification range used by the process.ACR� 1 is desirable. Processes that are centered and

have a large value of Cp will obviously use much less of the specification range.

Using the specification range is analogous to the total variation of measured observations

from a process. Such variability is identified as the sum of two components, variation in the

process and variation inmeasurement. The latter is usually referred to as gage variability. An

estimate of gage capability can be obtained through repeated measurements of given parts.

Using control charts for the range of measurements that represent the magnitude of

measurement error, we can estimate the standard deviation of measurement error. Knowing

the total variance of measured observations (by subtracting the variance of measurement

error) enables us to estimate the process variance. The capability ratio is a measure of process

potential because it calculates the percentage of the specification range used under the ideal

circumstance of a centered process.
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Example 9-4 A process in control has an estimated standard deviation of 3 mm. The

specification limits for the corresponding product are 100 ± 7 mm. Estimate the capability

ratio of the process and comment on the process potential.

Solution The capability ratio is estimated as

6σ̂ �6��3� 
CR � � � 1:286

USL � LSL 107 � 93

So, the percent of the specification range used by the process is 128.6%, which is 28.6%

more than is permissible. Even if the processwere centered at the target value of 100,which is

the most favorable situation, it would still not meet the specifications.

Taguchi Capability Index, Cpm

Taguchi (1985, 1986) stressed quality improvement by emphasizing the reduction in

variability around a target value, T. The proposed index, Cpm, is defined as

USL � LSL
Cpm � �9-9� 

6τ

where τ is the standard deviation from the target value and is given by

τ2 � E �X � T�2 �9-10� 
Equation (9-10) can also be expressed as

2τ2 � E �X � T� � E �X � μ�2 � �μ � T�2

2� σ2 � �μ � T� �9-11� 
where μ and σ2 represent the process mean and variance, respectively. Therefore,Cpm can be

expressed as

USL � LSL Cp
Cpm � � p �9-12� 

σ2 2 1 � δ26 � �μ � T�
where

μ � T
δ � �9-13� 

σ

represents the deviation of the process mean from the target value in units of standard

deviation.

Cpmk Index

The indices Cpk and Cpm are regarded as second-generation capability indices, developed

from the original Cp index. A third-generation capability index that incorporates the features

of Cpk and Cpm is the Cpmk index (Pearn et al. 1992), given by

min��USL � μ�; �μ � LSL�� �9-14� 
3 σ2 � �μ � T�2

Cpmk � 

Note thatCpmk takes into considerationprocess location andvariability aswell as deviation

of the process mean from the target value. It is known that Cp�Cpk�Cpmk and
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Cp�Cpm�Cpmk. A good review of the various capability indices may be found in Kotz and

Johnson (1993, 2002). A couple of relationships among these indices are as follows:

{
Cpk �9-15� 

21 � ��μ � T�=σ�
Cpmk � 

CpmCpk �9-16� 
Cp

Confidence Intervals and Hypothesis Testing on Capability Indices

Theexpressions for the variouscapability indices involve populationparameters (μ orσ or both).

In practice, they are replaced by their sample estimates (X� and s), leading to point estimates

Cp;Cpk;Cpm; or Cpmk. Here, we provide expressions for the confidence interval for Cp, Cpk,

^

Cpm, andCpmk under the assumption of normality of the distribution of the quality characteristic.

A 100(1�α)% confidence interval for Cp is given by

χ2 χ2
1� α=2;n� 1 α=2;n� 1

Cp Cp
^

^^^^

� Cp � 9-17��
n � 1 n � 1

where χ2 and χ2 are the lower and upper α/2 percentage points on the1� α=2;n� 1 α=2;n� 1

chi-square distribution with (n� 1) degrees of freedom.

Example 9-5 In an assembly operation in a semiconductor manufacturing company, the

lower and upper specification limits are given by 4.8 and 5.2 seconds. A random sample of 25

completion times gave amean and standard deviation of 5.12 and 0.06 seconds, respectively.

Can we conclude that the Cp index for this operation exceeds 1, so as to be considered

acceptable by the customer? Test at a significance level of 0.05.

Solution We are given the following: LSL= 4.8, USL= 5.2, X� = 5.12, s= 0.06, n= 25,

α= 0.05. The hypotheses are

H0 : Cp � 1:00
Ha : Cp > 1:00

^

Ĉp =

a 95% lower confidence limit for Cp is obtained as

χ20:95;24

we have (5.2–4.8)/(6)(0.06)= 1.111. Given a one-sided hypothesis test with α= 0.05,

� 1:111 � 0:844
13:85

Cp
24 24

Since the hypothesized value of Cp= 1.00>LCL= 0.844, we do not reject H
0
. Hence, we

cannot conclude that this is a capable operation.

When the quality characteristic is normally distributed, an approximate 100(1�α)%
confidence interval (Kushler and Hurley 1992) on Cpk is given by

LCL �

1

9n
� Ĉ

2

pk

2�n � 1� 
Ĉpk and Zα/2 represents the standard

Ĉpk � Zα=2

where n represents the sample size used to calculate

�9-18� 

normal value for a tail area of α/2. Hypothesis tests may also be performed on Cpk as was

demonstrated for Cp.
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The Taguchi capability index Cpm involves estimation of the process mean and process

variance. While the sample mean X is a maximum-likelihood estimate of the process

mean μ, the maximum-likelihood estimator of the process variance σ2 is obtained from

Cpm

which also serves as a maximum-likelihood estimator of Cpm. Under the assumption of

^22 � �  Xi � X� =n. These estimates are used to obtain an estimate using eq. (9-12),sn

Cpm

squared distribution. An approximate lower confidence limit, using the ordinary central chi-

squared distribution, is given by (Anis 2008)

^

χ21�
Cpm
^

normality of the distribution of X, the sampling distribution of is a non-central chi

α;n
; 0 < α < 1 �9-19� 

n

where χ2 is the lower αth percentile of the chi-squared distribution with n degrees of1�α;n
freedom. Similar to theCpm index, the indexCpmk also involves a target value and the concept

of a loss function as the processmean deviates from the target value.Here also, themaximum-

likelihood estimators of the processmean and process variance,X and s2, are used to estimaten

Cpmk using eq. (9-14).^

Cpmk is consistent and asymptotically normal. An asymptotic confidence

^

interval for Cpmk is given by (Chen and Hsu 1995)

Cpmk � 

^The estimator

Zα=2σ̂pmkp 9-20��
n

^^

Ĉpmk and is given by

41 2δ 72δ2 � D�m4=s � 1� 22 nσ � � Cpmk � Cpmk pmk3=2 29�1 � δ2� 3�1 � δ2� 72�1 � δ2�^

4 2 2and m4 � �Xi � X� =n, δ � �X � T�=sn, D= (U�L)/2, and s � �Xi � X� =n.n

Comparison of Capability Indices

WhileCpmeasures process potential,Cpkmeasures the actual processyield.Whenaprocess is

exactly centered between the specification limits, Cp=Cpk. Under the assumption of

normality, the process yield, which represents the proportion of the output that lies within

the specification limits, is given by

USL � μ LSL � μ
percent yield � 100 Φ � Φ �9-21� 

σ σ

σ2pmk^where is the asymptotic variance of

whereΦ denotes the standard normal cumulative distribution function. For a process centered

between the specification limits, the yield (Boyles 1991)maybe expressed as a functionofCp:

percent yield � 100�Φ �3Cp� � Φ� �3Cp�� �9-22�� 100� 2Φ �3Cp� � 1� 
Recall thatCpkmeasures actual rather than potential process capability.Using eq. (9-5),we

can see that

USL � μ � 3σCpk

LSL � μ � 3σCpk
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FIGURE 9-7 Effect of process parameters on capability indices.

with strict equality holding for the specification limit that is closer toμ. Thevalue ofCpk equals

1 if andonly if thenatural tolerance limits donot extendbeyond the specification limits,with at

least one of the natural tolerance limits coinciding with a specification limit.

Let’s consider Figure 9-7, where USL= 62mm, LSL= 38mm, and T= 50mm; three

processes, A, B, and C, with different means and standard deviations, are shown.

Table 9-2 shows the values of the process capability indicesCp,Cpk, andCpm as well as

the percentage yield, under the assumption of normality for each process distribution.

Note thatCpk is 1 for each process. The values ofCp, however, are 1, 2, and 4 for processes

A, B, and C, respectively. Thus, process C has the most potential. For process A, the

values of Cp and Cpk are both equal because the process mean is centered between the

specification limits.

FromTable 9-2we can see that for processesB andC,whosemeans deviate from the target

by different amounts, the values ofCpk are the same. This is becauseCpk is influenced by both

the process mean and the process standard deviation. So, for process C, even though the shift

in the processmean from themidrange of the specification limits is greater than for process B,

the smaller variability of process C compensates for it.

The percentage yield, shown in Table 9-2, varies between 99.74 and 99.87% for the three

processes, which have the same value ofCpk. Thus, for a given value ofCpk, say 1, the actual

process yield has an upper and a lower bound. A continuum of processes, each having the

same value ofCpk, can be visualized as shown in Figure 9-7, where the actual process yield is

containedwithin twobounds. It can be shown, using eq. (9-22), that for afixedvalue ofCpk the

TABLE 9-2 Process Capability Indices for Processes with Various Parameters

Process Mean Percent

Process and Standard Deviation δ Cp Cpk Cpm Yield

A μ= 50, σ= 4 0 1 1 1.000 99.74

B μ= 56, σ= 2 3 2 1 0.632 99.87

C μ= 59, σ= 1 9 4 1 0.442 99.87
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bounds on the process yield are given by

100 2Φ�3Cpk� � 1 � percent yield � 100Φ�3Cpk� �9-23� 

The lower bound is achieved when the process mean is centered between the specification

limits,while the upper bound is achieved as the processmean approachesUSLorLSL and the

process standard deviation approaches zero. Hence, we can conclude that Cpk approximates

the actual process yield, as defined by upper and lower bounds.

The Taguchi capability index, Cpm, is also shown in Table 9-2 for the three processes

in Figure 9-7. Note that for process A, where the process mean coincides with the target value

and themidrange specification value, all three indicesCp,Cpk, andCpm are equal. As the process

meanmoves away from the target value, the value ofCpm decreases. For processC,whosemean

is nine standard deviations from the target value, Cpm is 0.442, while for procees B, with mean

three standard deviations from the target value, Cpm is 0.632. The value of Cpk is 1 for all three

processes, indicating that it is not a suitable measure of process centering. On the contrary, for a

fixed value of μ in the interval (LSL,USL),Cpk becomes arbitrarily large as the process standard

deviation σ approaches zero. Thus, a large value ofCpk does not imply much about the distance

between the process mean and the target value.

There are some similarities betweenCpk andCpm. For a fixed value of the process standard

deviation σ, both indices coincide withCpwhen the process mean μ equals the target value T.

They both decrease as the process mean moves away from the target values. If μ�USL or

μ�LSL,Cpk� 0. On the other hand,Cpm approaches zero asymptotically as jμ – T j→1. For

a fixed μ, as σ→ 0,Cpk increases without bound. However,Cpm has an upper bound given by

USL � LSL
Cpm < �9-24� 

6j μ � T j 
The right-hand side of eq. (9-24) is the limiting value of Cpm as σ→ 0 and is also equal to the

Cp-value of a process with σ= jμ�T j. A necessary condition for Cpm� 1 is

USL � LSLjμ � T j < �9-25� 
6

Note that when the target value is at the center of the specification limits, a Cpm-value of 1 or

more implies that the process mean μ lies within the middle third of the specification band.

Similarly,Cpm� 4 implies that j μ�T j< (USL�LSL)/8. Therefore, a value ofCpm indicates a3

constraint on the difference between the process mean μ and the target value T. Hence, the

value ofCpmmeasures process centering in terms of the variation of the processmean from the

target value.

Anestimate ofCpm canbeobtainedusing an estimate ofτ,whereτ2 is givenbyeq. (9-10) or

(9-11). Taguchi (1985) proposed the following estimator:

n1 2τ̂2 � �Xi � T� �9-26� 
n

i�1

� σ̂2 � �X � T�2 �9-27� 
where X� is the sample mean and

�n � 1�s22 �σ̂ �9-28� 
n
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The sample variance s2 is given by

�Xi � X��22 �s �9-29� 
n � 1

2 2It can be shown (Boyles 1991) that τ̂ is an unbiased estimate of τ .

Example9-6 Aprocess in control has an estimated standarddeviation of 2mm.Theproduct

produced by this process has specification limits of 120± 8mmand a target value of 120mm.

Calculate the process capability indices Cp, CPL, CPU, Cpk, Cpm, and Cpmk for the process if

the process mean shifts from 118mm first to 122mm and then to 124mm but the process

variability remains the same.

Solution Figure 9-8 shows the process distributions for various values of the process

mean. The calculations for the process capability indices when the process mean is at 118 are

as follows:

FIGURE 9-8 Sliding process with constant variability.
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128 � 112
Cp � � 1:333�6��2� 

118 � 112 128 � 118
CPL � � 1:000; CPU � � 1:667�3��2� �3��2� 

1:333
Cpk � min CPU; CPLgf 

Cpmk � 

Table 9-3 lists values for the various process capability indices for processmeans (inmm) of

118, 122, and124.Note that theprocess potential,Cp, remains constant for thedifferent locations

of the processmean. TheCPL index increases from1 to 2 as the processmean shifts from 118 to

124. Conversely, the CPU index decreases from 1.667 to 0.667 over this same range. The Cpk

index is 1.000 when the process mean is at 118 or 122. Note that for these two situations the

process distribution is shifted by the same amount on either side of the midpoint of the

specifications of 120. The Cpm-value is 0.943 for these two distributions. As the process mean

shifts to 124, theCpk-value decreases to 0.667 and theCpm-value decreases from 0.943 to 0.596.

The value ofCpmk is 0.707 when the process mean is at 118. Similar to the behavior ofCpk

and Cpm, when the mean shifts to 122, the value of Cpmk remains at 0.707, as the mean shift

is an equal amount from the target value.As themean shifts farther away from the target value,

Cpmk reduces to 0.298 when the mean is at 124.

While bothCpk andCpm demonstrate a decreasing trend as theprocessmean shifts away from

the target value, their interpretations are somewhat different. Because Cpk is a measure of the

actual process yield, when the processmean is at 118 and 122, theCpk-values are the same; this

implies that the process yieldwill be the sameunder these two situations.On the other hand,Cpm

measures the deviation of the process mean from the target value. Thus, Cpm has the smallest

valueof 0.596when the processmeandeviates from the target valueby two standard deviations.

The larger the deviation of the mean from the target value, the smaller the value of Cpm.

Effect of Measurement Error on Capability Indices

Whenever measurements are involved, the variability of the observations is dependent on

the variability of the product characteristic, which is itself dependent on the inherent process

variation and measurement variation. Variability in measurements is, of course, a function

of the measuring instrument used. In the preceding section we assumed that measurement

error had a negligible impact on the observations. Here we study the effect of measurement

error on the process potential as it affects the Cp index and the capability ratio CR. A

TABLE 9-3 Process Capability Indices for a Sliding Process with Constant Variability

� 1:000; Cpm � 
1 � �  �  1�2

� 0:943

6

3 4 � 4
p � 0:707

Process Mean δ Cp CPL CPU Cpk Cpm Cpmk

118 �1 1.333 1.000 1.667 1.000 0.943 0.707

122 1 1.333 1.667 1.000 1.000 0.943 0.707

124 2 1.333 2.000 0.667 0.667 0.596 0.298
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measured value from a process Xm is the sum of the “true” value X plus the measurement

error ε. So, we have

Xm � X � ε �9-30� 
In eq. (9-30), we can only observe Xm; we cannot observe X. However, if the measurement

error ε can be estimated,we can obtain an estimate of the true process variability.Assuming that

themeasurement error is independent of the value beingmeasured and using eq. (9-30),we have

σ2 � σ2 � σ2 �9-31� m e

whereσ2 represents thevarianceof themeasuredobservations,σ2 is the trueprocess variance,m

and σ2 is the variance of the measurement errors. Now, when we calculate capability indices,e

we use σm rather than the true process standard deviation σ.

Measurement errors are usually distributed normally. So, 6σe is a good representation of

the range of measurement errors. Also, every measuring instrument is typically rated by its

manufacturer for a prescribed level of precision. An estimate of the measurement error is

obtained through an index known as the precision-to-tolerance ratio (r), given by

6σe
r � �9-32� 

USL � LSL
Equation (9-32) represents the percentage of the tolerance range used by the measurement

error.Manufacturers ofmeasuring equipment provide information to estimate r. Alternatively,

σe can be estimated through gage capability studies, where repeated measurements of given

parts are obtained. Control charts for the range of measurements, which represent the

magnitude of measurement error, can be constructed, and σe can be estimated using

R
σ̂e � �9-33� 

d2

whereR� is the average of the ranges of the replications and d2 is a control chart factor, based on

the sample size, obtained from Appendix A-7.

Using eq. (9-32), we can rewrite eq. (9-31) as

2
USL � LSL

σ2 � σ2 � rm 6

The relationship between the observed capability indexC∗ based onmeasured observationsp

and the “true” capability index Cp is now defined as follows:

USL � LSL USL � LSL
C∗ � � p 6σm 2

USL � LSL
6 σ2 � r

6

1� 
�2 2�1=Cp � r �9-34� 

The true capability index may now be expressed as

1 1
Cp � � �9-35� 

�1=C��2 � 2 2
p r �CR∗�2 � r

where CR∗ represents the capability ratio as calculated from the measured observations.
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We can see from eq. (9-34) that when there is nomeasurement error (r= 0),C∗
p equalsCp,

the true process capability. The assumption of negligible measurement error supports our

contention that the observed capability indexC∗
p is a goodapproximationof the true indexCp.

However, even if theprocessvariability shrinks to zero, fromeq. (9-34), anupper boundonC∗
p

is given by

1
C∗ � �9-36� p r

Gage Repeatability and Reproducibility

Measurement error or variation can be divided into two components, repeatability and

reproducibility.Gage repeatability represents the inherent variation of the gage ormeasuring

device. It is the variation that is observedwhen the same operatormeasures the same part using

the same device repeatedly. Gage reproducibility, a function of the variability of the

operators, is the variation that is observed when different operators measure different parts

using the same device. So, two variances constitute gage reproducibility: one between

operators and one due to the interaction between operators and parts. The interaction variance

represents the variation in the average part sizes measured by each operator. For example, one

operator may have more variability when measuring smaller part dimensions, while another

operator may exhibit more variability when measuring larger part dimensions.

Figure 9-9 shows the components of the total variability of measured observations. Using

eq. (9-31), we express the total variance of measured observations σ2 asm

σ2 � σ2 � σ2m e

where

σ2 � σ2 � σ2 �9-37� e t p

In eq. (9-37), σ2 and σ2 represent the variance in repeatability and reproducibility oft p

observations, respectively.

FIGURE 9-9 Components of total variability of measured observations.
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Evaluation of Measurement Systems

In any measuremnt or gage system, the concepts of accuracy and precision are important.

Accuracy is a measure of the location of the distribution of measurements from the “true” or

known value. Hence, if a part whose true quality characteristic value is known is measured

repeatedly by an inspector, accuracy as measured by gage bias is the difference between the

observed average measurement and the reference or true value. One particular metric

expresses the gage bias as a percentage of the total variation. If the characteristic has a

normal distribution, 5.15 standard deviations covers about 99% of the distribution. So

gage bias
% bias � �100�	 �9-38� 

5:15σm

Gage linearity is a measure of the difference in accuracy values through the expected

operating range of the gage. A gage is expected to have the same accuracy for all sizes of the

characteristic being measured. To estimate gage linearity, several parts are selected over

the operating range. The bias for these parts is found by taking the difference between the

average of the observed measurements and the true value. A regression line is then fitted to

predicting thebias basedon the truevalues.The slopeof thefitted regression line is anestimate

of gage linearity, with percent linearity being the slope expressed as a percentage. Another

measure of gage linearity is expressed as

linearity � �slope of fitted line��5:15σm� �9-39� 
where 5.15σm is a measure of the overall total variation in the process, which includes the

variability in the process and the gage system.

Gage stability, on the other hand, is ameasure of accuracy over timewhen the same device is

used.Statisticalstabilityofthemeasurementsystem(i.e.,specialcausesinthemeasurementsystem

must be eliminated) is therefore desirable in order to make inferences as to process capability.

Metrics for Evaluation of Measurement Systems

The measurement system standard deviation is given by

σe � σ2t � σ2p	 �9-40� 

while the standard deviation of the measured observations is expressed as

σm � σ2 � σ2 �9-41� e

where σ2 represents the process variance.

• %R&R. A common measure is the percent of total variation consumed by the

measurement system for repeatability and reproducibility, known as percentage

repeatability and reproducibility (R&R):

σe
%R&R � �100�	 �9-42� 

σm

It is desirable that %R&R< 10%, while acceptable values are %R&R< 30%.

• Precision-to-tolerance ratio. This metric compares the spread in the measurement

system to the tolerance spread and is expressed as theP/T ratio (r) given by eq. (9-32). It

is desirable that P/T< 10%.



472 PROCESS CAPABILITY ANALYSIS

• Percentage of process variation. Here, the variability of the measurement system is

expressed as a percentage of the process variation and is given by

σe �100�	 �9-43� 
σ

This ratio does not depend on the specification limits.

• Number of distinct categories. This represents the number of distinct categories

within the process data that the measurement system can discern or distinguish. It is

expressed as

σ �1:41�	 �9-44� 
σe

The desirable number of distinct categories is� 4. If the number of distinct categories is<2, the

measurement system is of novalue.When the number of distinct categories is 2, the data canbe

divided into two groups (say, high and low). Along these lines, when the number of categories

is 3, the data can be divided into three groups: say, low, middle, and high.

Gage R&R studies usually require balanced designs (equal number of observations

per operator and part) and replicates. In a crossed design, each part is measured multiple

times by each operator,whereas in a nested design, each part ismeasured by only one operator.

So, there is no operator-by-part interaction. Measurements that are destructive (i.e., breaking

strength of cables) are therefore conceptually of nested design.

Preparation for a Gage Repeatability and Reproducibility Study

An R&R study must be planned outlining the nature of the design (crossed versus nested)

to be used. In situations involving destructive testing, a nested design is used.A decision has to

be made on the number of inspectors, number of parts, and number of repeat readings

(for nondestructive testing in a crossed design) for each inspector and part combination.When

the intention is to estimate reproducibility, at least twooperatorsmust be chosen.Usually, from

theoperating rangeof thequality characteristic, at least 10parts shouldbe selected.Toestimate

repeatability, at least two repeat readings of each part must be taken. Inspection bias is

eliminated by taking measurements of the parts selected in random order.

In an attribute gage R&R study, the part quality characteristic is identified only as

conforming or not, rather than the degree to which it differs from a set of given specification

limits. An example is the use of a go/no-go gage for measuring the diameter of a part.

The criterion for the acceptability of an attribute gage is that allmeasurement decisions must

agree. This implies that for each part measured all inspectors must agree over all replications.

In gage R&R studies for variables, Minitab uses the X� and R method or the analysis of

variance (ANOVA) method. The X� and R method has the drawback of being unable to

measure the interaction between operators and parts. In the ANOVA method, the factors,

operators (inspectors) and parts, are considered to be random. The variance components are

reproducibility (variation due to operator and variation due to operator × part interaction),

repeatability (variation inherent in the gage), and the part-to-part or process variation. The

ANOVA table initially includes the main effects of operators, parts, and operator × part

interaction. If thep-value for theoperator×part interaction term is greater than0.25, a reduced

model is fitted to calculate the variance components.

Example 9-7 Measurements on the thickness of support beams are taken at random

by three operators. The same beam is measured twice by each operator. Table 9-4 shows

the data for 20 such beams. Specifications on thickness are 50± 8mm. Comment on

the capability of the measurement system. Use the ANOVA method. What is the
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TABLE 9-4 Data on Beam Thickness (mm)

Operator 1 Operator 2 Operator 3

Measurements Measurements Measurements

Part Number 1 2 1 2 1 2

1 43.4 43.7 43.0 43.1 42.8 43.2

2 51.8 51.7 52.2 52.5 52.3 51.8

3 54.9 54.4 55.0 54.6 54.8 55.2

4 47.2 47.5 46.2 46.5 46.3 46.9

5 46.5 46.8 45.3 45.9 45.2 45.4

6 49.3 50.0 49.0 49.6 49.8 50.5

7 52.6 52.4 52.9 53.2 52.9 52.7

8 55.8 55.5 55.3 54.7 56.0 56.3

9 48.3 48.0 49.6 49.1 47.9 48.4

10 47.8 48.1 48.4 47.3 47.4 48.2

11 53.6 53.8 54.0 53.2 53.7 54.2

12 52.7 52.4 51.8 52.8 53.1 53.6

13 44.1 44.2 44.9 44.4 43.6 43.2

14 46.6 46.9 47.0 46.3 46.2 46.9

15 56.7 56.2 56.9 56.2 57.3 57.6

16 53.8 53.9 53.4 54.3 53.4 54.1

17 48.3 48.6 48.0 48.6 48.2 47.8

18 51.5 51.4 51.9 51.2 51.8 52.3

19 53.8 53.6 53.3 53.9 54.7 53.6

20 47.7 47.9 48.3 47.9 47.5 47.8

precision-to-tolerance ratio? What is the observed process potential, and what is the

estimate of the true process potential?

Solution UsingMinitab, we choose Stat>Quality Tools>Gage Study>GageR&R

study (crossed). Enter the column numbers in the data set that represents the part number,

operators, and measurement data. Select Options and input process tolerance. Figure 9-10

FIGURE 9-10 Minitab output for gage repeatability and reproducibility analysis.
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FIGURE 9-11 Minitab output using ANOVA method for repeatability and reproducibility study.

shows the Minitab graphical output, while Figure 9-11 displays theMinitab ANOVA output

and other relevant gage R&R information. A two-way ANOVA table with interaction

between operators and parts is shown in Figure 9-11. Note that the p-value for operator part

interaction is quite small (0.000), so the interaction effect is significant. From the figure it is

observed that thevarianceofmeasurements due to the gage system �σ̂2� is 0.2442.Theprocesse

(part-to-part) variance �σ̂2� is 15.6808, while the total variance of the measured value�σ̂2m) is
15.9250. The precision-to-tolerance ratio is 0.1853, or 18.53%, implying that the measure

ment systemuses 18.53%of the tolerance spread. It is desirable for this to be less than or equal

to 10%.

The metric %R&R, which compares the standard deviation associated with repeatability

and reproducibility of the gage system relative to the total variation, is found to be 12.38%

from Figure 9-11. Since %R&R> 10%, although the measurement system is acceptable,

attention could be paid to improve it. Since repeatability is the larger proportion of the total

gage R&R, alternative measurement devices could be considered.

In this example, while the variance component between the operators is negligible, the

interaction between operators and parts is significant. The number of distinct categories is

indicated as 11,where desirable values are�4, implying that themeasurement system is quite

discriminatory. The total variation in the system is quite high, and as indicated in Figure 9-11,

it is about 150% of the tolerance. Thus, the current process is not capable of meeting

specifications. The part-to-part or process variation consumes about 148.50%of the tolerance
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while accounting for about 98.47%of the variance. This is the dominant factor contributing to

variability.

Figure 9-10 confirms the results in Figure 9-11. First, observe that on theX�-chart just about

all points fall outside the control limits. This is as expected, because theX�-chart represents the

discriminating power of the measuring instrument. The R-chart shows the magnitude of the

measurement errors and also is a measure of gage capability. It shows that operator 1 tends to

have smaller variability within parts than do operators 2 and 3.

Since the estimated standard deviation of all measured values is 3.9906, the process

potential is given by

USL � LSL 16
C∗ � � � 0:668p 6σm �6��3:9906� 

Thus, the process is not capable. The true process potential, after discounting for the

variability in the measurement system, is estimated as

1
Cp � � 0:673

�1=0:668�2 � �0:1853�2

With an estimated value ofCp less than 1,management should focus onmethods to reduce

the inherent process variability.

Cp Index and the Nonconformance Rate

The process capability index Cp measures process potential and represents the ability of the

process to produce a conforming product. Assuming a normal distribution of the quality

characteristic, if the process mean is centered between the specification limits, the process

fallout or nonconformance rate in parts per million (ppm) can be found for different values of

Cp. Similarly, for one-sided specification limits, the nonconformance rate can be found for

various values of CPU or CPL.

Table 9-5 shows the nonconformance rate, in parts per million, for selected values of CPU

or CPL for one-sided specifications. As an example, for a process with an upper specification

limit, if CPU= 0.5, the nonconformance rate is given by P[Z> 3(CPU)]=P [Z> 1.5]=

0.066807= 66,807 ppm. Observe that for a CPU or CPL of 1.0 the nonconformance rate is

1350 ppm. For two-sided specification limits, if the process is centered between the

TABLE 9-5 Nonconformance Rates (ppm) for Normally Distributed Processes with

One-Sided Specifications for Selected Values of CPL or CPU

Nonconformance Nonconformance

Capability Index Rate P(X>USL) or Capability Index Rate P(X>USL) or

CPL or CPU P(X<LSL) CPL or CPU P(X<LSL)

0.50 66,807 1.33 33

0.60 35,930 1.40 13.4

0.70 17,864 1.50 3.4

0.80 8,196 1.60 0.793

0.90 3,467 1.70 0.170

1.00 1,350 1.80 0.033

1.10 483 1.90 0.006

1.20 159 2.00 0.001

1.30 48
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specifications, with a Cp index of 1.0, the nonconformance rate would be 2700 ppm.

Companies generally desire a Cp of 1.33; for two-sided specification limits, the nonconfor

mance rate for such processes is 66 ppm. Motorola’s concept of a process with six sigma

capability, allowing for a drift in the process mean of 1.5 standard deviations, permits only

3.4 ppm outside the specification limit that is closer to the mean.

9-7 PROCESS CAPABILITY ANALYSIS PROCEDURES

As explained earlier in the chapter, process capability analysis may involve estimating

process parameters such as themean and standard deviation, the formof the distribution of the

characteristic, or the proportion of the nonconforming product. Several approaches exist for

estimating the process standard deviation, some of which we describe here.

Estimating Process Mean and Standard Deviation

Theprocessmeanmeasures the location of the process; the process standard deviation reflects

the variability of the process. An idea of the distribution of the quality characteristic is

obtained by constructing a frequency distribution. This empirical distribution can be used to

validate claims regarding the hypothesized distribution of the characteristic.

Using Individual Observations Before starting process capability analysis using

individual observations, a minimum number of such measurements (usually, at least 50)

must be taken. The process mean μ is estimated by the sample mean X� , while the process

standard deviation σ is estimated by the sample standard deviation s.

Next, a frequency or relative frequency histogram is constructed. This tells us about the

behavior of the characteristic. In many cases, a normal distribution is assumed when we

calculate the proportion of nonconforming product; histograms help determine the validity of

this assumption. Procedures for testing a hypothesis regarding a specific population distri

bution (e.g., normal) are known as goodness-of-fit tests and can be found in most books on

statistics (Duncan 1986).

If the distribution is close to normal, the process spread is PS � 6s. An estimate of the

process capability limits, or the natural tolerance limits, is given by X� � 3s: If the process is
centered, a measure of the process capability is obtained using theCp-value. If the process is

not centered, the Cpk index is a better measure of process capability.

Using Control Chart Information Control charts are the major tools for analyzing an

existing process and bringing it to control, so it makes sense to use control charts to study

process control. A control chart will indicate whether special causes exist in the process and

thus signal whether we are in a position to estimate the process capability.

Using Variable Charts If charts for the mean X� and range R are used, once the process is in

control, the process mean and standard deviation can be estimated as μ̂ � X�� and σ̂ � R�=d2,
respectively, where d2 is a control chart factor tabulated in Appendix A-7,X

�� is the centerline

on the X�-chart, and R� is the centerline on the R-chart.

If control charts for the mean X� and standard deviation s are used, then, for a process in

control, the mean and standard deviation can be estimated from μ̂ �X�� and σ̂ � �s=c4; respec
tively, where c4 is a control chart factor tabulated in Appendix A-7, X

�� is the centerline on the

X-chart, and �s is the centerline on the s-chart.

If control charts for individual values X and the moving range of two consecutive

observations are used, once the process is in a state of statistical control, its mean and
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standard deviation can be estimated from μ̂ � X� and σ̂ � MR=d2; respectively, where d2 is a
control chart factor tabulated in Appendix A-7 and is found using a sample size of 2, X� is the

centerline on the X-chart, and MR is the average of the moving ranges from pairs of

consecutive observations.

Example 9-8 Let us consider the data on the inside diameter of metal sleeves shown in

Table 5-1. The specification limits are 50.00± 0.05mm, with a target value of 50. We use

Minitab to conduct the capability analysis. First, we constructed control charts for individuals

andmoving range by setting up the data in a single column, with the rows beingmerged into a

column. Hence, the first five observations were from sample 1, the next five from sample 2,

and so on. From the I-MR charts, applied successively, three observations were outside the

control limits. Assessing special causes and appropriate remedial action, after deleting the

three observations, all were found to be in control.

Now that the process is in control, we select the commands Stat>Quality Tools>

Capability Analysis>Normal. Select Options, and input a target value of 50. Input the

Lower spec and Upper spec as 49.5 and 50.5, respectively, and click OK.

Output from Minitab is shown in Figure 9-12. Note that the distribution resembles

normality. Further, a test for normality (using the Anderson–Darling test in Minitab) was

also performed (p-value= 0.168). Being satisfied with the distributional assumption of

normality, we investigate output capability indices. All the indices (Cp, Cpk) are well below

1, indicating that the current process is not capable.

Two sets of capability indices are shown in Figure 9-12, based on the standard deviation

estimate. Thewithin standard deviation is based on the variationwithin subgroups. Here, the

estimate is based on σ̂ � MR=d2. The overall standard deviation is based on the variability of
all observations about the grand mean. The capability indices (Pp, Ppk) calculated using

overall standard deviation are therefore interpreted as long-term measures. Figure 9-12 also

provides an estimate of the proportion nonconforming (using within standard deviation and

overall standard deviation).Here, in the short term, the expected proportion nonconforming is

13.28%, while in the long term it is 19.06%.

FIGURE 9-12 Process capability anaylsis for sleeve diameter.
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9-8 CAPABILITY ANALYSIS FOR NONNORMAL DISTRIBUTIONS

In the previous sections we utilized the distributional assumption of normality to calculate

proportion nonconforming. When the quality characteristic distribution is inherently non-

normal, a few approaches exist for conducting capability analysis.

Identification of Appropriate Distribution

In this approach, based on knowledge of the process by which the quality characteristic is

chosen, adistributionalfitting is attempted froma specified list of available distributions, such

asWeibull, gamma, lognormal, and exponential. Some general families of distributions may

also be considered, such as the Johnson family of distributions discussed in Chapter 5.When

an acceptable fit is identified through a statistical goodness-of-fit test, that particular

distribution,with parameters estimated from the data, is used to obtainmeasures of capability

and proportion nonconforming.

Box-Cox Transformation

This is a form of the power transformation discussed in Chapter 5 to ensure that the

transformed variable follows normality. The Box–Cox method estimates a value for λ that

minimizes the standard deviation of a standardized transformed variable. It is defined as

Yλ; λ �6 0
YT � �9-45� 

ln�λ�; when λ � 0
Minitab provides a point estimate for λ as well as a 95% confidence interval for λ . If the

95% confidence interval contains some of the commonly interpretable transformations (�2,
�1,�0.5, 0.5, 2), those are usually selected. Note that λ=�0.5 corresponds to the square root
of the reciprocal transformation.

Using Attribute Charts

Attribute charts are constructed for selected specifications. If the acceptable bounds for quality

characteristics are known, the chart for the proportion nonconforming (p-chart) can be constructed

to classify the product as conforming or not conforming. The same holds true for the chart for the

number nonconforming (np-chart). Similarly, the control chart for the number of nonconformities

(c-chart) can be developed if the definition of a nonconformity (i.e., a quality characteristic that

does not meet certain specifications) is known. The same also applies to a chart for the number of

nonconformities per unit (u-chart) or the number of demerits per unit (U-chart).

For a p-chart, the measure of process capability is the centerline �p, which represents the

average proportion of nonconforming items produced by the process. Similarly, for an

np-chart, the measure of process capability is the centerline n�p, the average number of

nonconforming items. For the c-chart, the capability measure is �c, the average number of

nonconformities; for the u-chart, it is �u, the average number of nonconformities per unit. For

theU-chart, it isU�, the average number of demerits per unit. These measures are estimates of

the overall process capability. The upper control limits on each of these charts represent an

upper bound on the nonconforming items or nonconformities. This is ameasure of the “worst

quality” that can be expected from the process.

Although the centerlines of the attribute charts provide an aggregate measure of process

capability, one drawback is that information from attribute charts does not indicate the degree
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of product nonconformance. In other words, were the products barely outside the specifica

tions or were they significantly outside? Was the process mean off the target value of the

quality characteristic or was the process variability too high? This information, which is

necessary to formulate remedial actions, is not available fromattribute charts.Variable charts,

on the other hand, provide measures of the process mean and standard deviation and also

present possible reasons for product nonconformance, which leads to corrective actions.

Using a Nonparametric Approach

Here, the concept is to estimate quantiles of the distribution of the quality characteristic based

on the observations. If X0.99865 and X0.00135 represent the 99.865th and 0.135th percentiles,

respectively, a quantile-based process capability ratio is estimated by

USL � LSL
Cpq � �9-46� 

X0:99865 � X0:00135

Given a set of observations, an empirical estimate of the distribution function and therefore

quantiles can always be obtained.Observe that for a normal distributionX0.99865= μ+ 3σ and

X0.00135= μ� 3σ.

Example 9-9 Consider the data on the unloading time of supertankers, before process

changes, shown initially in Table 5-2. In Example 5-7 it was demonstrated that the distribution

of these unloading times did not conform to a normal distribution (p-value = 0.023). Suppose

that the upper specification limit is 25 hours, with the target value being 10 hours. Perform a

capability analysis and comment on the process.

Solution We use Minitab and execute the commands Stat>Quality Tools>

Capability Analysis>Nonnormal. After indicating the column in which the data are stored,

an option exists to specify from a list of available distributions one to use to determine the degree

of fit, or select a Johnson transformation (discussed in Chapter 5). In this example we select the

Johnson transformation, input an upper specification value of 25, and click onOptions.Here,we

input a target value of 10 and click OK. Figure 9-13 indicates the Minitab output.

FIGURE 9-13 Process capability analysis of nonnormal data.
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From the figure, observe that the transformed variable is indicated, the distribution of it

conforming to normality. A separate test for normality using the Anderson–Darling test

confirms this (p-value= 0.991). Long-termcapabilitymeasures ofCPUandCpk are0.30,with

the expected nonconformance rate being 18.20%. The current process is not capable.

Conducting capability analysis under the assumption of a normal distribution would not

be appropriate in this instance. One might verify that the value of Cpk in that case would

be inflated to 0.35, with the nonconformance rate being 14.77%, which would not be

representative of the current process.

9-9 SETTING TOLERANCES ON ASSEMBLIES AND COMPONENTS

Frequently, we need to determine the tolerance or specification limits that should be set on

assemblies or subassemblies, given the tolerances of the individual components. In this

section we assume that the processes making the assemblies or components are barely

capable. This means that the spread between the tolerances is the same as the process

spread (i.e., six times the process standard deviation). Thus, the process potential as

measured by theCp index is 1, so that virtually all products will be within the specification

limits.

Tolerances on Assemblies and Subassemblies

Assemblies and subassemblies are formed by combining two or more components.

The dimension of interest in an assembly may be the sum or the difference of the

individual components. Let’s consider an assembly made of the four components shown

in Figure 9-14. The components are welded together, and the weld thickness is

negligible. The quality characteristic of interest is the length of the assembly, Y. Denoting

the length of components A, B, C, and D as X1, X2, X3, and X4, respectively, the length of

the assembly is expressed as

Y � X1 � X2 � X3 � X4 �9-47� 
Now let’s look at another assembly of components A andB, shown in Figure 9-15. Here,

the dimension of interest is the exposed length of the longer part, which is given by

Y � X1 � X2 �9-48� 

FIGURE 9-14 Assembly of four components.
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FIGURE 9-15 Assembly of two components.

In general, the dimension of interest is expressed as a linear combination of some

individual component dimensions, for example,

Y � a1X1 � a2X2 � ∙ ∙ ∙ � akXk
k �9-49�� aiXi

where k represents the number of different individual dimensions. Note that the component

dimensionsXi and hence the assembly dimensionsY are randomvariables. Suppose that the

component dimensions Xi are random variables with mean μi and standard deviation σi.

Two important properties of the characteristic Y are its mean and variance. If the

component dimensions are independent of each other, the mean of Y is given by

μY � aiμi �9-50� 

where μi is the mean of the variable Xi and the values of ai are constants. So, in Figure 9-14,

k= 4, a1= 1, a2= 1, a3= 1, and a4= 1. The mean of Y is μY � μ1 � μ2 � μ3 � μ4: For the
two-component assembly in Figure 9-15, μY � μ1 � μ2.

In general, the variance of the dimension Y is given by

k k

Var�Y� � σ2Y � a2i Var�Xi� �  a2i σ
2
i �9-51� 

i�1 i�1

Equation (9-51) states that the variance of the dimension of interest (Y) is the sum of the

weighted variances of the individual dimensions; the weights are the square of

the coefficients of the linear combination. We assume that the individual dimensions are

independent of each other.

Using eq. (9-51), we get the following for the four-component assembly in Figure 9-14:

σ2 � σ2 � σ2 � σ2 � σ2: For the two-component assembly in Figure 9-15, σ2 � σ2 � σ2:Y 1 2 3 4 Y 1 2

If we can assume a certain distribution of the component dimension, we can derive the

distribution for the assembly dimension. In particular, if each Xi is normally distributed with

mean μi and standard deviation σi and is independent of all other Xi, the distribution of Ywill

also be normal, with mean given by eq. (9-50) and variance given by eq. (9-51). We can use

this property to find the proportion of assemblies whose dimension of interest lies between

certain bounds. Assuming a normal distribution of Y, the natural tolerance limits are

μY � 3σY �9-52� 
where σY represents the standard deviation of the dimension Y.

i�1

k

i�1
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Example 9-10 Refer to the four-component assembly shown in Figure 9-14. Suppose that

the mean lengths of the four components and their respective tolerances are as shown in the

following table:

Component Mean Length (cm) Tolerances (cm)

A

B

C

D

2

5

6

7

2± 0.3

5± 0.2

6± 0.2

7± 0.1

Assuming a normal distribution for the individual component dimensions, find the natural

tolerance limits for the assembly length. The design specifications for assembly length are

20± 0.3 cm. What proportion of the assemblies will be nonconforming? Comment on the

process capability to make assemblies that meet the design specifications.

Solution We will assume that the tolerances on the individual components have been set

such that they are at the natural tolerance limits. The standard deviations of the component

dimensions are estimatedassuminga6σ spreadbetween the tolerances.Our results are as follows:

Component A: σ1= (2.3� 1.7)/6= 0.100 cm

Component B: σ2= (5.2� 4.8)/6= 0.067 cm

Component C: σ3= (6.2� 5.8)/6= 0.067 cm

Component D: σ4= (7.1� 6.9)/6= 0.033 cm

The mean assembly length is found using eq. (9-50): μY � μ1 � μ2 � μ3 � μ4 � 20 cm:
The variance of the assembly length is found using eq. (9-51) : σ2 � Y

2 2 2�0:1� � �0:067� � �0:067� � �0:033�2 � 0:020. The standard deviation of thep
assembly length is σY � 0:020 � 0:142 cm:

From eq. (9-52), the natural tolerance limits for the assembly length are

μY � 3σY � 20 � �3��0:142� � 20 � 0:426
� �19:574; 20:426� cm

Since the individual component lengths are normally distributed, the assembly lengthswill

also be normally distributed with a mean of 20 cm and a standard deviation of 0.142 cm.

Furthermore, virtually all (99.74%) the assemblies will have a length between 19.574 and

20.426 cm.

The design specifications for the assembly length are 20± 0.3 cm. The proportion of non

conformingassemblies isnowcalculated.Thestandardizednormalvaluesat theUSLandLSLare
20:3 � 20 19:7 � 20

ZUSL � � 2:11; ZLSL � � � 2:11
0:142 0:142

From the standardnormal tables inAppendixA-3, the proportion above theUSL is 0.0174,

and that below the LSL is also 0.0174. The total proportion of nonconforming assemblies is

0.0348, or 3.48%.

Tolerance Limits on Individual Components

The tolerances or specification limits on an assembly are often determined from product

function and customer needs. The designer determines individual component tolerances that
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will give the specified assembly tolerances. As mentioned previously, although product

design should incorporate customer preferences, the design must also be realistic and

achievable. If the process that creates the assembly is not capable of meeting specifications,

this must be addressed in the product/process design phase. With this in mind, we now

demonstrate how tolerances of components are determined.

Example 9-11 Refer to the four-component assembly shown in Figure 9-14. Suppose

that the lengths of the components are normally and independently distributed with the

following means:

Component Mean Length (cm)

A 2

B 5

C 6

D 7

If the specifications for the assembly length are 20± 0.3 cm, what should the individual

component tolerances be? Assume that the component tolerances are equal and that

the specifications are barely equal to the natural tolerance limits, implying a capability ratio

of 1.

Solution The length of the assembly, Y, is the sum of the individual component

lengths; that is, Y=X1+X2+X3+X4. Because the X-values are normally distributed, Y is

normally distributed. Assuming that the specification limits equal the natural tolerance

limits, the standard deviation of the assembly length, σY, is estimated as σY � 
�20:3 � 19:7�=6 � 0:100:

Now, assuming the individual component lengths to be independent, using eq. (9-51) , we

haveσ2 � σ2 � σ2 � σ2 � σ42;whereσ2 represents thevarianceof thedimensionXi (for i= 1,Y 1 2 3 i

2, 3, 4). Assuming that σ2 � σ2 � σ2 � σ42, we get σ2 � 4σ12; yieldingσ2 � 0:0025: The1 2 3 Y 1p
standard deviation of X1 is σ1 � 0:0025 � 0:05 cm. Therefore, σ2 � σ3 � σ4 � 
σ1 � 0:05 cm.

The tolerances on the individual component dimensions are as follows:

Component Tolerance (cm)

A 2± (3)(0.05)= (1.85, 2.15)

B 5± (3)(0.05)= (4.85, 5.15)

C 6± (3)(0.05)= (5.85, 6.15)

D 7± (3)(0.05)= (6.85, 7.15)

In the manufacture of these components, the process capability should be determined and

compared to these natural tolerances. Doing sowill enable us to evaluate whether the process

is capable of making components that meet these desired tolerances.

Tolerance on Mating Parts

Mating parts (e.g., a shaft and a bearing, a pin and a sleeve, a piston and a cylinder) represent

a special form of assembly. In such assemblies, the type of fit between the mating parts is

classified into three categories.
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FIGURE 9-16 Clearance fit in an assembly.

ClearanceFit For a clearancefit, the size of thehole prior to assembly is always larger than

the size of the shaft. In the assembly there is always some room for play between the shaft and

the hole. The natural tolerance limits for the hole are outside the natural tolerance limits for the

shaft; in no instance will a shaft be larger than the hole. Figure 9-16 shows an assembly in

which the shaft diameter Xs is smaller than the hole diameterXh. The clearance is also shown.

Normality is assumed for the distribution of both the shaft and hole diameters; Figure 9-17

indicates their relative positioning. The mean shaft diameter is indicated by μs, and the mean

hole diameter is denotedbyμh.Given the natural tolerance limits for each, the shaftswill all be

smaller than the smallest hole, which will therefore provide a clearance fit. The assembly of a

piston within a cylinder in an automobile engine is an example of such a fit.

Interference Fit For an interference fit, the size of the hole before assembly is always

smaller than the size of the shaft.The shaft therefore has to be forced into the hole.The rangeof

the natural tolerance limits for the hole is below that for the shaft, and all hole diameterswill be

smaller than that of the smallest shaft. An example of such a fit is a pin that is forced into a

sleeve to stay in place. Such a condition is illustrated by switching the hole and shaft diameter

distributions in Figure 9-17.

Transition Fit For a transition fit, there is either a clearance or an interference in the

assembly. In some instances, the hole diameter will be larger than the shaft diameter, providing a

clearance; in others, the shaft diameter will be greater than the hole diameter, in which case an

interference fit will result. The natural tolerance ranges of the hole and shaft can overlap.

FIGURE 9-17 Distribution of shaft and hole diameters in a clearance fit.



SETTING TOLERANCES ON ASSEMBLIES AND COMPONENTS 485

FIGURE 9-18 Distribution of shaft and hole diameters in a transition fit.

Dependingon the relative locationof themeans and thevariabilityof thehole and shaft diameters,

an assemblywill be either a clearance or an interferencefit. Figure 9-18 shows the distributions of

the shaft and the hole diameters, indicated byXs andXh. Note that there is some overlap between

the natural tolerance limits of the shaft (LNTLs, UNTLs) and those of the hole (LNTLh, UNTLh).

Example 9-12 The specifications for the outside diameter of a shaft are 9.0± 0.10 cm and

those for the inside diameter of a bearing are 9.1± 0.13 cm.Assume that it is possible tomake

each component such that the natural tolerance limits equal the specifications (implying a

process capability ratio of 1). Also assume that the parts are produced independently and that

the diameters are normally distributed with their means at the respective target values. If a

clearance fit is desired between the shaft and the bearing, what proportion of the assemblies

will be unacceptable?

Solution LetXs denote the shaft outside diameter andXb the bearing inside diameter. Let

d represent the difference between the bearing inside diameter and the shaft outside diameter

(i.e., d=Xb�Xs). The mean of the shaft diameter, given by μs, is 9.0 cm; the mean of the

bearing diameter, μb, is 9.1 cm. The mean of the difference between the bearing and the shaft

diameters is μd � μ � 9:1 � 9:0 � 0:1 cm. The standard deviation of the shaft outside� μb s

diameter is found from the relation 6σs � 9:1 � 8:9 � 0:2; yielding σs = 0.033 cm. The

standard deviation of the bearing inside diameter is found from 6σb � 9:23 � 8:97 � 
0:26; yielding σb � 0.043 cm.

Since d=Xb�Xs, the variance of the difference between the bearing and shaft diameters is
2found asVar�d� � σ2 � σ2 � �0:043� � �0:033�2 � 0:00294: The standard deviation of db sp

is σd � 0:00294 � 0:054 cm.

Since the bearing and shaft diameters are each independently normally distributed, the

distribution of the difference d between the bearing and shaft diameters is also normally

distributed with mean μd= 0.1 and standard deviation σd= 0.054 cm.

Since a clearance fit is desired, unacceptable assemblies are those for which d< 0. To

determine the proportion of unacceptable assemblies, the standard normal value is found at

d= 0:

0 � μd 0 � 0:10
Z � � � � 1:85

σd 0:054

Based on the standard normal tables in Appendix A-3, the proportion of nonconforming

assemblies is 0.0322. In 3.22% of the assemblies, the shaft outside diameter will exceed the

bearing inside diameter and therefore be unacceptable.
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Nonlinear Combinations of Random Variables

In some situations, the variable of interest is a nonlinear function of the individual variables

(Xi, i= 1, 2, . . . , n). For example, the volume of a rectangular container is equal to the

product of the length,width, and height. In containers used for transporting goods, the volume

may be the characteristic of interest. Assume that a derived variable (Y) is given by

y � f �x1; x2; . . . ; xn� �9-53� 
If the nominal or target values of the Xi’s are given by μi, i= 1,2, . . . , n, using a Taylor

series expansion around these nominal values, we have

n @f
y � f �μ1; μ2; . . . ; μ � �  �xi � μi� � R �9-54�n @xii�1 μ1;μ2;...;μn

where R represents higher-order terms. If higher-order terms are neglected, the mean and the

variance are approximately given by

μ ' f �μ1; μ2; . . . ; μ � �9-55�y n

2
n @f

σ2 σ2' i �9-56� y @xi μ1;μ2;...; μi�1 n

where σ2 represents the variance of Xi.i

Example 9-13 A logistics companyuses containers for loading and unloading from ships to

railroad cars. The specifications on the container volume (V) are 60± 0.5m3. The specifica

tions on the length (L), width (W), and height (H) of containers barely equal their natural

tolerance limits and are given (inmeters) byL: 4± 0.06;W: 3± 0.03;H: 5± 0.03.Assume that

these dimensions are normally and independently distributed with their means at the nominal

values. Find the natural tolerance limits on volume.What proportion of the containers will be

nonconforming? What is the Cp index for volume?

Solution The defining relation is given by V=WLH. The mean volume (μV) is obtained

approximately as

μV � μWμLμH � �3��4��5� � 60

The standard deviation of the container dimensions is obtainedunder the assumptionof the

capability ratio being 1. We have σW= 0.03/3= 0.01, σL= 0.06/3= 0.02, and σH= 0.03/3=

0.01. The variance of volume �σ2 � is obtained approximately asV

2 2 2σ2 ' �μLμH� σ2 � �μWμH� σ2 � �μWμL� σ2V W L H

2 2 2� �20� �0:01�2 � �15� �0:02�2 � �12� �0:01�2 � 0:1444

This yields σV= 0.38. The natural tolerance limits on container volume are (under the

assumption of normality)

μV � 3σV or 60 � 1:14 m3
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Using the specifications on volume, the proportion of containers that are conforming is

found to be

60:5 � 60 59:5 � 60
Φ � Φ

0:38 0:38

� Φ�1:32� �  Φ� � 1:32� � 0:9066 � 0:0934 � 0:8134

The percentage of nonconforming containers= 1� 0.8134= 0.1866= 18.66%. Finally,

the process capability ratio is obtained as

60:5 � 59:5
Cp � � 0:439�6��0:38� 

This indicates that the current process is not capable.

9-10 ESTIMATING STATISTICAL TOLERANCE LIMITS OF A PROCESS

The natural tolerance limits define the inherent capability of a process. Consequently, it is

of interest to estimate these limits once a process is in statistical control. If control charts

are used to bring a process to control, information from these charts can be used to

determine the natural tolerance limits of the process. We discussed this approach earlier.

In this approach we assume that reliable estimates based on elaborate historical data are

available for the process mean and process standard deviation. If, however, data from a

small sample are used to generate estimates of the process mean and standard deviation,

statistical tolerance limits can be found. These limits are estimates of the natural tolerance

limits, and as the sample size increases, the statistical tolerance limits approach the natural

tolerance limits.

Let’s suppose that a desired level of the process capability index (assuming two-sided

specification limits) is 1.33. As discussed previously, for this condition to bemet, the actual

process spread must be three-fourths of the specification limit spread. In other words, the

specification limits must be four standard deviations from the process mean, and the natural

tolerance limits must be three standard deviations from the process mean.

Statistical Tolerance Limits Based on Normal Distribution

Let’s suppose that the quality characteristic X is normally distributed with mean μ and

standard deviation σ. Statistical tolerance limits that encompass 100(1� α)% of the product

can be constructed as

μ � Zα=2σ

In practice, however, the process mean and standard deviation are usually unknown; they

are estimated from sample estimates. So, for a sample of size n, the sample mean is X� and the

sample standard deviation is s. Since X� and s are estimates of μ and σ, it is not necessarily true

that X� � Zα=2s will include 100(1� α)% of the distribution. Note that X� and s are random

variables, whereas μ and σ are constants. Different samples will lead to different values of X�

and s,whichwill in turn lead todifferent estimatesof the limits. Someof these intervalsmaybe

very different from μ± Zα/2σ and may not include 100(1� α)% of the product.
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Values of a constant k are tabulated such that, in a large proportion (γ) of these

intervals X� � ks, at least 100(1� α)% of the distribution will be included. This constant k

depends on the sample size n, the level of confidence γ, and the percentage of the

distribution, 100(1� α)% that is to be minimally included in the interval. Two-sided

statistical tolerance limits are calculated from

X � ks �9-57� 
where k is found from tables in ISO 16269–6(2005): Determination of statistical tolerance

intervals.

If one-sided statistical tolerance limits are desired, a one-sided upper statistical tolerance

limit is X� � ks; and a one-sided lower statistical tolerance limit is X� � ks:
Note that there is a fundamental difference between confidence intervals and statistical

tolerance limits. Confidence intervals are found for a parameter of the process. A 95%

confidence interval for the process mean signifies that if a large number of such

confidence intervals are constructed, 95% of them will enclose the process mean.

Statistical tolerance limits, on the other hand, are designed to contain at least a specified

proportion, 100(1� α)%, of the population, with a certain probability γ. As the sample

size becomes large, the width of the confidence interval diminishes. In the limiting case,

as the sample size n approaches infinity, the width of the confidence interval approaches

zero. The statistical tolerance limits, in this case where n→1, approach the correspond

ing limits for the population. Hence, for 1� α = 0.95 and a two-sided confidence interval,

the value of k approaches 1.96 as n becomes large. The value of 1.96 is the standardized

normal value (Z-value) for 1� α= 0.95.

Nonparametric Statistical Tolerance Limits

Nonparametric statistical tolerance limits do not depend on the distribution of the quality

characteristic. These limits are valid for any continuous probability distribution. They are

based on the largest and smallest observations in the sample.

For two-sided tolerance limits, the number of observations n required to obtain a

probability γ that at least 100(1� α)% of the distribution will lie between the smallest and

largest sample observations is

χ22 � α 1� γ;4
n ' 0:5 � �9-58� 

α 4

Here χ2 is the upper 100(1� γ) percentile point of the chi-squared distribution with1� γ;4

four degrees of freedom; χ2 is tabulated in Appendix A-5.

If a one-sided nonparametric lower statistical tolerance limit is desired such that there is a

probability γ that at least 100(1� α)% of the population is greater than the smallest sample

value, the sample size is given by

ln�1 � γ� 
n � �9-59� 

ln�1 � α� 
Equation (9-59) is also used to determine the sample size required to construct a one-sided

nonparametric upper statistical tolerance limit. There is then a probability γ that at least

100(1� α)% of the population will be less than the largest value.
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Nonparametric tolerance limits usually require large sample sizeswhen both the desired

probability level and the desired percentage of the population to be included in the limits are

high. Available information on the quality characteristic should be used to estimate the form

of the distribution. The sample size needed to achieve a comparable degree of confidence and

proportion of population inclusion within the tolerance limits for various distributions is

usually less than that for nonparametric tolerance limits.

Example9-14 Compute the sample size for two-sidednonparametric tolerance limits. They

should contain 95% of the population with a probability of 0.99. The quality characteristic is

the concentration of potassium in a chemical compound in parts per million.

Solution Wehave1� α= 0.95andγ= 0.99.Fromthechi-squared tables inAppendixA-5,

we have χ2 � 13:28. The required sample size is0:01;4

2 � 0:05 13:28
n � 0:5 � � 129:98 ' 130

0:05 4

Thus, a sample of size 130 is chosen. After ranking the sample values in ascending order,

the minimum and maximum values are 28 and 49. The nonparametric tolerance limits are

(28,49). We are confident with a probability level of 0.99 that 95% of the population will be

contained within these limits.

Example 9-15 Compute the sample size for a one-sided upper nonparametric tolerance

limit. It should contain 98% of the distribution with a probability of 0.95. The quality

characteristic is the number of grams of fat in 10 kg of processed poultry.

Solution Wehave1� α= 0.98 and γ= 0.95.Using eq. (9-59), the required sample size is

ln�1 � γ� ln�0:05� 
n � � � 148:28 ' 149

ln�1 � α� ln�0:98� 
Thus, a sample of size 149 is chosen. The values in the sample are ranked; the maximum

value is 36 g.We are confident with a probability level of 0.95 that 98%of the populationwill

have a fat content of less than 36 g per 10 kg.

SUMMARY

In this chapter we have dealt with an important aspect that concerns all processes: the

determination of the inherent capability of the process. Capability analysis should be

performed on processes that are in control. This allows us to infer whether the process will

be able to produce items that conform to desired specifications. For two-sided limits, the

process spread must be less than the specification spread for the process to be considered

capable. The process must be centered at the most desirable location to minimize the

production of nonconforming items. For one-sided specification limits, the process mean

and spread should be such that virtually all items will meet the specifications. Changing the

processmean,which requires an adjustment of certain process parameters, is usually an easier

task than reducing the process variability. The process spread may be reduced through

fundamental changes in the process initiated by management.

Process capability measures, when a target or goal is specified, are also discussed. In

addition to estimates of the various process capability measures, confidence intervals are also

provided to make inferences on the capability of a process.
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Various measures of process capability involving the process mean, process standard

deviation, target value, and specification limits have been developed in this chapter.

Procedures have been described for determining the proportion of nonconforming product.

Procedures for determining process capability have been discussed. We also described the

determination of tolerances for assemblies and subassemblies and the setting of component

tolerances depending on assembly specifications. Methods for determining statistical toler

ance limits have also been discussed.

The procedures described in this chapter help us decide whether an existing process is

capable of meeting customer requirements or needs to be changed. Continual process

improvement is a goal that should be adopted by every company.

KEY TERMS

accuracy process capability indices

assemblies confidence intervals

Box–Cox transformation Cp

capability ratio Cpk

clearance fit Cpm

components Cpmk

gage Cpq

bias lower capability index

linearity upper capability index

R&R process capability limits

repeatability process spread

reproducibility specification limits

stability statistical tolerance limits

interference fit based on normality assumption

mating parts nonparametric approach

measurement errors tolerance limits

natural tolerance limits lower tolerance limit

precision-to-tolerance ratio upper tolerance limit

process capability transition fit

process capability analysis

EXERCISES

Discussion Questions

9-1 Explain the difference between specification limits and control limits. Is there a

desired relationship between the two?

9-2 Explain the difference between natural tolerance limits and specification limits. How

does a process capability index incorporate both of them?What assumptions aremade

in constructing the natural tolerance limits?

9-3 What are statistical tolerance limits? Explain how they differ from natural tolerance

limits.
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9-4 Is it possible for a process to be in control and still produce nonconforming output?

Explain. What are some corrective measures under these circumstances?

9-5 What are the advantages of having a process spread that is less than the specification

spread? What should the value of Cp be in this situation? Could Cpk be � 1 here?

9-6 Compare the capability indices Cpk, Cpm, and Cpmk and discuss what they measure in

the process. When would you use Cpq?

9-7 What condition must exist prior to calculating the process capability? Discuss how

process capability can be estimated through control charts.

9-8 Suppose that the time to complete a project is the sum of several independent

operations. If the means and standard deviations of the independent operations are

known, determine the mean and standard deviation of the project completion time. If

the operations are not independent, what effect will this have on the mean and

standard deviation of completion time?

9-9 Suppose that the dimension of an assembly has to be within certain tolerances.

Discuss how tolerances could be set for the components given that the difference

between two component dimensions comprises this assembly dimension. Assume

that the inherent variability of each component is equal.

9-10 Discuss the importance of identifying an appropriate distribution of the quality

characteristic in process capability analysis. Address this in the context of waiting

time for service in a fast-food restaurant during lunch hour.

9-11 Discuss how the precision of ameasurement system affects the process potential in the

context of measuring unloading times of supertankers. What bounds exist on the

observed process potential?

9-12 Distinguish between gage repeatability and gage reproducibility in the context of

measuring unloading times of supertankers.

Problems

9-13 A pharmaceutical company producing vitamin capsules desires a proportion

of calcium content between 40 and 55 ppm. A random sample of 20 capsules

chosen from the output yields a sample mean calcium content of 44 ppm with a

standard deviation of 3 ppm. Find the natural tolerance limits of the process. If

the process is in control at the present values of its parameters, what proportion of

the output will be nonconforming, assuming a normal distribution of the

characteristic?

9-14 For Exercise 9-13, find the Cp index. Comment on the ability of the process to meet

specifications. What proportion of the specification range is used up by the process?

If it is easier to change the process mean than to change its variability, to what

value should the process mean be set to minimize the proportion of nonconforming

product?

9-15 The emergency service unit in a hospital has a goal of 3.5minutes for the waiting time

of patients before being treated. A random sample of 20 patients is chosen and the
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sample average waiting time is found to be 2.3 minutes with a sample standard

deviation of 0.5 minute. Find an appropriate process capability index. Comment on

the ability of the emergency service unit to meet the desirable goal, assuming

normality. What are some possible actions to consider?

9-16 Refer to Exercise 9-13. Find the process capability indexCpk and comment on process

performance. If the target value is 47.5 ppm, find the Cpm and Cpmk indices and

comment on their values. If the process center is shifted to the midpoint between the

specification limits, what proportion of the product will be nonconforming? Has it

improved relative to the present setting of the process mean?

9-17 The diameter of a forged part has specifications of 120± 5 mm. A sample of 25 parts

chosen from the process gives a sample mean of 122mm with a sample standard

deviation of 2mm.

(a) Find the Cpk index for the process and comment on its value. What is the

proportion of nonconforming parts assuming normality? If the target value is

120mm, find the Cpm and Cpmk indices and comment on their values. If the

processmean is to be set at the target value, howmuch of a reduction would occur

in the proportion nonconforming?

(b) Parts with a diameter below the lower specification limit cost $1.00 per part to be

used in another assembly; those with a diameter above the upper specification

limit cost $0.50 per part for rework. If the daily production rate is 30,000 parts,

what is the daily total cost of nonconformance if the process is maintained at its

current setting? If the process mean is set at the target value, what is the daily total

cost of nonconformance?

9-18 The waiting time in minutes before being served in a local post office is observed for

50 randomly chosen customers:

(a) Test for normality using α= 0.05. What inferences can you draw?

(b) Estimate the mean and standard deviation of the waiting times.

(c) If the goal of the post office is for thewaiting time not to exceed 4minutes, find the

capability indices CPU and Cpk and comment on these values. Assuming

normality, what proportion of the customers, if any, will have to wait for more

than 4 minutes?

2.1 0.5 3.6 1.4 2.0 1.9 2.4 2.7 2.1 1.8

0.8 0.4 4.2 3.5 2.5 4.6 3.8 1.5 4.5 3.9

4.8 2.8 1.9 1.2 3.2 5.5 2.5 3.8 5.0 4.6

1.6 2.5 2.4 1.9 2.0 2.1 2.8 1.6 3.8 4.2

3.5 5.2 3.1 1.6 1.5 3.5 5.2 4.8 3.9 2.6

9-19 A major automobile company is interested in reducing the time that customers have to

wait while having their car serviced with one of the dealers. They select four customers

randomly each day and find the total time that each of those customers has to wait

(inminutes)while havinghis or her car serviced.Next, from these four observations, the

sample average and range are found. This process is repeated for 25 days. The summary
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data for these observations are
25 25

Xi � 1000; Ri � 250
i�1 i�1

(a) Find the X�- and R-chart control limits.

(b) Assuming that the process is in control and that a desirable value on the upper

bound of the waiting time is 50 minutes, calculate a process capability index and

comment on its value.

(c) Assuming a normal distribution ofwaiting times,find the proportion of customers

that will have to wait more than 50 minutes.

(d) To reduce the waiting time of customers, the service manager hires some

additional mechanics, which reduces the average waiting time to 35 minutes.

What proportion of the customers will still have to wait more than 50 minutes if

the variability in service times is the same as before?

9-20 Light bulbs are tested for their luminance, with the intensity of brightness desired to be

within a certain range. Random samples of five bulbs are chosen from the output and

their luminance values measured. The sample mean X� and standard deviation s are

found. After 30 samples, the following summary information is obtained:

30 30

Xi � 2550; si � 195
i�1 i�1

The specifications are 90± 15 lumens.

(a) Find the control limits for the X�- and s-charts.

(b) Assuming that the process in control, estimate the process mean and process

standard deviation.

(c) Find the process capability indices Cp and Cpk and comment on their

values.

(d) If the target value is 90 lumens, find the capability indices Cpm and Cpmk.

(e) What proportion of the output is nonconforming, assuming a normal distribution

of the quality characteristic?

(f) If the process mean is moved to 88 lumens, what proportion of the output is

nonconforming? What are your proposals to improve process performance?

9-21 The amount of a preservative added to dairy products should not exceed certain

levels of 23± 6mg (set by the Food and Drug Administration). Samples of size

5 of processed cheese produced the values of the average and range shown in

Table 9-6.

(a) Construct appropriate control charts and determine stability of the process.

(b) If the process is out of control, assuming remedial actions will be taken, estimate

the process mean and standard deviation.

(c) Assuming normality and a target value of 23mg, determine the indices Cp, Cpk,

Cpm, and Cpmk.

(d) What proportion of the dairy products meets government standards, assuming

normality?

(e) Find a 95% confidence interval for Cpk, assuming normality.

(f) Can we conclude that Cpk is less than 1? Use α= 0.05.
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TABLE 9-6

Average Level Average Level of

Observation of Preservative (mg) Range Observation Preservative (mg) Range

1 22 5 14 22 7

2 26 4 15 20 5

3 26 6 16 24 8

4 24 7 17 25 6

5 22 3 18 23 8

6 21 5 19 20 5

7 29 7 20 22 4

8 25 8 21 22 6

9 22 4 22 23 7

10 25 6 23 24 5

11 25 9 24 22 6

12 22 3 25 25 5

13 21 5

9-22 Consider the assembly of three components shown in Figure 9-19. The tolerances for

these three components are given in Table 9-7. Assume that the tolerances on the

components are independent of each other and that the lengths of the components are

normally distributed with a capability ratio of 1. What is the tolerance of the gap?

Assuming normality, if specifications for the gap are 0.9± 0.201 cm, what proportion

of the assemblies will not meet specifications? How could the proportion of

nonconforming assemblies be reduced?

FIGURE 9-19 Assembly of three components.

TABLE 9-7

Component Mean Length (cm) Tolerance (cm)

A

B

C

10

4

5

10± 0.5

4± 0.2

5± 0.1

9-23 In Exercise 9-22, suppose that the specifications for the gap are 1.05± 0.15 cm. An

assembly with a gap exceeding the upper specification limit is scrapped, whereas that

with a gap less than the lower specification limit can be reworked to increase the gap

dimension. The unit cost of rework is $0.15 and that for scrap is $0.40. If the daily

production rate is 2000, calculate the daily total cost of scrap and rework.Howcan this

cost be reduced?
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9-24 Refer to the four-component assembly shown in Figure 9-14. Assume that the length

of each component is normally and independently distributed with the means shown

in Table 9-8. The specifications for the assembly length are 35± 0.5 cm. Assuming

that the natural tolerances (or process spread) for all four components are equal to each

other and that the specifications barely match the natural tolerance limits, find the

tolerances on the individual components.

TABLE 9-8

Component Mean Length (cm)

A 3

B 8

C 10

D 14

9-25 Refer to Exercise 9-24. Suppose that the specifications for the assembly length are

35± 0.3 cm and that the tolerances of A andC are equal but those for B andD are each

twice as large as that for A. In addition, assume that the specifications are barely equal

to the natural tolerance limits. Find the tolerances for each component.

9-26 Consider the two-component assembly shown in Figure 9-15. Suppose that the

specifications for the dimension X2 are 5± 0.05 cm and those for X1 are 12± 0.15 cm.

Find the specifications for the dimension Y. Assume that the specification limits equal

the natural tolerance limits. For what proportion of the assemblies will the dimension

Y exceed the value 7.10 cm? Assume that the component dimensions X1 and X2 are

normally distributed.

9-27 Consider the two-component assembly shown in Figure 9-15. Suppose that the mean

lengths are given as μ1= 14 cm and μ2= 8 cm. Assuming that the specifications for Y

are 6± 0.2 cm,what are the tolerances forX1 andX2?Assume that the variance ofX1 is

three times as large as that of X2.

9-28 Four metal plates, each of thickness of 3 cm, are welded together to form a

subassembly. The specifications for the thickness of each plate are 3± 0.2 cm.

Assuming the weld thickness to be negligible, determine the tolerances for the

assembly thickness.

9-29 Consider Figure 9-16, which shows the assembly of a shaft in a bearing. The

specifications for the shaft diameter are 6± 0.06 cm, and those for the hole diameter

are 6.2± 0.03 cm.

(a) Find the probability of the assembly having a clearance fit.

(b) What is the probability of the assembly having an interference fit?

9-30 The specifications for a shaft diameter in an assembly are 5± 0.03 cm, and those for

the hole are 5.25± 0.08 cm. If the assembly is to have a clearance of 0.18± 0.05 cm,

what proportion of the assemblies will be acceptable?

9-31 Refer to Exercise 9-30. If there is toomuch clearance between the hole and the shaft, a

wobble will result. Clearances above 0.05 cm are not desirable and cause a wobble.

Find the probability of a wobble.
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9-32 In a piston assembly, the specifications for the piston diameter are 12± 0.5 cm, and

those for the cylinder diameter are 12.10± 0.4 cm. Assume that the natural tolerance

limits coincide with the specifications. A clearance fit is required for the assembly.

What proportion of the assemblies will be nonconforming, assuming a normal

distribution of the piston and cylinder diameters? Clearances more than 0.8 cm are

undesirable. What proportion of the assemblies will not meet this stipulation?

9-33 A logistics firm has identified four operations, which are to be conducted in

succession, for an order to be processed. The tolerances (in hours) are shown in

Table 9-9. Assume that the tolerances are independent of each other and that the time

in each phase is normally distributed. Further assume that for each operation the

processes are barely capable.

(a) Find the natural tolerance limits for order completion time.

(b) If the company sets a goal of 23.5 hours, what proportion of the orders will fail to

satisfy this goal?

(c) Find an appropriate capability index and comment.

(d) Using a methods study, the company has improved operation 3 to a mean time of

7.0 hours. What proportion of the orders will now meet the goal?

TABLE 9-9

Operation Mean Time (hours) Tolerance (hours)

1 6 6± 0.6

2 4 4± 0.6

3 8 8± 0.8

4 5 5± 0.3

9-34 Measurements on the pH values of a chemical compound are taken at randomby two

operators. Fifteen samples are randomly chosen, with each operator measuring each

sample twice. The data are shown in Table 9-10. Specifications on pH are 6.5± 0.05.

Comment on the capability of the measurement system. Calculate % gage R&R,

precision-to-tolerance ratio, % of process variation, and number of distinct catego

ries and comment on them. What are the observed process potential and the true

process potential? Find a 95% confidence interval for Cp.

9-35 Consider the data on call waiting time of customers in a call center (Exercise 5-9). The

call center has set a goal of waiting time not to exceed 35 seconds.

(a) Test to see (using α= 0.05) if conducting capability analysis using normal

distribution is appropriate.

(b) If not, consider a Box–Cox transformation and conduct capability analysis.

Report appropriate capability indices and the percentage nonconformance.

(c) Consider conducting capability analysis using a Weibull distribution. Comment

on the results.

(d) What are the drawbacks of conducting a capability analysis using the normal

distribution in this example?

9-36 A cylindrical piece is used in an assembly in which the weight is to be controlled. The

tolerances on diameter and height, on the basis of five observations, are 2± 0.06 cm
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TABLE 9-10

Operator 1’s pH Values Operator 2’s pH Values

Measurement 1 Measurement 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

6.28

6.12

6.64

6.85

6.92

6.43

6.36

6.50

6.75

6.68

6.34

6.54

6.82

6.48

6.53

6.24

6.18

6.58

6.92

6.83

6.52

6.44

6.56

6.68

6.60

6.39

6.62

6.73

6.40

6.59

6.25

6.06

6.61

6.78

6.85

6.38

6.35

6.46

6.69

6.65

6.28

6.48

6.76

6.49

6.47

6.26

6.11

6.69

6.84

6.91

6.45

6.42

6.51

6.75

6.72

6.36

6.56

6.83

6.44

6.53

and 6± 0.06 cm, respectively. Assume that the dimensions are independent of each

other and are each normally distributed with a capability ratio of 1. What are the

natural tolerance limits on the volume of the cylinder? If specifications on volume are

18.5± 0.6 cm3, what proportion of the cylinders will be nonconforming, assuming

normality? What is the Cp index? If the target volume is 18.5, what is the Cpm index?

Test a hypothesis to determine if Cp is less than 0.6 using α= 0.05.

9-37 In solar cells, the exposed surface area is the characteristic of interest. The tolerances

on the length and width of the cells are 4± 0.06 cm and 5± 0.09 cm, respectively.

Assuming these dimensions to be independent of each other and each

normally distributed with a capability ratio of 1, what are the natural tolerance limits

on surface area? If the design calls for specifications on the surface area to be 20± 0.4,

what proportion of the cellswill be unacceptable assuming normality?What is theCp

index? If we did not know the distribution of surface area, how would a capability

index be found?

9-38 The body mass index (BMI) is a measure of obesity and equals a person’s weight

(in kilograms) divided by the height (in meters) squared. For a certain diagnosis-

related group of 20 patients, the following natural tolerances were obtained onweight

(60± 5 kg) and height (1.7± 0.09m). Assume that the distributions of weight and

height are each normal. What are the natural tolerances on BMI for this group of

patients? A BMI of 30.0 or more is considered to represent obesity. What proportion

of the patients do you expect to be obese, assuming normality? Find the Cp index and

establish a 95% lower confidence interval.

9-39 Find the sample size required for two-sided nonparametric statistical tolerance limits

for the viscosity of a grease used as a lubricant. It should contain 99% of the

population with a probability of 0.95. How will the interval be found?
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9-40 Refer to Exercise 9-39. Find the sample size needed to construct a one-sided lower

nonparametric statistical tolerance limit. It should contain 90% of the population with

a probability of 0.95. How will the limit be found?

9-41 Refer to Exercise 9-33 on the order completion time of a logistics firm. Upon

conducting a methods study of the various operations, the firm was able to reduce the

mean times of operation 1 to 5.8 hours and that of operation 3 to 7.5 hours. Assume

that the tolerances did not change. The customer requires an order completion time of

23.2 hours. Assuming normality, what proportion of orderswill notmeet the customer

requirements?

9-42 An investment bank has been monitoring its return on investment for a certain

category of its shareholders. Past data show a mean yield of 7.5% with a standard

deviation of 1.5%. Assuming normality of distribution of yield rates, if senior

management has set a goal of 9% for yield, what is the lower capability index? In

what proportion of the time will the goal be met?

9-43 Refer to Exercise 9-42. With the adoption of a slightly more conservative investment

strategy, the bank forecasts a mean yield of 7.0% with a standard deviation of 0.9%.

Assuming normality of distribution of yield rates, what is the lower capability index if

the goal value is still 9.0%? In what proportion of the time will the goal be met?

9-44 Refer to Exercise 9-43 on the investment bank. Using the investment strategy that

yields a mean yield of 7.0% with a standard deviation of 0.9%, what should a

published goal of yield for customers be if the bank wants to be 95% sure of meeting

that goal?

9-45 Refer to Exercise 9-42. The investment bankwas able to identify a riskier strategy that

projects a mean yield of 9.2%with a standard deviation of 2.4%. Assuming normality

of distribution of yield rates, what is the lower capability index now if a target goal of

9% is set? In what proportion of the time will the goal be met? Would you prefer this

strategy relative to the strategy in Exercise 9-42?

9-46 For a marketing manager of a company, product sales in a specified market is of

importance. Currently, for a brand-named product, themeanmonthly sales is $50,000

with a standard deviation of $3500. Assuming normality of the distribution of

monthly sales, for a minimum monthly goal of $42,000, what is the lower capability

index? In what proportion of the time will the goal value be met?

9-47 Refer to Exercise 9-46. In order to boost product sales, the manager is contemplating

the hiring of an additional sales staff. The added monthly cost of this hire will be

$6000, but the expected monthly sales is projected to be $65,000 with a standard

deviation of $5000. If the monthly goal value is still $42,000, what is the lower

capability index? Is this a better situation compared to that in Exercise 9-46? In what

proportion of the time will the goal value be met now?

9-48 A health care facility in a metropolitan area is interested in the efficiency of its

laboratory turnaround time. Based on data collected over last year, the mean turn

around time was found to be 55 minutes with a standard deviation of 15 minutes. The

facility has set a goal value of 60 minutes. Find an upper capability index assuming

normality of distribution of turnaround times. In what proportion of time will the goal

be met?
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9-49 Refer to Exercise 9-48. The quality improvement team, after a thorough study of the

existing processes, recommended some procedural changes. Data collected after the

changes yielded a mean turnaround time of 40 minutes with a standard deviation of

10 minutes. If the goal value is still 60 minutes, find an upper capability index

assuming normality of distribution of turnaround times. In what proportion of time

will the goal be met?

9-50 Refer to Exercise 9-49 on the laboratory turnaround time data. The facility wanted to

compare its updated performance to anothermetropolitan facility serving the needs of

similar patients. The other facility had a mean turnaround time of 35 minutes with a

standard deviation of 15 minutes. If the goal value is still 60 minutes, find an upper

capability index for this other facility assuming normality of distribution of turn

around times. In what proportion of time will the goal be met by this other facility?
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Summary

Symbols

p

N

n

Pa

c1, c2

r1, r2

n1, n2

AOQ

AOQL

ATI

Proportion nonconforming, or lot quality

Lot size

Sample size for a single sampling plan

Acceptance number for a single sampling plan

Probability of accepting a lot

Acceptance numbers for the first and second

samples of a double sampling plan

Rejection numbers for thefirst and second samples

of a double sampling plan

Size of the first and second samples in a double

sampling plan

Average outgoing quality

Average outgoing quality limit

Average total inspection

ASN

AQL

LQL

Xa

α

β

μ

σ

X

s

Z

L

U

X

QL, QU

M

k

p̂

Average sample number

Acceptable quality level

Limiting quality level

Acceptance limit

Producer’s risk

Consumer’s risk

Process mean

Process standard deviation

Sample mean

Sample standard deviation

Standard normal value

Lower specification limit

Upper specification limit

Quality characteristic

Quality index

Maximum allowable percent

nonconforming

Acceptability constant

Estimated lot percent nonconforming
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10-1 INTRODUCTION AND CHAPTER OBJECTIVES

In this chapter we examine acceptance sampling and procedures for product acceptance or

rejection. Acceptance sampling planswhere inspection is by attributes are discussed. In these

plans, a product item is classified as conforming or not, but the degree of conformance is not

specified. Although in certain sampling plans the terms defect and defective are used

interchangeably with nonconformity and nonconforming item, we use the latter two terms

exclusively in this chapter.We also discuss acceptance planswhere inspection is byvariables.

In these plans, the quality characteristic is expressed as a numerical value.

Acceptance sampling can be performed during inspection of incoming raw materials,

components, and assemblies, in various phases of in-process operations, or during final

product or service inspection. It can be used as a form of product inspection between

companies and their vendors, between manufacturers and their customers, or between

departments or divisions within the same company.

Note that acceptance sampling does not control or improve the quality level of the process.

As stressed previously, quality cannot be inspected into a product or service; quality must be

designed and built into it. Because of the very nature of sampling, acceptance sampling

procedures will accept some lots and reject others, even though they are of the same quality.

Therefore,methods of process control and improvement are essential; they are the onlyway to

improve quality.

In addition to demonstrating procedures to select an acceptance sampling plan, another

objective is to discuss howprior information alongwith information from the sample selected

can be used to make decisions.

10-2 ADVANTAGES AND DISADVANTAGES OF SAMPLING

Keeping inmind that acceptance samplingplans are auditingprocedures, let’s compare them to

100% inspection (sometimes referred to as screening). Sampling is advantageous in that:

1. If inspection is destructive, 100% inspection is not feasible.

2. Sampling ismore economical and causes less damagedue to handling. If inspection cost

is high or if inspection time is long, limited resources may make sampling preferable.

3. Sampling reduces inspection error. In high-quantity, repetitive inspection, such as

100% inspection, inspector fatigue can prevent the identification of all nonconfor

mities or nonconforming units.

4. Sampling provides a strong motivation to improve quality because an entire batch or

lot may be rejected.

Sampling plans are disadvantageous in that:

1. There is a risk of rejecting “good” lots or accepting “poor” lots, identified as the

producer’s risk and consumer’s risk, respectively.

2. There is less information about the product compared to that obtained from 100%

inspection.

3. The selection and adoption of a sampling plan require more time and effort in planning

and documentation.
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10-3 PRODUCER AND CONSUMER RISKS

In acceptance sampling, units are randomly chosen fromabatch, lot, or process. There are two

types of risk inherent in any sampling plan as discussed in the following material:

Producer’s Risk: The risk associated with rejecting a “good” lot, due to the inherent nature

of random sampling, is defined as a producer’s risk. The notion of the quality level of lots that

defines acceptable level or “good” product will be influenced by the needs of the customer.

Acceptable quality level (AQL) is the terminology used to define this level of quality.

Consumer’s Risk: The risk associatedwith accepting a “poor” lot, due to the inherent nature

of randomsampling, is defined as a consumer’s risk. Further, normsof customer requirements

will govern the definition of a “poor” lot.Limiting quality level (LQL) or rejectable quality

level (RQL) is the terminologyused to define this level of unacceptable quality.Analternative

terminology, when the quality level is expressed in percentage nonconformance, is lot

tolerance percent defective (LTPD).

Thus, when we state a producer’s risk in a sampling plan, wemust correspondingly state a

desirable level of quality that we prefer to accept. For example, if we state that the producer’s

risk is 5% for anAQLof 0.02, itmeans thatwe consider batches that are 2%nonconforming to

be good and prefer to reject such batches nomore than 5%of the time. If the consumer’s risk is

10% for an LQL of 0.08, this means that batches that are 8% nonconforming are poor and we

prefer to accept these batches no more than 10% of the time.

10-4 OPERATING CHARACTERISTIC CURVE

The operating characteristic (OC) curve measures the performance of a sampling plan. It

plots the probability of accepting the lot versus the proportion nonconforming of the lot. It

shows the discriminatory power of the sampling plan. For all sampling plans, we want to

accept lots with a low proportion nonconforming most of the time and we do not want to

accept batches with a high proportion nonconforming very often. TheOC curve indicates the

degree to which we achieve this objective.

What is the ideal OC curve? Let’s suppose that we have chosen a proportion nonconform

ing level p0 such that if a lot has a proportion nonconforming less than or equal to p0, we

consider it to be a good lot and we accept it. On the other hand, if the proportion

nonconforming of the lot exceeds p0, we consider the lot to be poor and we reject it. The

idealOCcurve for these circumstances is shown inFigure 10-1.Theprobability of acceptance

of the lot, Pa, is 1 for values of the proportion nonconforming, p� p0, and 0 for p> p0. This

assumes that we have selected a quality level p0 that reflects the demarcation between

acceptable and unacceptable lots. A sampling plan with such an OC curve is totally

discriminatory in nature.

In practice, however, the shape of theOCcurve is not ideal. To construct theOCcurve for a

single sampling plan, let N denote the lot size, n the sample size, and c the acceptance

number.A randomsample of size n is chosen from the lot of sizeN. If the observed number of

nonconforming items or nonconformities is less than or equal to c, the lot is accepted.

Otherwise, the lot is rejected.

To construct a type A OC curve, we assume that the sample is chosen from an isolated

lot of finite size. The probability of accepting the lot is calculated based on a
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FIGURE 10-1 Ideal operating characteristic curve.

hypergeometric distribution. The probability of finding x nonconforming items in the

sample is given by

D N � D

x n � x
P�x� �  �10-1)

N

n

where D represents the number of nonconforming items in the lot. Since the lot will be

accepted if c or fewer nonconforming items are found, the probability of lot acceptance is
c

Pa � P�x � c� �  P�x� �10-2)

where P(x) is given by eq. (10-1).

To construct a typeBOCcurve,we assume that a streamof lots is produced by the process

and that the lot size is large (at least 10 times) compared to the sample size. As discussed in

Chapter 4, a binomial distribution can be used to find the probability of observing x

nonconforming items in a sample of size n. Assuming the lot proportion nonconforming

is p, this probability is given by

n xP�x� �  p �1 � p�n�x �10-3)
x

The lot acceptanceprobability is thengivenbyeq. (10-2),whereP(x) is givenbyeq. (10-3).

Alternatively, the cumulative binomial probability tables given in Appendix A-l can be used

if the appropriate parameter values n and p are tabulated.

If the lot size is large and the probability of a nonconforming item is small, as explained in

Chapter 4, a Poisson distribution canbeused as an approximation to the binomial distribution.

The probability of x nonconforming items in the sample is found from

�λλxe
P�x� �  �10-4)

x!

x�0
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where λ= np represents the average number of nonconforming items in the sample. The

probability of lot acceptance, Pa, can then be found from eq. (10-2), where P(x) is given by

eq. (10-4). The cumulative Poisson probability distribution tabulated inAppendixA-2 can be

used for appropriate values of the parameter λ. In this chapter we use the Poisson distribution

tofindprobabilities associatedwith lot acceptancewhenever appropriate. Because the lot size

is usually large compared to the sample size and the values of the proportion nonconforming p

we are interested in are small, the Poisson distribution provides a reasonable approximation.

Example 10-1 Construct an OC curve for a single sampling plan where the lot size is 2000,

the sample size is 50, and the acceptance number is 2.

Solution We are given N= 2000, n= 50, and c= 2. The probability of lot acceptance is

equivalent to the probability of obtaining two or fewer nonconforming items in the sample.

The Poisson probability distribution in Appendix A-2 is used to obtain the lot acceptance

probability for different values of the proportion nonconforming p. Let’s suppose that p is

0.02 (i.e., the batch is 2% nonconforming). Since np= (50) (0.02)= 1.0, the probabilityPa of

accepting the lot (using Appendix A-2) is 0.920. Table 10-1 shows values of Pa for various

values of p. In some instances, the probability values are linearly interpolated fromAppendix

A-2. A plot of these values, the OC curve, is shown in Figure 10-2.

The discriminating power of the sampling plan N= 2000, n= 50, c= 2 can be seen from

the OC curve in Figure 10-2. If a series of batches, each of which is 1% nonconforming,

comes in for inspection, then (using this plan) the probability of lot acceptance is 0.986. It

means that, on average, about 986 out of 1000 such batches will be accepted by the

sampling plan. On the other hand, if batches are 5% nonconforming, only about 544 out of

1000 batches will be accepted. As the lot quality becomes poorer, the probability of lot

acceptance decreases, as it should. The steeper the drop in the probability of lot acceptance

as lot quality worsens, the higher the discriminatory power of the sampling plan.

Producer and consumer risk can also be demonstrated through theOC curve. Suppose that

our numerical definition of good quality (indicated by the AQL) is 0.01 and that of poor

quality (indicatedby theLQL) is 0.11.From theOCcurve inFigure 10-2, theproducer’s riskα

is 1� 0.986= 0.014. We consider batches that are 1% nonconforming to be good. If our

sampling plan is used, such batches will be rejected about 1.4% of the time. Batches that are

TABLE 10-1 Lot Acceptance Probabilities for Different Values of Proportion

Nonconforming for the Sampling Plan N= 2000, n= 50, c= 2

Proportion Probability of Proportion Probability of

Nonconforming, Lot Acceptance, Nonconforming, Lot Acceptance,

p np Pa p np Pa

0.0 0.0 1.000 0.08 4.00 0.238

0.005 0.25 0.997 0.09 4.50 0.174

0.01 0.50 0.986 0.10 5.00 0.125

0.02 1.00 0.920 0.11 5.50 0.088

0.03 1.50 0.809 0.12 6.00 0.062

0.04 2.00 0.677 0.13 6.50 0.043

0.05 2.50 0.544 0.14 7.00 0.030

0.06 3.00 0.423 0.15 7.50 0.020

0.07 3.50 0.321
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FIGURE 10-2 OC curve for the sampling plan in Example 10-1.

11% nonconforming, on the other hand, will be accepted 8.8% of the time. The consumer’s

risk is therefore 8.8%.

Effect of the Sample Size and the Acceptance Number

Theparametersn and cof the samplingplan affect the shapeof theOCcurve.As long as the lot

size N is significantly large compared to the sample size n, the lot size does not have an

appreciable impact on the shapeof theOCcurve. Forfixedvalues ofNand c, as the sample size

becomes larger, the slope of theOCcurve becomes steeper, implying a greater discriminatory

power.

Figure 10-3 shows the OC curves for three sampling plans. Note that, for lots that are 2%

nonconforming, the sampling planN= 2000, n= 50, c= 2will accept such lots about 92% of

the time. However, for the same lots, the sampling plan N= 2000, n= 200, c= 2 will accept

FIGURE 10-3 Effect of the sample size on the shape of the OC curve.
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FIGURE 10-4 Effect of the acceptance number on the shape of the OC curve.

them only 23.8% of the time. Changing the sample size from 50 to 200 causes a drop in the

acceptance probability of 68.2%.

Forfixedvalues of the lot sizeN and the sample sizen, as the acceptance number decreases,

the slope of the OC curve becomes steeper. Figure 10-4 shows the OC curves for four

sampling plans. Note that the probability of acceptance decreases for a given lot quality as the

acceptance number c decreases.

One comment needs to be made regarding the case where the acceptance number is zero.

The OC curve starts dropping drastically even as the proportion nonconforming deviates

slightly from zero. Thismay not be desirable from a producer’s point of view. For example, if

lots that are 0.5% nonconforming are considered acceptable, the sampling plan N= 2000,

n= 50, c= 0 will reject such lots about 22% of the time, implying a high value of the

producer’s risk. Sampling plans with c= 0 do not have the desirable inverted-S shape of the

ideal OC curve. They are, however, stringent and serve a need.

The chosen values of n and c should be such that they match the goals of the user. Given

some desirable producer’s risk and the associated quality level of a good lot (AQL) and/or a

desirable consumer’s risk and an associated quality level of a poor lot (LQL), the combination

of n and c that produces an OC curve that matches these goals will provide an acceptable

sampling plan.

10-5 TYPES OF SAMPLING PLANS

There are, generally speaking, three types of attribute sampling plans: single, double, and

multiple. In a single sampling plan, the information obtained from one sample is used to

make a decision to accept or reject a lot. There are two parameters in this sampling plan: the

sample size n and the acceptance number c. The plan operates as follows.A random sample of

size n is selected from the batch. The number of nonconforming items or nonconformities in

the sample is found and compared to the acceptance number c. If the observed number is less

than or equal to the acceptance number, the lot is accepted. If more than c nonconforming

items or nonconformities are found in the sample, the lot is rejected.

Adouble sampling plan involvesmaking a decision to accept the lot, reject the lot, or take

a second sample. If the inference from the first sample is that the lot quality is quite good, the
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lot is accepted. If the inference is poor lot quality, the lot is rejected. If thefirst sample gives an

inference of neither good nor poor quality, a second sample is taken. Thereafter, based on the

combined number of nonconforming items or nonconformities in both samples, a decision is

made to accept or reject the lot. The parameters of a double sampling plan are as follows:

n1: size of the first sample

c1: acceptance number for the first sample

r1: rejection number for the first sample

n2: size of the second sample

c2: acceptance number for the second sample

r2: rejection number for the second sample

Let’s consider the following double sampling planwhere attribute inspection is conducted

to find the number of nonconforming items:

N � 5000
n1 � 40 n2 � 60
c1 � 1 c2 � 5
r1 � 4 r2 � 6

Theworking procedure for this plan is initially to select a random sample of 40 items from

the lot of size 5000. If 1 or fewer nonconforming items are found, the lot is accepted, but if 4 or

more nonconforming items are found, the lot is rejected. If the observed number of

nonconforming items is 2 or 3, a second sample of size 60 is selected. If the combined

number of nonconforming items from both samples is less than or equal to 5, the lot is

accepted; if it is 6 or more, the lot is rejected.

Althoughdouble sampling plans aremore complicated than single samplingplans, usually

fewer items need to be sampled, on average, to make a decision regarding the lot. This is

because a demonstration of extremelygoodor extremelypoor batch quality in thefirst sample

causes acceptance or rejection of the lot without the need for a second sample.

Multiple samplingplans are an extension of double sampling plans. Three, four,five, or as

many samples as desired may be needed to make a decision regarding the lot. The sampling

plan can be terminated at any stage once the acceptance or rejection criteria have beenmet. The

sample sizes in a multiple sampling plan are usually less than those for an equivalent double

sampling plan,which in turn are usually less than those for an equivalent single sampling plan.

The ultimate extension of the multiple sampling plan is the sequential sampling plan,

which is an item-by-item inspection plan. After each item is inspected, a decision is made to

accept the lot, reject the lot, or choose another item for inspection, depending on whether the

observed cumulative number of nonconforming items is less than or equal to the acceptance

number, greater than or equal to the rejection number, or in between the two.

Advantages and Disadvantages

We can design single, double, or multiple sampling plans that are equivalent in the sense that

they have the same probability of lot acceptance for batches of a given quality. Therefore, we

need to consider the advantages and disadvantages of these types when we select a sampling

plan.
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As far as simplicity is concerned, the single sampling plan is the best, followed by double

and then multiple sampling plans. Administrative costs for record keeping, training, and

inspection are the least for single and the highest for multiple sampling plans.

On average, for equivalent plans, the number of items inspected to make a decision

regarding the lot is usually more for a single sampling plan. This is because double and

multiple sampling plans use fewer items in their samples, so if the lots are of very good or poor

quality, a decision to accept or reject them is made quickly. Inspection costs will therefore be

the most for single and the least for multiple sampling plans.

The information content of the samples is a function of the sample size; the more

samples we inspect, the more information we have about the product and consequently the

process. Single sampling plans provide themost information andmultiple sampling plans the

least.

10-6 EVALUATING SAMPLING PLANS

The OC curve is one measure of the performance of a sampling plan. We also use other

measures to evaluate the goodness of a sampling plan. These involve the average quality level

of batches leaving the inspection station, the average number of items inspected before

making a decision on the lot, and the average amount of inspection per lot if a rejected lot goes

through100% inspection.Wediscuss single samplingplans here, but the concepts apply to all

three plans.

Average Outgoing Quality

Let’s first consider the concept of rectifying inspection as it applies to lots that are rejected

through sampling plans.Usually, such lots go through 100% inspection, known as screening,

where nonconforming items are replaced with conforming ones. Such a procedure is known

as rectification inspection because it affects the quality of the product that leaves the

inspection station. Nonconforming items found in the sample are also replaced.

The average outgoing quality (AOQ) is the average quality level of a series of batches that

leave the inspection station, assuming rectifying inspection, after coming in for inspection at a

certain quality level p. The AOQ is not the quality level of a single batch that leaves the

inspection station. For instance, a batchwith incomingquality levelpwill leave the inspection

station with about the same quality level if accepted by the sampling plan. We assume the

sample is a small enough proportion of the lot such that if nonconforming items are found in

the sample and replaced with conforming ones, the quality level of the lot is not significantly

affected. Similarly, another batch with the same incoming quality p that is rejected by the

samplingplanwill be screened and sowill leave the inspection stationwith nononconforming

items. (This assumes that screening detects all nonconforming items.) TheAOQmeasures the

average quality level of a large number of such batches of incoming quality p, the proportion

nonconforming in the lots, assuming rectification.

Taking N as the lot size, n as the sample size, p as the incoming lot quality, and Pa as the

probability of accepting the lot using the given sampling plan, the average outgoing quality is

given by

Pap�N � n� 
AOQ � �10-5)

N
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To understand this equation, note that n items in the sample will have no nonconforming

items after they have been inspected. If the lot is rejected by the sampling plan, theN� n items

left in the lot go through screening so that nononconforming items are in theoutgoingproduct.

Only if the lot is accepted by the sampling plan will the N� n items left in the lot leave the

inspection station with p(N� n) nonconforming items. However, the probability that the

batch will be accepted by the sampling plan is Pa. So Pa p(N� n) is the number of

nonconforming items per lot expected to leave the inspection station. The average outgoing

proportion nonconforming is given by eq. (10-5).

The value of AOQ depends on the incoming quality level p of the batches. Thus, an AOQ

curve that evaluates the effectiveness of the sampling plan for various levels of incoming

quality is usually constructed. Let’s consider the single sampling plarN= 2000, n= 50, c= 2.

Suppose that the incoming quality of batches is 2% nonconforming. From the Poisson

cumulative distribution tables in Appendix A-2, the probability Pa of accepting the lot using

the sampling plan is 0.920. The average outgoing quality is

�0:920��0:02��2000 � 50� 
AOQ � � 0:0179

2000

Thus, if batches come in as 2% nonconforming, the average outgoing quality is 1.79%.

Example 10-2 Construct the AOQ curve for the sampling plan N= 2000, n= 50, c= 2.

Solution The probability of lot acceptance for various values of the incoming lot

quality p is listed in Table 10-1. Using these values of Pa and p, the values of AOQ are

calculated for different values of p.

Figure 10-5 shows theAOQcurve for the sampling planN= 2000, n= 50, c= 2. Note that

when the incomingquality is very good, the average outgoingquality is also very good.When

the incoming quality is very poor, the average outgoing quality is good because most of the

lots are rejected by the sampling plan and go through screening. In between these extremes,

the AOQ curve reaches a maximum, AOQL.

FIGURE 10-5 AOQ curve for the sampling plan in Example 10-2.
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Average Outgoing Quality Limit The average outgoing quality limit (AOQL) is the

maximumvalue, or peak, of theAOQcurve. It represents theworst average quality thatwould

leave the inspection station, assuming rectification, regardless of the incoming lot quality.The

AOQLvalue is also ameasure of goodness of a sampling plan.Note that theprotection offered

by the sampling plan, in terms of the AOQL value, does not apply to individual lots. It holds

for the average quality of a series of batches.

Consider Example 10-2 and the AOQ curve in Figure 10-5. The AOQL value is

approximately 0.0265, or 2.65%. This means that for the sampling plan above, N= 2000,

n= 50, c= 2, we have some protection against the worst quality for a series of batches that

leave the inspection program. The average quality level will not be poorer than 2.65%

nonconforming. However, it is possible for an individual lot to have an outgoing quality level

of more than 2.65% nonconforming. The AOQL value and the shape of the AOQ curve

depend on the particular sampling plan. Sampling plans are designed such that their AOQL

does not exceed a certain specified value.

Average Total Inspection

If rectifying inspection is conducted for lots rejected by the sampling plan, another evaluation

measure is the average total inspection (ATI). The ATI represents the average number of

items inspected per lot. If a lot has no nonconforming items, it will obviously be accepted by

the chosen sampling plan, and only n items (the sample size) will be inspected for a lot. At the

other extreme, if the lot has 100% nonconforming items, the number inspected per lot will be

N (the lot size) assuming that rejected lots are screened. For a lot quality between these

extremes, the average amount inspected per lot will vary between these two values. For single

sampling plans, the average total inspection per lot for lots with an incoming quality level p is

given by

ATI � n � �1 � Pa��N � n� �10-6)

HerePa represents the probability of accepting a lot that has an incoming quality level of p. A

plot of the average total inspection versus p is anATI curve. Note that for an individual lot the

amount inspected is either n or N.

For a double sampling plan, the ATI is given by

ATI � n1�Pa1� � �n1 � n2�Pa2 � N�1 � Pa1 � Pa2� �10-7)

where Pa1 represents the probability of accepting the lot on the first sample and Pa2

represents the probability of lot acceptance on the second sample. Computation of Pa1 and

Pa2 will be discussed further in the discussion of double sampling in Section 10-8.

Example 10-3 Construct the ATI curve for the sampling plan where N= 2000, n= 50,

c= 2.

Solution Consider the calculations for a givenvalue of the lot qualitypof 0.02.As shown

in Table 10-1, the probability of accepting such a lot using the sampling plan is Pa= 0.920.

The ATI for this value of p is

ATI � 50 � �1 � 0:920��2000 � 50� � 206
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FIGURE 10-6 ATI curve for the sampling plan in Example 10-3.

For other values of p, the ATI is found in the same manner. The ATI curve is plotted in

Figure 10-6. Given the unit cost of inspection, the ATI curve can be used to estimate the

average inspection cost if the quality level of incoming batches is known.

Average Sample Number

The average number of items inspected for a series of lots with a given incoming lot

quality in order to make a decision is known as the average sample number (ASN).

Assume that inspection is not curtailed for a single sampling plan when making a

decision. For example, if 3 nonconforming items are found by the twentieth unit when

using a single sampling plan N= 800, n= 60, c= 2, even though a decision can be made

after the twentieth unit to reject the lot, inspection continues for all 60 items in the sample.

Under this assumption, the average sample number for a single sampling plan is equal to

the sample size n.

For a double sampling plan, the ASN is given by

ASN � n1P1 � �n1 � n2��1 � P1� �10-8)� n1 � n2�1 � P1� 
where P1 is the probability of making a decision on the first sample. Again it is assumed that

there is no curtailment on the first or second sample when making a decision.

There is a valid reason for not curtailing inspection. The estimate of the lot proportion

nonconforming is biased if inspection is curtailed. Consider the situation for which the

inspection of the first three items in a single sampling plan yields all nonconforming items. If

the rejection number is 3 and inspection is curtailed on the third item, an estimate of the lot

proportion nonconforming would be 1.00 (or 100%), which is quite misleading. Sometimes,

for a double sampling plan, inspection is curtailed on the second sample. This leads to a

lowering of the average sample number. In cases where inspection costs per unit are high and

batches are of neither very good nor very poor quality, curtailing inspection on the second

sample will lower the costs associated with decision making.

Note that for a given sample the number of items inspected before making a decision is

either n1 or n1+ n2. There is a probability P1 that a decision will be made after inspecting n1
items; the probability of inspecting n1+ n2 items prior to making a decision is 1�P1. This
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is the rationale behind the form of eq. (10-8). The probability P1 can be expressed as

P1 � P�lot accepted on first sample� � P�lot rejected on first sample� 
� P�x � c1� � P�x � r1� 

where x represents the number of nonconforming items or nonconformities, c1 is the

acceptance number of the first sample, and r1 is the rejection number of the first sample.

For a multiple sampling plan, the same concept used for the derivation of the ASN of a

double sampling plan can be used. We have

ASN � n1P1 � �n1 � n2�P2 � � � � �  �n1 � n2 � � � � �  nk�Pk �10-9)
where k represents the number of levels of samples, ni is the sample size at the ith level, andPi

represents the probability of making a decision at the ith level.

A plot of ASN values as a function of the lot proportion nonconforming p is known as the

ASN curve.

Example 10-4 For the double sampling plan N= 3000, n1= 40, c1= 1, r1= 4, n2= 80,

c2= 3, r2= 4,find the average samplenumber for batcheswith aproportionnonconformingof

0.02, assuming no curtailment.

Solution First, calculate P1, the probability of making a decision after the first sample:

P1 � P�x � 1� �  P�x � 4� 
where x represents the observed number of nonconforming items. From the cumulative

Poisson tables in Appendix A-2, we get.

P1 � P�x � 1j n1p � �40��0:02�� � P�x � 4j n1p � �40��0:02�� 
� 0:809 � �1 � 0:991� � 0:818

The average sample number for batches with a proportion nonconforming of 0.02 is

ASN � n1 � n2�1 � P1� 
� 40 � �80��1 � 0:818� 
� 54:56

This value represents the average number of items inspected prior to making a decision. It

suggests that because of the low value of p, most of the batches will be accepted on the first

sample.On the basis of thefirst sample, lotswill be accepted about 80.9%of the time, and they

will be rejected about 0.9% of the time.

The ASN values are calculated for several values of the proportion nonconforming p in

order to construct the ASN curve, which is shown in Figure 10-7. Note that as the proportion

nonconforming p increases from zero, the ASN rises until it reaches a peak and then starts

falling. For very small andvery large values ofp, the value ofASNapproaches thefirst sample

size n1, because a decision is made for these lots on the first sample. For lots of intermediate

quality, the ASN value is higher because a second sample must be taken more frequently to

make a decision.

For single sampling plans, ASN is constant and is represented by a horizontal line.

Typically, for equivalent plans, the ASN for a double sampling plan is below that for a

single sampling plan. It sometimes happens that the middle segment of the ASN curve for a

double sampling plan is above the ASN for a single sampling plan. Management must then
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FIGURE 10-7 ASN curve for the double sampling plan in Example 10-4.

use historical information toobtain an idea of theprocess quality. If the quality levelphappens

to fall in the segment where the ASN is greater for a double sampling plan, the choice of a

single sampling plan may be justified to cut down on inspection time and costs. On the other

hand, estimates of very high or low levels of process quality may justify the use of a double

sampling plan that will yield smaller values of ASN. If curtailed inspection is used on the

second sample of a double sampling plan, the ASN curve will be lowered further and will

become even more attractive than a single sampling plan.

10-7 BAYES RULE AND DECISION MAKING BASED ON SAMPLES

Information obtained from samples may be considered sequential in nature. Based on past

knowledge (objective or otherwise), onemay formulate aprior distribution on the unknown

population parameter. Using sample information, this prior distribution could be updated to

develop a posterior distribution of the parameter. Consequently, this posterior distribution

becomes the prior as further samples are taken and all of the accumulated information is used

to make decisions.

This updating of probabilities, associatedwith parameters, is accomplished throughBayes’

formula. Let {B1, B2, . . . , Bm} represent a partition of the sample space, where the events

{Bi, i= 1, 2, . . . ,m} are not directly observable. The randomsample results in the occurrence

of some event {A}. Further, the conditional probabilities {P(A jBi), i= 1, 2, . . . , m} are

known.Assume that our degree of belief on the occurrence of the events {Bi, i= 1, 2, . . . ,m}

is represented by someprior probabilities {P(Bi), i= 1, 2, . . . ,m}.Then, onobservance of the

event {A}, the posterior probabilities {P(Bi jA), i= 1, 2, . . . , m} are given by

P�BiA� P�A jBi�P�Bi� 
P�Bi jA� �  � ; i � 1; 2; . . . ;m �10-10)mP�A� 

P�A jBi�P�Bi� 
i�1

Example 10-5 Three vendors, B1, B2, and B3, provide microchips for a semiconductor

manufacturer.Basedoneachvendor’s historical data, the probabilities of vendorB1,B2, andB3

producing a defectivemicrochip are 0.01, 0.03, and 0.05, respectively. Since the parts all look
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alike and have no company identification, it is not possible to identify the vendor they

came from. Assume that 30% of the parts are provided by vendor B1, with the

corresponding percentages for vendors B2 and B3 being 50% and 20%, respectively.

Upon inspection of a part, it is found to be nonconforming. What is the probability that it

was produced by vendor B1? By vendor B2? By vendor B3?

Solution Let the event {A} represent observingadefective part. Theprior probabilities of

the defective part coming from each vendor areP(B1)= 0.30,P(B2)= 0.50,P(B3)= 0.20. It is

known that P(A jB1)= 0.01, P(A jB2)= 0.03, and P(A jB3)= 0.05. So the posterior probabili

ties are obtained as follows:

�0:01��0:30� 
P�B1 jA� �  � 0:107�0:01��0:30� � �0:03��0:50� � �0:05��0:20� 

�0:03��0:50� 
P�B2 jA� �  � 0:536�0:01��0:30� � �0:03��0:50� � �0:05��0:20� 

P�B3 jA� �  1 � �0:107 � 0:536� � 0:357

Note that whereas the prior odds of the defective part being fromB1,B2, orB3 were 0.3, 0.5,

and 0.2, respectively, the posterior odds, after observing the defective part, are quite different.

The posterior probability of the vendor being B2 or B3 has increased, while that of B1 has

decreased. Thus, the sample information is being used to update the prior probabilities.

The concept of revising prior probabilities through sample information may be further

extended in decision making in order to minimize expected opportunity losses. As explained

previously, when decisions are made based on sample information, two types of errors may

occur: type I and II errors. In the context of acceptance sampling, a type I error is referred to as

the producer’s risk,while a type II error is denoted as the consumer’s risk. In the framework of

hypothesis testing, emphasis is placed on keeping the type I error to a small (or acceptable)

level. However, in the premise of using sampling plans to make decisions, it is the cost

associated with making a type I or type II error that could influence our decision. Thus, the

joint impact of the cost and the chance of each type of error are evaluated.Wedemonstrate the

procedure through an example.

Example 10-6 An electronics company is considering the addition of a new product to its

line. It currently has 40,000 customers. Management estimates product development costs to

be $1,200,000,whichmaybe assumed tobe the overhead costs.Variablemanufacturing costs

per unit are expected to be $800, along with variable selling expense of $100 per unit. Units

will be producedonademandbasis. Fromamarket survey, it is estimated that the newproduct

could be priced at $1500per unit. Based on previous experiencewith similar products,market

researchhas comeupwith estimates of theproportionof existing customers thatmaypurchase

the new product and the corresponding probabilities of such happening (Table 10-2). Should

the company develop the new product?

Solution Let us first determine the break-even value of the demand proportion (p) for the

new product. With the overhead costs being $1,200,000 and the profit margin/unit being

$600, 2000 units is the break-even volume, leading to a break-even demand proportion of
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TABLE 10-2 Probability Distribution of Demand for a New

Product

Demand Proportion p Probability

0.02 0.2

0.04 0.4

0.06 0.3

0.08 0.1

p= 0.05, since the company has 40,000 customers. So if p< 0.05, the company will

experience an opportunity loss if the new product is developed. Similarly if p> 0.05, an

opportunity loss will occur if the new product is not developed. Alternatively, if p� 0.05

and the company develops the new product or if p< 0.05 and the company does not develop

the new product, a correct decisionwill have beenmade and therewill be no opportunity loss.

The conditional opportunity loss (COL) function if p< 0.05 and the decision is to develop the

new product is

COL � $1;200;000 � �600p��40;000� � $24;000;000�0:05 � p� 
Similarly, if p> 0.05 and the decision is to not develop the new product, we have

COL � $24;000;000�p � 0:05� 
The COLs are a measure of the costs associated with errors in decision making.

The conditional opportunity losses for each state of nature, in this case the demand

proportion (p) for the newproduct and action (here to developor not develop the newproduct)

combinations, are shown in Table 10-3. Using these conditional opportunity losses and the

prior probability distribution associated with demand for the new product, the expected

opportunity losses (EOLs) for each of the two actions are found.Note that the EOLs are found

by weighting the COLs by the prior probability estimate of demand. It is observed that the

“optimal” decision at this point, without any sample information, is not to develop the new

product, since this action has a smaller EOL.

The expected value of perfect information (EVPI) is the expected opportunity loss of the

optimal action,which in this case is $144,000. Ifwehadperfect information,wewould choose

the correct action and the opportunity loss would be zero. The EVPI is therefore an upper

bound on the amount we should be willing to spend to gain additional information before

making a decision.

TABLE 10-3 Evaluation of Actions Without Sampling

Action

Demand

Proportion, p Probability, P(p)

Develop New

Product, COL

Do Not Develop

New Product, COL

0.02

0.04

0.06

0.08

0.2

0.4

0.3

0.1

720,000

240,000

0

0

EOL= $240,000

0

0

240,000

720,000

EOL= $144,000
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TABLE 10-4 Revised Probability Distribution of Demand for a New Product

Demand Proportion, p Prior Probability, P(p) P(x= 3 j p) P(x= 3 and p) Revised P(p)

0.02 0.2 0.0065 0.00130 0.0233

0.04 0.4 0.0364 0.01456 0.2609

0.06 0.3 0.0860 0.02580 0.4624

0.08 0.1 0.1414 0.01414 0.2534

P(x= 3)= 0.0558

Suppose that it is desired to obtain more information and a random sample of size 20 is

selected from the existing customers, where each is asked whether he or she will buy the

new product. From the sample results, three stated that they would buy. Let us incorporate

this sample information and update the prior probability of demand using Bayes’ rule.

Table 10-4 shows the posterior or revised probability of demand. Note that the binomial

distribution is used to obtain P(x= 3 j p) for the various values of p and n= 20. We find

that the sample results have had a significant impact on the estimates of probability of

demand.

Using the revised P(p), as shown in Table 10-4, the expected opportunity losses are

calculated for the two actions. Using the sample information it may be verified that

EOL�develop new product� � $79; 392
EOL�do not develop new product� � $293; 424

The optimal decision at this phase, incorporating the sample information, is to develop the

new product.

10-8 LOT-BY-LOT ATTRIBUTE SAMPLING PLANS

Attribute sampling plans are designed to make a decision regarding items that are submitted

for inspection in lots. Batch production is typical of many industries in which inspection is

conducted in lots. The objective is to find suitable sample sizes and acceptance numbers of

sampling plans that meet certain levels of stipulated risks (such as the producer’s risk,

consumer’s risk, or both).

Single Sampling Plans

Single sampling plans deal with making a decision regarding a lot of size N based on

information contained in one sample of size n.The acceptance number c of the sampling plan

represents the number of nonconforming items or nonconformities, depending on the

circumstances, that cannot be exceeded in the sample in order for the lot to be accepted.

The OC Curve The OC curve of a single sampling plan has been described in detail. It

represents the probability of accepting the lot, Pa, as a function of the lot quality, which is

simply the proportion nonconforming p if items are classified only as conforming or not. The

effects of the parameters n and c on the shape of the OC curve have also been discussed. A

study of these effects enables us to choose appropriate values of n and c, given desirable levels

of protection against the producer’s and consumer’s risks.
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FIGURE 10-8 OC curve showing (AQL, 1–α) and (LQL, β) for a sampling plan.

Let’s suppose that both the AQL, which is themeasure of a good lot and is associated with

the producer’s riskα, and theLQL,which is themeasure of a poor lot and is associatedwith the

consumer’s risk, are specified. The OC curve in Figure 10-8 shows the relationship between

these parameters. For a sampling plan specified by n and c, lots with a proportion

nonconforming level of AQL that come in for inspection should be accepted 100(1–α)%

of the time. Similarly, if the proportion nonconforming of batches coming in for inspection is

LQL, they should be accepted 100β% of the time. A suitable choice of n and c ensures that

good lots will be accepted a large percentage of the time and that bad lots will be accepted

infrequently.

Design of Single Sampling Plans Now we will discuss several approaches for designing

single sampling plans. Basically, these approaches involve determining the sample size n and

acceptance number c of the plan. The criteria selected influence the parameters of the plan.

Sometimes, more than one planwill satisfy the criteria.What follows is a series of procedures

for determining the parameters of a single sampling plan based on the criteria specified.

Stipulated Producer’s Risk Let’s suppose the producer’s risk α and its associated quality

level p1, which is theAQL, are specified.We desire single sampling plans that will accept lots

of quality level p1 at 100(1–α)% of the time. Figure 10-9 shows the OC curves of sampling

plans that meet this stipulated criterion. Note that several plans may satisfy this criterion.We

want to find a sampling plan whose OC curve passes through the single point (AQL, 1–α).

This criterion is not very restrictive; theOCcurves of a variety of plans could pass through this

point.

To find the appropriate sampling plan, first select an acceptance number c. As discussed

previously, the Poisson distribution will be used to approximate the hypergeometric

distribution when determining the lot acceptance probability. This is reasonable when the
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FIGURE 10-9 OC curves of single sampling plans for stipulated producer’s risk and AQL.

sample size is a small fraction of the lot size and the lot proportion nonconforming p is small.

The mean number of nonconforming items in the sample is given by λ= np. Hence, for a

probability of lot acceptance Pa equal to 1 – α at p= p1, the value of λ is found in Appendix

A-2. Because λ= np1= n(AQL), the sample size n is found by dividing the value of n(AQL)

by AQL. Fractional computed values of the sample size are always rounded up to be

conservative.

For a producer’s risk α of 0.05, Table 10-5 lists the values of np1 for an acceptance

probability Pa= 0.95 and various values of c.

TABLE 10-5 Values of np for a Producer’s Risk of 0.05 and a Consumer’s Risk of 0.10

Acceptance Number, c Pa= 0.95, np1 Pa= 0.10, np2 np2/np1

0 0.051 2.303 44.84

1 0.355 3.890 10.96

2 0.818 5.322 6.51

3 1.366 6.681 4.89

4 1.970 7.994 4.06

5 2.613 9.274 3.55

6 3.286 10.532 3.21

7 3.981 11.771 2.96

8 4.695 12.995 2.77

9 5.426 14.206 2.62

10 6.169 15.407 2.50

11 6.924 16.598 2.40

12 7.690 17.782 2.31

13 8.464 18.958 2.24

14 9.246 20.128 2.18

15 10.035 21.292 2.21

Source: F. E. Grubbs, “On Designing Single Sampling Plans,” Annals of Mathematical Statistics, XX: 256, 1949.

Reprinted by permission of the Institute of Mathematical Statistics.
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Example 10-7 Find a single sampling plan that satisfies a producer’s risk of 5% for lots that

are 1.5% nonconforming.

Solution We are given α = 0.05 and p1=AQL= 0.015. If we choose an acceptance

number c= l, for which Table 10-5 gives np1 = 0.355, the sample size is

0:355 0:355
n � � � 23:67 ' 24

p1 0:015

If our acceptance number is 3, we have np1= 1.366, and the sample size is

1:366
n � � 91:07 ' 92

0:015

If our acceptance number is 6, we have np1= 3.286, and the sample size is

3:286
n � � 219:07 ' 220

0:015

Figure 10-9 shows the OC curves for these three sampling plans. Note that all three plans

satisfy the producer’s risk of 5% at the AQL value of 1.5%. However, they have varying

degrees of protection against acceptance of poor quality lots, whichwould be of interest to the

consumer. Of the three plans shown, n= 220, c= 6 provides the best protection to the

consumer because it has the lowest probability of accepting poor-quality lots. However,

we must also consider the increased inspection costs associated with this plan, because the

sample size for c= 6 is the largest of the three. (Note:We considered the values of cof 1, 3, and

6 for demonstration purposes. Other values of c could be selected as well.)

Stipulated Consumer’s Risk Let’s suppose that the consumer’s risk β and its associated

quality level p2, which is the LQL, are given.Wewant to find sampling plans that will accept

lots of quality level p2 at 100β% of the time. Here again, a number of sampling plans will

satisfy this criterion. Figure 10-10 shows theOCcurves for three sampling plans thatmeet the

criterion.

FIGURE 10-10 OC curves of single sampling plans for stipulated consumer’s risk and LQL.
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The procedure is similar to that used with producer’s risk. A value of the acceptance

number c is chosen. Based on the probability of acceptance of β, for lots of quality

p2=LQL, the value of λ= np2 is found in Appendix A-2. If the value of β is 0.10, we can

use Table 10-5 to obtain the value of np2. The sample size is calculated by dividing the

value of np2 by p2.

Example 10-8 Find a single sampling plan thatwill satisfy a consumer’s risk of 10% for lots

that are 8% nonconforming.

Solution Weare given β= 0.10 and p2=LQL= 0.08. If we select an acceptance number

of 1, Table 10-6 gives np2= 3.890. The sample size is

3:890 3:890
n � � � 48:62 ' 49

p2 0:08

If the acceptance number is selected as 3, we have np2= 6.681, and the sample size is

6:681
n � � 83:51 ' 84

0:08

If the acceptance number is 6, we have np2= 10.532, and the sample size is

10:532
n � � 131:65 ' 132

0:08

Figure 10-10 shows the OC curves for these sampling plans. All three pass through

the point (p2, β), thus satisfying the consumer’s stipulation. The degree of protection

for extremely good batches, as far as the producer is concerned, is different. The plan

n= 132, c= 6 will reject good batches (say, 1% nonconforming) the least frequently of the

three plans.Of course, it has the largest sample size,whichmay cause the inspection cost to be

high. Other values of the acceptance number could be selected as well.

Stipulated Producer and Consumer Risk We desire sampling plans that satisfy a

producer’s risk α (given an associated quality level p1=AQL) and a consumer’s risk

β (given an associated quality level p2=LQL). Good lots, with quality level given by

AQL, are to be rejected nomore than 100α%of the time. Poor lots,with quality level specified

by LQL, are to be accepted no more than 100β% of the time.

Because the criteria are more stringent here than where only the producer’s or the

consumer’s stipulation is satisfied, we may not have much flexibility in choosing the

acceptance number and the associated sampling plans. It can be difficult to find a sampling

plan that exactly satisfies both the producer’s and consumer’s stipulation.

Let’s consider the plans shown in Figure 10-11. Two plans meet the producer’s stipulation

exactly and come close to meeting the consumer’s stipulation. Two other plans meet the

consumer’s stipulation exactly and come close to meeting the producer’s stipulation. Of these

four plans, onemust be selected based on additional criteria of concern to the user. Itmay be of

interest, for example, to choose the plan with the smallest sample size to minimize inspection

costs, or the one with the largest sample size to provide the most protection.

Alternatively, a preference to satisfy either the producer’s or consumer’s risk could

be incorporated in the decision-making framework. That is, a user may desire the producer’s

stipulation to be satisfied exactly, with the consumer’s stipulation satisfied as closely as

possible, or vice versa. Such criteria will aid in selecting the appropriate sampling plan.
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FIGURE 10-11 OC curves of sampling plans for stipulated producers’s and consumer’s risks.

Example 10-9 Find a single sampling plan that satisfies a producer’s risk of 5% for lots

that are 1.8% nonconforming and a consumer’s risk of 10% for lots that are 9%

nonconforming.

Solution Wehaveα= 0.05, p1=AQL= 0.018, β= 0.10, and p2=LQL= 0.09. First, we

compute the ratio np2/np1, which is the ratio p2/p1 because n cancels out:

p2 LQL 0:09� � � 5:00
p1 AQL 0:018

For values of α= 0.05 and β= 0.10, we use the last column in Table 10-5 to determine the

possible acceptance numbers. We find that the ratio 5.00 falls between 6.51 and 4.89,

corresponding to acceptance numbers of 2 and 3, respectively.

Two plans (one for c= 2 and one for c= 3) satisfy the producer’s stipulation exactly:

For c= 2, np1= 0.818, and the sample size is

np1 0:818
n � � � 45:44 ' 45

p1 0:018

For c= 3, np1= 1.366, and the sample size is

np1 1:366
n � � � 75:88 ' 76

p1 0:018

So, the plans n= 45, c= 2 and n= 76, c= 3 both satisfy the producer’s stipulation exactly.

Next, we find that two plans (c= 2 and c= 3) satisfy the consumer’s stipulation exactly:

For c= 2, np2= 5.322, and the sample size is

np2 5:322
n � � � 59:13 ' 60

p2 0:09
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For c= 3, np2= 6.681, and the sample size is

np2 6:681
n � � � 74:23 ' 75

p2 0:09

The plans n= 60, c= 2 and n= 75, c= 3 both satisfy the consumer’s stipulation exactly.

The four candidates are as follows:

Plan 1: n= 45, c= 2 Plan 3: n= 60, c= 2

Plan 2: n= 76, c= 3 Plan 4: n= 75, c= 3

Now let’s see how close plans 1 and 2 (which satisfy the producer’s stipulation) come

to satisfying the consumer’s stipulation. For a target value of the consumer’s risk βof 0.10,we

find the proportion nonconforming p2 of batches that would be accepted 100β% of the time.

For n= 45 and c= 2 (plan 1), if β= 0.10, then np2= 5.322. Thus,

np2 5:322
p2 � � � 0:1183

n 45

For n= 76 and c= 3 (plan 2), if β= 0.10, then np2= 6.681. So

np2 6:681
p2 � � � 0:0879

n 76

Plan 1 accepts batches that are 11.83%nonconforming 10%of the time.On the other hand,

plan 2 accepts batches that are only 8.79%nonconforming 10%of the time.Our goal is tofind

a plan that accepts batches that are 9% nonconforming 10% of the time.

Given that the target value of p2 (the specified LQL) is 0.09, we find plan 2’s value of

p2= 0.0879 is closer to the target value than plan l’s value 0.1183. If our selection criterion

calls for meeting the producer’s stipulation exactly and closely meeting the consumer’s

stipulation, we would choose plan 2. Note that plan 2 is a little more stringent and therefore

more conservative than our goal.

Now let’sfind a plan that satisfies the consumer’s stipulation exactly and comes as close as

possible to satisfying the producer’s stipulation. For plans 3 and 4, we need to determine the

proportionnonconformingp1 of batches thatwouldbeaccepted95%of the time.This satisfies

the producer’s risk α= 0.05.

For n= 60 and c= 2 (plan 3), if α= 0.05, then np1= 0.818. So

np1 0:818
p1 � � � 0:0136

n 60

For n= 75 and c= 3 (plan 4), if α= 0.05, then np1= 1.366. So

np1 1:366
p1 � � � 0:0182

n 75

Plan 3 rejects batches that are 1.36% nonconforming 5% of the time. On the other hand,

plan 4 rejects batches that are 1.82% nonconforming 5% of the time. Since plan 4’s value of

p1= 0.0182 is closer to the target value of p= 0.0180, plan 4 is selected. Note that plan 4 is

more stringent than our goal.

Another criterion we could use to select a sampling plan is to choose the one with the

smallest sample size in order tominimize inspection costs. Of the four candidates plan 1would

be selected with n= 45, c= 2. This plan satisfies the producer’s stipulation exactly.
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Alternatively, we could select a plan with the largest sample size, which provides themost

information. Here we would choose plan 2 with n= 76, c= 3. As discussed previously, this

plan satisfies the producer’s stipulation exactly and comes as close as possible to the

consumer’s stipulation.

Double Sampling Plans

The parameters of a double sampling plan, as explained previously, are as follows:

n1: size of the first sample

c1: acceptance number for the first sample

r1: rejection number for the first sample

n2: size of the second sample

c2: acceptance number for the second sample

r2: rejection number for the second sample

As noted earlier, for the same degree of protection (that is, the same probability of accepting

lots of a given quality), double sampling plans may have a smaller ASN than corresponding

single sampling plans. The size of the first sample, n1, is always smaller than the sample

size (n) of an equivalent single sampling plan. So, if a decision can usually bemade on thefirst

sample, the ASN will be lower for a double sampling plan. Or, if inspection can be curtailed

during the second sample, the ASN will be reduced (most likely, less than that for a single

sampling plan).

The OC Curve The OC curve also measures the performance of double sampling plans.

Calculations for double sampling plans are more involved than for single sampling plans.

LetPa1 denote the probability of accepting the lot on thefirst sample andPa2 theprobability

of lot acceptance on the second sample. The combined probability of acceptance is given by

Pa=Pa1+Pa2. Let x1 and x2 denote the observed number of nonconforming items on the first

and second samples, respectively. We have

Pa1 � P�x1 � c1� 
Pa2 � P�x1 � c1 � 1�P�x2 � c2 � x1� � P�x1 � c1 � 2�P�x2 � c2 � x1� � � � �  �10-11)�P�x1 � r1 � 1�P�x2 � c2 � x1�
 
Pa � Pa1 � Pa2

In the following example we calculate the probability of lot acceptance for a given

proportion nonconforming. The Poisson approximation to the hypergeometric distribution is

used here. This procedure can be used to construct the OC curve.

Example 10-10 Let’s consider a double sampling plan of lot size 3000 given by the

following parameters: n1= 40, c1= 1, r1= 5, n2= 80, c2= 5, r2= 6. For a lot proportion

nonconforming value of p= 0.03, find the probability of accepting such lots.

Solution To find the probability of acceptance on the first sample (Pa1), we have

n1p= (40)(0.03)= 1.2. The Poisson cumulative probability distribution tables in Appendix
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A-2 give

Pa1 � P�x1 � 1� � 0:663

We calculate Pa2 as follows:

Pa2 � P�x1 � 2�P�x2 � 3� � P�x1 � 3�P�x2 � 2� � P�x1 � 4�P�x2 � 1� 

Note that when calculating P(x2 � 3) and other probabilities dealing with x2, the value of
n2p= (80)(0.03)= 2.4. So

Pa2 � �0:216��0:779� � �0:087��0:570� � �0:026��0:308� � 0:2259

The combined probability of acceptance is

Pa � Pa1 � Pa2 � 0:663 � 0:2259 � 0:8889

Thus, about 66.3%of lots with a proportion nonconforming at 0.03will be accepted on the

first sample; for these lots a second sample will not be taken. For 22.59% of the lots, a second

samplewill be taken, and the lotwill be accepted based on the evidence in both of the samples.

Overall, 88.89% of the lots will be accepted by this sampling plan.

Repeating this computation for several values of the proportion nonconforming p allows

us to construct the OC curve for the double sampling plan.

Figure 10-12 shows the OC curve for this double sampling plan. Both Pa1, the

probability of acceptance on the first sample, and Pa, the probability of acceptance based

on both samples, are shown. The difference between the ordinate values of the graphs for

Pa and Pa1 indicates the probability of lot acceptance on the second sample. For very

small vames of p, the graphs of Pa and Pa1 are close because a majority of the lots are

accepted on the first sample. For very large values of p, the plots of Pa and Pa1 are in close

FIGURE 10-12 OC curve for the double sampling plan for Example 10-10.
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proximity because most of the lots are rejected on the first sample. In between these

extremes, the increasing difference between the curves represents the increase in the

probability of lot acceptance due to the second sample.

When judging the overall performance of the double sampling plan, the combined proba

bility of acceptance Pa should be considered. The effectiveness of the sampling plan will be

determined by its discriminatory power. Lots whose quality level is acceptable or better

should be rejected infrequently, preferablywith a probability nomore than the producer’s risk

α. Lots of limiting quality level or poorer should be accepted infrequently, preferably with a

probability no more than the consumer’s risk β.

Average Sample Number and Average Total Inspection Curves As noted earlier, the

average sample number represents the average number of items inspected per lot, for a series

of lots with a given proportion nonconforming p, that are needed to make a decision. For a

double sampling plan without curtailed inspection, the average sample number was given in

eq. (10-8).

A plot ofASNvalues for different values of p is known as anASN curve (see Figure 10-7).

One reason for selecting a double sampling plan over a single one is that theASN for a double

sampling plan is expected to be less. If the relevant rangeof the proportion nonconformingp is

known, it is of interest if theASN for a double sampling plan is less than that for an equivalent

single samplingplan, at least for that rangeofp.Note that theASNfor a single samplingplan is

equal to the sample size n.

The ASN curves for equivalent double and single sampling plans often plot as shown in

Figure 10-13. Assuming that there is no curtailment of inspection for either plan, the single

sampling planwill have a smallerASN for values of the proportion nonconforming pbetween

p1 and p2. Thus we need to know the average quality of the incoming batches. Such

information will help us determine the usefulness of the double sampling plan. If the average

proportion nonconforming is less than p1 or greater than p2, the double sampling plan is

preferable.

FIGURE 10-13 ASN curves of equivalent double and single sampling plans.
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Curtailing inspection during the second sample of a double sampling plan reduces the

average sample number. Thus, the ASN curve for a double sampling plan with curtailed

inspection (shown in Figure 10-13) may be below that for a single sampling plan over the

entire range of the proportion nonconforming values. In such a case, if reduction of

inspection costs were a criterion, the double sampling plan with curtailment would be

preferable.

Another measure of performance, in conjunction with rectification inspection, is the

average total inspection, which is the average number of items inspected per lot for a series of

lots with a given proportion nonconforming level p, assuming that rejected lots go through

screening. For a double sampling plan, the ATI is given by eq. (10-7).

The significance and computation of the ATI curve for a single sampling plan were

explained earlier. The ATI curve is a nondecreasing function of the proportion nonconform

ing p. When p is close to zero, ATI approaches n1; for extremely large values of p, ATI

approaches the lot sizeN.Given thequality level of the incomingproduct,minimizing theATI

reduces total costs of inspection and rectification.

Example 10-11 Find the average total inspection for lots with an incoming proportion

nonconforming of 0.03 for a double sampling plan with lot size 3000 given by the following

parameters: n1= 40, c1= 1, r1= 5, n2= 80, c2= 5, r2= 6.

Solution Usually we would first calculate Pa1 and Pa2. However, we found these values

in Example 10-10 for the same double sampling plan, so we will use those results:

Pa1 � 0:663 and Pa2 � 0:2259
Using these results, the average total inspection for incoming lots that are 3% noncon

forming is

ATI � �40��0:663� � �40 � 80��0:2259� � �3000��1 � 0:663 � 0:2259��386:93

So, the average total inspection per batch will be about 387 items if lots are 3%

nonconforming. Recall that for a single batch the total inspection will be either 40 or

120, respectively, if the lot is accepted on the first or second sample. If the lot is rejected on

either sample, then the assumption of screening implies that all 3000 items in the lot will be

inspected. An ATI curve for this sampling plan is shown in Figure 10-14.

Design of Double Sampling Plans One criterion for designing double sampling plans

involves satisfying a specified level of the producer’s risks α at an associated quality

level p1=AQL and meeting a consumer’s risk β at a quality level p2=LQL. Thus, we

want to find a plan where the OC curve passes through the two points (AQL, 1� α) and

(LQL, β).

Another sample procedure will help us find double sampling plans. Let’s assume the

sample sizes are eithern2= n1 orn2= 2n1.Wewill use apair of tables knownasGrubbs’ tables

(Tables 10-6 and 10-7), named after their originator, FrankE.Grubbs,who proposed their use

for constructing double sampling plans. Table 10-6 is used when n1= n2, and Table 10-7 is

usedwhen n2= 2n1. Both tables are based on a producer’s riskαof 0.05 and a consumer’s risk

β of 0.10.

These tables are used to construct double sampling plans as follows. First, the ratio R of

LQL to AQL (or p2/p1) is found. Using either Table 10-6 or 10-7, depending on the
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FIGURE 10-14 ATI curve for the double sampling plan for Example 10-11.

circumstances, the value closest to the calculated R-value is found. Next, the value of n1p is

read from the appropriate table. Dividing n1p by p (which is either p1 or p2) yields the size of

the first sample (n1). The complete sampling plan, involving acceptance number for the two

samples, is read from Tables 10-6 and 10-7.

TABLE 10-6 Grubbs Table I: Values for Constructing Double Sampling Plans Where

n1= n2 (α= 0.05, β= 0.10)

Acceptance

Numbers Approximate Values of n1p
Approximate for

Plan R= p2/p1 c1 c2 Pa= 0.95 Pa= 0.50 Pa= 0.10 ASN/n1 for Pa= 0.95

1 11.90 0 1 0.21 1.00 2.50 1.170

2 7.54 1 2 0.52 1.82 3.92 1.081

3 6.79 0 2 0.43 1.42 2.96 1.340

4 5.39 1 3 0.76 2.11 4.11 1.169

5 4.65 2 4 1.16 2.90 5.39 1.105

6 4.25 1 4 1.04 2.50 4.42 1.274

7 3.88 2 5 1.43 3.20 5.55 1.170

8 3.63 3 6 1.87 3.98 6.78 1.117

9 3.38 2 6 1.72 3.56 5.82 1.248

10 3.21 3 7 2.15 4.27 6.91 1.173

11 3.09 4 8 2.62 5.02 8.10 1.124

12 2.85 4 9 2.90 5.33 8.26 1.167

13 2.60 5 11 3.68 6.40 9.56 1.166

14 2.44 5 12 4.00 6.73 9.77 1.215

15 2.32 5 13 4.35 7.06 10.08 1.271

16 2.22 5 14 4.70 7.52 10.45 1.331

17 2.12 5 16 5.39 8.40 11.41 1.452

Source: Adapted from Chemical Corps Engineering Agency, Manual 2: Master Sampling Plans for Single,

Duplicate, Double, and Multiple Sampling, Army Chemical Center, Edgewood Arsenal, MD, 1953.
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TABLE 10-7 Grubbs Table II: Values for Constructing Double Sampling Plans Where

n2= 2n1 (α= 0.05, β= 0.10)

Acceptance

Numbers Approximate Values of n1p
Approximate for

Plan R= p2/p1 c1 c2 Pa= 0.95 Pa= 0.50 Pa= 0.10 ASN/n1 for Pa= 0.95

1 14.50 0 1 0.16 0.84 2.32 1.273

2 8.07 0 2 0.30 1.07 2.42 1.511

3 6.48 1 3 0.60 1.80 3.89 1.238

4 5.39 0 3 0.49 1.35 2.64 1.771

5 5.09 1 4 0.77 1.97 3.92 1.359

6 4.31 0 4 0.68 1.64 2.93 1.985

7 4.19 1 5 0.96 2.18 4.02 1.498

8 3.60 1 6 1.16 2.44 4.17 1.646

9 3.26 2 8 1.68 3.28 5.47 1.476

10 2.96 3 10 2.27 4.13 6.72 1.388

11 2.77 3 11 2.46 4.36 6.82 1.468

12 2.62 4 13 3.07 5.21 8.05 1.394

13 2.46 4 14 3.29 5.40 8.11 1.472

14 2.21 3 15 3.41 5.40 7.55 1.888

15 1.97 4 20 4.75 7.02 9.35 2.029

16 1.74 6 30 7.45 10.31 12.96 2.230

Source: Adapted from Chemical Corps Engineering Agency, Manual 2: Master Sampling Plans for Single,

Duplicate, Double, and Multiple Sampling, Army Chemical Center, Edgewood Arsenal, MD, 1953.

Example 10-12 Find a double sampling plan for lot size 2500 where it is desired to reject

batches that are 1.2%nonconformingnomore than 5%of the timewhile batches that are 7.5%

nonconforming are accepted about 10% of the time. The sample sizes are equal, and the

producer’s stipulation must be satisfied exactly.

Solution We have N = 2500, α = 0.05, p1 = AQL = 0.012, β = 0.10, p2 = LQL =

0.075, and n1= n2. Computing the ratio of p2/p1 we have

p2 LQL 0:075
R � � � � 6:25

p1 AQL 0:012

For R= 6.25, the closest value in Table 10-6 is R= 6.79 for plan 3. Its acceptance

numbers are c1= 0 and c2= 2. If the producer’s risk (α= 0.05) is to be satisfied exactly,

Pa= 1� 0.05= 0.95 for p1= 0.012. From Table 10-6, using Pa= 0.95, the value of n1p is

0.43. The size of the first sample is thus

0:43
n1 � � 35:83 ' 36

0:012

Because the sample sizes are assumed to be equal, n2= n1= 36. So the double

sampling plan is n1= 36, c1= 0, n2= 36, c2= 2. The values of r1 and r2 are both assumed

to be 3.

The ASN corresponding to Pa= 0.95 can be found using Table 10-6. For plan 3,

ASN/n1= 1.340. So ASN= (1.340)(36)= 48.24. For other values of p, the general formula

for the ASN of a double sampling plan [eq. (10-8)] would have to be used.
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Multiple Sampling Plans

A multiple sampling plan is an extension of a double sampling plan. The decision-making

procedure is similar to the double sampling plan in that we can inspect two or more samples

before we decide the fate of the lot.

For each sample, a sample size, acceptance number, and rejection number are specified.

For example, themultiple sampling plan in the following table shows that afirst sample of size

20 is chosen from the lot. If no nonconforming items are found in sample 1, the lot is accepted.

If two or more nonconforming items are found, the lot is rejected. If one nonconforming item

is found, a second sample of size 20 is chosen. If the combined number of nonconforming

items is 1 or less in samples 1 and 2, the lot is accepted. If the combined number of

nonconforming items is 3 or more, the lot is rejected. If the combined number of non

conforming items is 2, a third sampleof size20 is selected.Thisprocess continuesuntil sample

4 of size 20 is chosen and the lot is either accepted or rejected at this final stage.

Sample Cumulative Sample Acceptance Number Rejection Number

1 20 0 2

2 40 1 3

3 60 2 4

4 80 3 4

The average sample number is usually less for a multiple sampling plan than for an

equivalent single or double sampling plan. If lots are exceptionally good or poor, a decision

will usually be made at an earlier stage in the multiple sampling plan. Thus, we inspect fewer

items, on average, to determine the disposition of the lot. The expression for the ASN for a

multiple sampling was given previously by eq. (10-9).

For the example just described, the number of levels (k) is 4. The sample sizes are n1= 20,

n2= 20, n3= 20, n4= 20. The probability of making a decision at the first level, P1, is

P1 � P�x1 � 0� � P�x1 � 2� 
where x1 represents the number of nonconforming items observed for the first sample.

Similarly, the probability of making a decision on the second sample is

P2 � P�x1 � 1�P�x2 � 0� � P�x1 � 1�P�x2 � 2� 
where x2 represents the number of nonconforming items found for the second sample.

Along the same lines, the probability of making a decision on the third sample is

P3 � P�x1 � 1�P�x2 � 1�P�x3 � 0� � P�x1 � 1�P�x2 � 1�P�x3 � 2� 
where x3 represents the number of nonconforming units found for the third sample. Lastly,

the probability of making a decision on the fourth sample is

P4�P�x1�1�P�x2�1�P�x3�1�P�x4�0� � P�x1�1�P�x2�1�P�x3�1�P�x4�1� 
where x4 represents the number of nonconforming items found for the fourth sample. Now

that P1, P2, P3, and P4 can be evaluated, the ASN is calculated using eq. (10-9).

Because multiple sampling plans are more complex, their administrative costs are higher

than equivalent single or double samplingplans.Asingle samplingplan is the easiest, and thus

least costly, to administer.
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Standard Sampling Plans

In the preceding sections we discussed several methods for determining sampling plans.

Many organizations prefer to use existing plans, known as standardized sampling plans,

rather than compute sampling plans of their own. They simply select a set of criteria and

determine the standardized plans that best match these criteria. Although standardized plans

use predefined criteria, companies can generally adjust their criteria tomatch the standardized

plan. The advantage here is that plans can be selected with very little effort. Moreover,

characteristics and performance measures of the plans are already calculated and tabulated.

There are two common lot-by-lot attribute sampling plans. The first is a plan developed by

the American National Standards Institute, International Organization for Standardization,

and American Society for Quality. It is entitled Sampling Procedures and Tables for

Inspection by Attributes (ASQ 2013a). This standard is the outgrowth of sampling plans

developed during and after World War II, including Military Standard 105D (MIL-STD

105D). This standard emphasizes the system aspect of the sampling procedure using OC

curves in the scheme framework.The tables andprocedures ofMIL-STD-105Eare retained in

the ANSI standard.

ANSI/ISO/ASQ Z1.4 (ASQ 2013a) is used as an acceptable quality level system. This

means that the quality level of good lots should be rejected infrequently. If the process average

proportion nonconforming is less than the AQL, the sampling plans in ANSI/ISO/ASQ Z1.4

are designed to accept the majority of the lots. However, protecting the consumer by not

accepting poor lots (that is, the limiting quality level) was not a key criterion in ANSI/ISO/

ASQ Z1.4 plans.

The Dodge–Romig system, developed by H. F. Dodge and H. G. Romig (1959), is

designed to minimize the average total inspection while satisfying a consumer’s risk β for

batcheswith a given quality level specified by the limiting quality level. OtherDodge–Romig

plans are designed to satisfy a given average outgoing quality limit while minimizing the

average total inspection and are thus indexed by either the LQL or AOQL. The ANSI/ISO/

ASQ Z1.4 plans are indexed by the AQL. The Dodge–Romig system is based on a rectifying

sampling schemewhere rejected lots go through 100% inspection,with nonconforming items

replaced with acceptable ones.

A sampling plan determines the fate of a lot based on a certain sample size and acceptance

criterion. For example, the previously described single sampling plans satisfy a producer’s

risk α at a certain quality level p1=AQL.

A sampling scheme is a set of sampling plans with rules provided for switching among

them. A scheme is indexed by lot size and AQL, LQL, or AOQL. A set of rules specifies the

type of inspection to be used.

A sampling system is a collection of sampling schemes. It provides rules for the selection

of an appropriate sampling plan. MIL-STD-105E and ANSI/ISO/ASQ Z1.4 are sampling

systems.

Here we consider theDodge–Romig plans. For the ANSI/ISO/ASQZ1.4 plans, the reader

may consult the appropriate references.

Dodge–Romig Plans Dodge andRomig (1959) designed a set of plans based on achieving

a certain overall level of quality for products sent to the consumer. AlthoughANSI/ISO/ASQ

Z1.4 is a system based on AQL,it has little impact on the overall quality level because the

sample sizes are quite small compared to the lot sizes and only the nonconforming items in

the sample are detected. Dodge–Romig plans, however, are based on rectifying inspection.
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They assume that lots rejected by the sampling plans go through 100% inspection and that

nonconforming items are replaced by acceptable ones. This rectification process has an

impact on the overall quality level of the product sent to the consumer.

Dodge–Romig plans can be single or double sampling plans. There are two sets of

plans. One is based on satisfying a given LQL based on a consumer’s risk β, the target

value of which is 0.10. The other is based on meeting a certain value of the average

outgoing quality limit. For both sets of plans, the objective is to minimize the average

total inspection.

If the parameters of the plan under consideration (e.g., lot size and process average) are

within certain ranges, the Dodge–Romig tables allow us to determine feasible plans very

readily.Determining these plans frombasic principleswould takemuchmore time.The trade-

off is that theDodge–Romig tables provide a sampling plan for a range of lot sizes and process

averages. Thus, the plans listed may not be unique in minimizing ATI. Also, the plans

minimize ATI only approximately because in listing a given plan ranges are used for the lot

size and process average.

Plans Based on LQL These plans are used when protection is desired for the acceptance of

individual lots of a certain quality level. The Dodge–Romig LQL-based plans accept lots,

with a quality level given by LQL, 100β% of the time (a β of 0.10 was used to develop these

plans). Plans exist for LQL values of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, and 10.0% noncon

forming. Both single and double sampling plans are listed. The choice between these two

types is influenced by such factors as inspection cost per unit and administrative costs of

operating the plan.

To use the Dodge–Romig tables, an estimate of the process average nonconforming p is

necessary. Recent data from the process can be used to develop this estimate. If no data are

available for the process, the largest value of the process average nonconforming found in the

table can be used as a conservative estimate. As more information on the process becomes

available, the value of the process average nonconforming rate should be updated; conse

quently, a new sampling plan may be found.

The Dodge–Romig table for a single sampling plan with an LQL of 5% is shown in

Table 10-8. Note that the process average in Table 10-8 lists values to 2.5%. For values over

2.5% (which is half theLQL), sampling plansmay not be preferable because 100% inspection

becomesmore economical. The table also provides a value of theAOQL (in percentage) for a

given sampling plan.

Note fromTable 10-8 that the plan is indexed by lot size.A range of lot sizes is provided, as

well as a range of the process average nonconforming. As the lot size increases, the sample

size also increases, but the relative sample size (as a function of lot size) decreases. Thus, total

inspection costs become more economical for large lot sizes. Furthermore, as the process

average increases, the average amount inspected also increases.Reducing theprocess average

will help lower inspection costs.

Example 10-13 Find a Dodge–Romig plan when the lot size is 700, the LQL is 5%, and the

process average is 1.30% nonconforming. A single sampling plan is desired.

Solution Using Table 10-8 to index the lot size and process average, the single sampling

plan is found to be n= 130, c= 3. For this sampling plan, theAOQL is 1. 2%. Thismeans that

the worst average outgoing quality, regardless of incoming quality, will not exceed 1.2%. If

the process average were not known, themaximum listed value of the process average would

be used (in this case, the range 2.01–2.5%), and the plan would be n= 200, c= 6.
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Plans Based on AOQL When we need to provide a level of protection for the average

quality level of a stream of batches, a plan based on the average outgoing quality limit is

often appropriate. A specified value of AOQL is selected. The objective is to choose

plans such that the worst average outgoing quality for a stream of lots, regardless of

incoming quality, will not exceed this AOQL value. Dodge–Romig AOQL-based plans

are designed to meet this criterion and also to minimize the average total inspection.

The plans are tabulated for AOQL values of 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50,

3.00, 4.00, 5.00, 7.00, and 10.00%. Both single and double sampling plans are available

for these AOQL values. As in the previous set of plans, the lot size and process average

must be known in order to use the tables. The tables also provide the LQL values for a

consumer’s risk β of 0.10.

The Dodge–Romig table for a single sampling plan with an AOQL of 3.0% is shown in

Table 10-9.Note that the process average is listed to a value of 3.0% (equal to theAOQLvalue

of 3.0%). For process averages exceeding this value, 100% inspection becomes economical.

Example 10-14 Find a Dodge–Romig single sampling plan when the lot size is 1200, the

average outgoing quality limit is 3%, and the process average is 1.4% nonconforming.

Solution From Table 10-9, indexing the lot size of 1200 and process average of 1.4%

nonconforming, the single sampling plan is found to be n= 65, c= 3. For this plan, the LQL is

10.2%. This means that for individual lots with a nonconformance rate of 10.2% the

probability of accepting such lots would be 10%, the consumer’s risk.

10-9 OTHER ATTRIBUTE SAMPLING PLANS

The acceptance sampling plans described in the preceding sections are, in a sense, general

purpose plans. In this section we consider sampling plans that apply to special situations

where the key criteria might be to reduce inspection time and effort, to simplify, or to provide

better protection under special conditions.

Chain Sampling Plan

The chain samplingplan (ChSP-1)was proposedbyDodge (1955). It is used for tests that are

costly or destructive. In these situations, the sample size must by necessity be small.

Sampling plans with small sample sizes usually have an acceptance number c that is zero.

However, the OC curve for single sampling plans with c= 0 has an undesirable shape. The

entire OC curve is convex; consequently, even for extremely good lots with a low proportion

nonconforming, the probability of lot acceptance Pa decreases rapidly from 1.00 as p

increases from zero. So, from a producer’s point of view, there is a chance that good lots

will be rejectedmore frequently than they should. Figure 10-15 shows theOCcurve for single

sampling plans with an acceptance number c= 0 as well as OC curves for plans with

acceptance numbers of 1 and 2, which have high values ofPa for small values of p, a desirable

feature.

The chain sampling plan achieves a desirable OC curve for c= 0 when the value of p is

small. There are two parameters: First, the sample size n is the number of items to be

selected at random from each lot. The second parameter i represents the number of

preceding samples, the inspection results of which must be considered when deciding the

fate of the current lot.
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FIGURE 10-15 OC curves for c= 0, c= 1, and c= 2.

The plan works as follows. A random sample of n items is chosen from the lot. If no

nonconforming items are found in the sample, the lot is accepted. If the number of

nonconforming items is 2 or more, the lot is rejected. If the sample has one nonconforming

item, the lot is accepted if the previous i samples each had zero nonconforming items. TheOC

curve for this plan has a shape that is preferable to that for a single sampling plan

with c= 0. Figure 10-16 shows the OC curves for chain sampling plans where the sample

FIGURE10-16 OCcurves for ChSP-1 plans. [Source:H. F.Dodge (1955), “Chain Sampling Plans,”

Industrial Quality Control, 11(4): 10–13. Reprinted by permission of ASQ.]
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size is 10 and i varies from 1 to 5 and also the OC curve for a single sampling plan with n= 10

and c= 0. The chain sampling plan for i= 1 is shown as a dashed curve; it is not preferred

because it deviates significantly from theOC curve for n= 10, c= 0 over the entire range of p.

Note that the OC curves for a chain sampling plan are influenced by the cumulative results

of more than one sample. It is assumed that the quality level of the lot, as given by p, remains

fixed over the accumulation period. In contrast, for ordinary lot-by-lot attribute inspection,

decisions are based on information from each lot and are independent of the outcomes of

previous lots.

The probability of lot acceptance Pa is calculated using the binomial distribution as an

approximation to the hypergeometric distribution. It is given by

Pa � P�0; n� � P�1; n��P�0; n��i �10-12)
whereP(0, n) andP(1, n) represent the probabilities of obtaining zero and one nonconforming

items, respectively, from a sample of size n. The lot proportion nonconforming is assumed

to be p.

Sequential Sampling Plan

A sequential sampling plan is similar to a multiple sampling plan in that the number of items

required for sampling is influenced by the results of the sampling process itself. At each phase,

basedon the cumulative inspection results, a decision ismade to accept the lot, reject the lot, or

continue sampling. Theoretically, the sampling process can continue indefinitely. However,

if the number inspected is equal to approximately 3 times the number that would be inspected

by an equivalent single sampling plan, a decision is made to terminate the plan and notify the

vendor of the need to demonstrate an improved level of product before any further product can

be accepted.

Sequential sampling is usually an item-by-item inspection process, even though it is

possible to have groups of items at any given phase. Sequential sampling is used when it is

desirable to arrive at a decision to either accept or reject the lot as soon as possible (i.e., when

testing is expensive or destructive). The plan is based on the sequential probability ratio test

developed by Wald (1947).

Figure 10-17 illustrates the concept behind item-by-item sequential sampling. There are

two lines on the chart, an acceptance line and a rejection line. They determine the regions for

acceptance and rejection and the continued sampling region. The equations of the acceptance

and rejection lines are influenced by the producer’s risk α and its associated quality level p1
and by the consumer’s risk β and its associated quality level p2. The cumulative number of

nonconforming items d is plotted versus the number of items inspected, n. If the plot of the

cumulative number of nonconforming items touches the acceptance line or is below it, the lot

is accepted. If it touches the rejection line or is above it, the lot is rejected. If the cumulative

number of nonconforming items is within the region defined by the acceptance and rejection

line, sampling is continued, and one more item is inspected.

The equation of the acceptance line (in slope–intercept form) is given by

da � �ha � sn �10-13)
where�ha represents the intercept on the vertical axis and s represents the slope. The equation
of the rejection line is given by

dr � hr � sn �10-14)
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FIGURE 10-17 Item-by-item sequential sampling plan.

where hr represents the intercept on the vertical axis and s represents the slope. These

equations are based on satisfying both a given level of producer’s risk at an associated quality

level p1 (the AQL) and a given level of consumer’s risk at an associated quality level p2 (the

LQL). The expressions for the parameters of the acceptance line, ha and s, and those for the

rejection line, hr and s, are as follows:

ln��1 � α�=β� 
ha � �10-15)

k

ln��1 � β�=α� 
hr � �10-16)

k

ln��1 � p1�=�1 � p2�� 
s � 

k
�10-17)

where

k � ln p2�1 � p1� 
p1�1 � p2� 

�10-18)

10-10 DEMING’S kp RULE

The objective of Deming’s kp rule is to minimize the average total cost of inspection of

incoming materials and final product for processes that are stable. It calls for 0% or 100%

inspection. It can be shown that, if a process is stable, the distribution of the nonconforming

items in a sample is independent of the distribution of the nonconforming items in the

remainder of the lot. Items are submitted in lots, and a random sample is drawn from that lot to

make a decision regarding the entire lot.
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To use the kp rule, these assumptions are made. First, the inspection process is assumed to

be completely reliable. This means that a nonconforming item, if inspected, will be labeled as

such by the inspection process. Second, all items are inspected prior to moving forward to

the next customer in the process. The next customer can be another department within the

organization or a different company. The implication is that all nonconforming items will be

detected prior to shipment to the succeeding customer. Third, the vendor provides the buyer

with an extra supply of items in order to replace any nonconforming items that are found. The

cost of providing these additional items is included in the vendor’s charges and is considered

as an overhead cost, which would thus be present regardless of the type of inspection plan

used. Therefore, this cost is not included in the average cost function that is beingminimized.

The following notation is necessary:

p: average proportion of nonconforming items in the lots

k1: cost of initial inspection of an item

k2: cost of repair or reassembly due to the usage of a nonconforming item

k: average cost to find a conforming item from the additional supply to replace a

detected nonconforming item = k1/(1� p)

xi: 1 if item i is nonconforming; 0 otherwise

If item i is randomly selected from the lot, there is an initial inspection cost of k1. If it is

found tobenonconforming, the cost to replace itwith a conformingone is k. Thus, theunit cost

of initial inspection and replacement if nonconforming is given by

k1 � kxi if item i is inspected
C1 � �10-19)

0 if item i is not inspected

Similarly, the cost to repair and replace a nonconforming item is given by

�k2 � k�xi if item i is not initially inspected
C2 � �10-20)

0 if item i is initially inspected

Under the assumptions considered,C1 andC2 aremutually exclusive. If one is nonzero, the

other is zero, and the total cost is given by C=C1+C2. Thus, if item i is inspected, the total

cost is k1+ kxi; if it is not inspected, the total cost is (k2+ k)xi. This concept can be extended to

the average total cost per part for the entire lot. The parameter p represents the lot proportion

nonconforming. So, the average total cost per part if items are inspected is k1+ kp; if items are

not inspected, it is (k2+ k)p. The break-even value of p is obtained by equating the average

total cost for inspection to that for no inspection. In other words,

k1 � kp � �k2 � k�p
or

k1
p � �10-21)

k2

The kp rule is as follows:

1. If k1/k2 is greater than p, conduct no inspection. This situation occurs if the proportion

nonconforming of incoming product is low, the unit cost of an incoming inspection is
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high, and the cost of repairing a nonconforming item is low. Basically, this implies that

there is very little risk associated with nonconforming items if the incoming quality is

quite good.

2. If k1/k2 is less than p, conduct 100% inspection. This condition happens when the

incoming proportion nonconforming is high, the unit cost of incoming inspection is

low, and the cost of repairing a nonconforming item is high. In this situation, it is quite

expensive for a nonconforming item to be allowed into production.

3. If k1/k2 equals p, then either no inspection or 100% inspection is conducted. Usually, if

the estimated value of p is not very reliable, 100% inspection is conducted.

Note that conducting no inspection does not imply no information. Small samples should

be drawn from lots, even when the rule suggests no inspection, in order to obtain information

regarding the process. If 100% inspection is in operation, every effort must be made to

upgrade the process quality level throughprocess improvement procedures upon the initiative

of management.

Example 10-15 In the manufacture of television sets, the cost to inspect a printed circuit

board is $0.15. If a nonconforming circuit board is allowed in the assembly, the cost to

subsequently disassemble it and replace the unit is $100. It is estimated that the proportion

nonconforming of incoming circuit boards is 0.4%. What should the inspection policy be

using Deming’s kp rule?

Solution We have k1= 0.15, k2= 100, and p= 0.004. The ratio k1/k2= 0.15/

100= 0.0015. Since k1/k2< p, the policy calls for 100% inspection of all incoming printed

circuit boards.

Critique of the kp Rule

While Deming’s kp rule provides an alternative to acceptance sampling, there are some

practical limitations in its implementation (Vardeman 1986). The rule requires knowledge of

the process average of nonconforming items, p. But, estimating p requires sampling. These

samplesmay be large in size, depending on the desired accuracy. Thus, while wemaywish to

avoid acceptance sampling andmove to an all-or-none scheme,wemust sample to implement

the all-or-none scheme.

Deming’s kp rule assumes that the process average nonconformance rate, p, is stationary.

This may not be true for processes over a long period of time. This means that samples will

have to be takenperiodically to estimatep and tomodify the kp rule accordingly. Furthermore,

even if the value of p is stationary, verification of this again requires sampling. Thus, a

contradiction exists: Using Deming’s kp rule, which advocates no inspection or 100%

inspection, requires sampling.

Another drawback in implementing the kp rule is obtaining accurate estimates of k1, unit

inspection cost, and k2, cost of repair or reassembly due to the usage of a nonconforming item.

To estimate k1, data must be collected on capital costs of equipment, the depreciation policy

used, cost of obtaining capital, and the current value of the equipment.Additionally, operating

costs that include inspection costs for labor, maintenance, utilities, rent, and other overhead

items constitute a part of the unit cost k1. Obtaining realistic estimates of k2 is even more

difficult because of both its tangible and intangible components. It is not easy to establish the

cost of identifying nonconforming items later in the production process and the cost of their

repair. And, there are the intangible costs: What is the cost associated with letting a

nonconforming item slip by? This can involve warranty costs, product liability lawsuits,



SAMPLING PLANS FOR VARIABLES 543

and costs of recall. How do we determine the cost of loss of goodwill due to a consumer

experiencing a faulty product? These difficulties lead to crude estimates of k2. Thus, the

accuracy of the kp rule, which is derived from these estimates, becomes questionable.

The assumption of linearity in the cost structure is also subject to question. This applies to

the unit cost of inspection and the cost to repair and replace a nonconforming item. Note that

the level of the process where the nonconforming item is detected will influence the repair or

replacement costs.

Observe that 100% inspection is not a viable policy when the inspection process involves

destructive testing. Furthermore, there is no guarantee that 100% inspection will detect all

nonconforming items because of such reasons as inspector fatigue and human error. While

Deming’s kp rulemakes use of a simple decision framework, it has experienced limited usage

because of the difficulties in obtaining accurate estimates of the model parameters.

10-11 SAMPLING PLANS FOR VARIABLES

A variable is a quality characteristic that is measured on a numerical scale, such as weight,

pressure, temperature, viscosity, tensile strength, elasticity, resistance, and so on. The

characteristic is often inherently a variable. Treating it as an attribute does not retain the

precisionof informationofferedbyvariables. If testing is destructiveor costly, smaller sample

sizes may be necessary. Acceptance sampling plans for variables are more suitable in these

instances because they require smaller sample sizes than corresponding attribute sampling

plans for the same degree of protection.

There are two basic types of variable sampling plans. The first deals with controlling a

process parameter such as the mean or standard deviation. The desirable settings of the

parameters are such that certain conditions regarding the mean lot quality and the corre

spondingprobability of lot acceptance are satisfied. Plans can bedesigned for single or double

specification limits and aprocess standard deviation that is knownor unknown. Someplans in

this category involve acceptance control charts, sequential sampling plans for variables, and

hypothesis testing on process parameters (which is not treated in this chapter).

We examine acceptance control charts in the following sections. Sequential sampling plans

for variables, which we do not discuss, are used when the quality characteristic is normally

distributed and the process standard deviation is known. The procedure is similar to that for the

sequential plans for attributes discussed earlier; in suchplans the ordinate is the cumulative sum

of the characteristic (ΣX), which is plotted as a function of the number of units inspected.

The second type of plan deals with controlling the proportion of the product that is

nonconforming (i.e., does not satisfy specifications). Here as well, single or double

specification limits and a process variability that is known or unknown can be used to

determine the plans. In this chapter we focus on single sampling for both types of plans,

although double or multiple sampling plans can also be designed.

Advantages and Disadvantages of Variable Plans

Some advantages of variable sampling plans over attribute plans are as follows:

1. For a comparable level of protection as specified by the producer’s risk α, the AQL, the

consumer’s risk β, and the LQL, sample sizes are smaller for a variable plan than for an

attribute plan.
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2. Variable sampling plans provide more information than attribute plans. Since a

numerical value for the characteristic is specified, the extent to which the item is

conforming or not is obtained.Attribute plans simply specify the item as conforming or

not.

3. Variable sampling plans provide insight into the areas that deserve attention for quality

improvement. The information from a variable plan may provide clues for remedial

actions for improving process quality. Continual process improvement should be the

goal of every organization; variable plans help achieve it.

Some disadvantages of variable sampling plans are as follows:

1. Each quality characteristic requires a separate sampling plan. Because the number of

quality characteristics is usually large, this implies that several sampling plans must be

monitored.With attribute sampling plans, several variables can be combined to form a

single attribute plan.

2. The administrative and unit inspection costs are usually higher for variable plans than

for attribute plans. The measuring instruments are more expensive because an exact

measurement value is taken.

3. To make inferences from the variable sampling plans, we must know or estimate the

distribution of the quality characteristic for the process under consideration.

10-12 VARIABLE SAMPLING PLANS FOR A PROCESS PARAMETER

Variable sampling plans for a process parameter are used when either the average quality

of the product or process or the variability of the quality is of concern. These plans can

be used for items that are submitted in lots (e.g., in bags, boxes, drums, or bins). There

are plans for situations in which the process standard deviation is known or unknown.

The sampling plans in this section require that the distribution of the quality character

istic be normal. However, minor departures from normality may not significantly affect

the tests.

Estimating Process Average: Single Specification Limit and Known Process Standard

Deviation

Let’s consider a single sampling plan to estimate the process average; a single specifica

tion limit is given, and the process standard deviation is known. The two parameters of the

sampling plan are the sample size n and the acceptance limit Xa. Let’s suppose the lower

specification limit for the density of a chemical is specified. A variable sampling plan may

call for selecting a random sample of size n from the lot. The sample’s average density is

then found. If the sample average is less than the acceptance limit Xa, the lot is rejected.

Otherwise, the lot is accepted. Alternatively, if we specify an upper specification limit for

the density, the lot is rejected if the sample average is greater than the corresponding

acceptance limit. The process standard deviation σ is assumed to be known.

Now let’s derive a variable sampling plan under the following conditions. We want to

accept batches of good average quality, as denoted by X1, with a probability of 1� α

and to accept batches of poor average quality, as denoted by X2, with a probability of β.

Thus, we need to find a sampling plan whose OC curve passes through the points
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(X1,1� α) and (X2, β). Our quality characteristic must also meet a minimum specification

limit.

Figure 10-18 shows the relationship of X1 and X2 to Xa in the sampling distribution of the

sample mean X. Let Zα denote the standard normal value corresponding to the tail area of α,

and let Zβ denote the standard normal value corresponding to the tail area of β. We have

Zα � Xa � X1

σ= n
p �10-22)

and

Zβ � Xa � X2

σ= n
p �10-23)

Note that, for the case shown in Figure 10-18, Zαwill be negative and Zβwill be positive.

Equations (10-22) and (10-23) involve two unknowns, Xa and n. By solving them simulta

neously, we get the sample size

2�Zβ � Zα�σ
n � �10-24)

X1 � X2

Using the form of n in eq. (10-24), eq. (10-23) gives the acceptance limit

ZβX1 � ZαX2
Xa � �10-25)

Zβ � Zα

Example 10-16 Ammonium nitrate is shipped in 500-kg bags; the lower specification limit

for the concentration of nitrogen is 13%. The distribution of the concentration of nitrogen is

known to be normal, with a standard deviation of 1.5%. Find a variable sampling plan that

satisfies the following conditions:

1. Batches with amean 2.5 standard deviations above the lower specification limit should

be accepted with a probability of 0.95.



FIGURE 10-19 Process means X1 and X2 and their relationship to Xa for nitrogen concentration.
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2. Batcheswith amean 1.5 standard deviations above the lower specification limit should

be accepted with a probability of 0.10.

Solution First, we calculate the process average quality levels associated with the two

conditions that are to be satisfied. Denoting the lower specification limit by LSL, we have

X1 � LSL � 2:5σ
� 0:13 � �2:5��0:015� � 0:1675

X2 � LSL � 1:5σ
� 0:13 � �1:5��0:015� � 0:1525

Thus, wewish to accept lots that have amean quality level of 16.75%with a probability of

0.95. Additionally, we wish to accept lots that have a mean quality level of 15.25% with a

probability of 0.10.

Figure 10-19 shows the relationship of these conditionswith respect to the acceptance limit

Xa. We have 1 � α � 0:95;X1 � 0:1675; β � 0:10;X2 � 0:1525. From Appendix A-3, we

have Zα � Z0:05 � �1:645 and Zβ � Z0:10 � 1:282. From eq. (10-24), the sample size is

n � �1:282 � �� 1:645���0:015� 
0:1675 � 0:1525

2

� 8:57 ' 9

From eq. (10-25), the acceptance limit is

�1:282��0:1675� � ��1:645��0:1525� 
Xa � � 0:1591

1:282 � ��1:645� 
The sampling planworks as follows.A random sample of size 9 is chosen from the lot, and

the sample average concentration of nitrogen is found. If the sample average is less than

15.91%, the lot is rejected; otherwise, it is accepted.

Estimating Process Average: Double Specification Limits and Known Process

Standard Deviation

In certain instances, the quality characteristic needs to be within a range of values, which

necessitates the existence of double specification limits. For example, the diameter of an

acceptable bearing should lie between upper and lower specification limits. Thus, the levels of
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FIGURE 10-20 Relationship between the various parameters for a plan using double specification

limits.

poor quality for the process average are given by two values, X2L andX2U , and the associated

consumer’s risk is denoted by β. As in the previous section, the level of good quality of the

process average, denoted by X1, is such that the producer’s risk is given by α. Thus, the OC

curve of the sampling plan should pass through the points �X1; 1 � α�; �X2L; β�, and �X2U; β�.
Accordingly, there will be two acceptance limits, XLa and XUa, the lower and upper

acceptance limits, respectively. The process standard deviation is assumed to be known

and is represented by σ; the sample size is denoted by n.

Figure 10-20 shows the relationship between the various parameters of the sampling plan.

It is assumed in this section that X1 is at the midpoint of X2L and X2U . Assuming a normal

distribution of the sample means, the following equations are obtained:

Zα=2 � 
XUa � X1

σ= n
p �10-26)

�Zα=2 � 
XLa � X1

σ= n
p �10-27)

Zβ � XLa � X2L

σ= n
p �10-28)

�Zβ � XUa � X2U

σ= n
p �10-29)

where Zα=2 and Zβ are the standard normal variate values when the right-tail areas are α/2 and

β, respectively. Note that there are three unknowns: XLa, XUa, and n. One of the preceding

equations can be eliminated as being redundant, and the unknownparameters of the sampling

plan can be solved.

Example 10-17 The diameter of an axle must lie within a desirable upper and lower bound.

Consequently, if the process average diameter is below 45mm or above 47mm, the desired

probability of lot acceptance is 0.10. Let the producer’s risk be 0.05 and the process standard

deviation of the axle diameters be 0.6mm. Find the variable acceptance sampling plan.

Solution We have X2L � 45; X2U � 47; β � 0:10; α � 0:05, and σ = 0.6. The value of

X1 (midway between 45 and 47) is 46. Figure 10-21 shows the relationship between the

various parameters, where XLa and XUa denote the lower and upper acceptance limits,

respectively.
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FIGURE 10-21 Relationship between various parameters for a sampling plan for axle diameter.

After finding the standard normal variates and using eqs. (10-26)–(10-29), we get

XUa � 46
1:96 � p �10-30)

σ= n

XLa � 46�1:96 � p �10-31)
σ= n

XLa � 45
1:282 � p �10-32)

σ= n

XUa � 47�1:282 � p �10-33)
σ= n

From eqs. (10-32) and (10-33) we get

XLa � XUa � 92

From eqs. (10-31) and (10-32), we have

p �1:282 � 1:96�σ
n � � �1:282 � 1:96��0:6� � 1:945

46 � 45

The sample size is computed as

n � �1:945�2 � 3:784 ' 4

For this computed value of n, eq. (10-31) gives

0:6
XLa � 46 � �1:96�p � 45:412

4

Therefore, XUa � 46:588.
The sampling plan operates as follows. A random sample of size 4 is chosen from

the lot, and the average diameter of the axles is computed. If the sample average is less
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than 45.412mm or greater than 46.588mm, the lot is rejected. Otherwise, the lot is

accepted.

Estimating Process Average: Single Specification Limit and Unknown Process

Standard Deviation

In most cases, the process standard deviation of the quality characteristic is not known, and

estimates of it are obtained from a sample. Assume that the distribution of the quality

characteristic is normal. The sample variance s2 for a sample of size n (as given previously) is

2
X2 =nXii �2 �s �10-34)

n � 1
where Xi represents the value of the quality characteristic for the ith item in the sample. As

before, suppose that the good quality level of the process is denoted by X1 such that the

probability of accepting batches with this mean is 1� α, where α denotes the producer’s risk.

For batches with a poor quality level, whose average is denoted by X2, the probability of

acceptance is low and is given by β, the consumer’s risk.p
The sampling distribution of �X � X1�=�s= n� is approximately a t-distribution with

(n� 1) degrees of freedom. The t-distribution is discussed in Chapter 4, and the t-tables are

shown in Appendix A-4. The problem here is that because the sample size is not known, the

t-statistic cannot be computed. Oneway to circumvent this is to estimate the process standard

deviation, as denoted by σ̂. After additional information is obtained, this estimate may be

updated.

Neyman and Tobarska (1936) constructed OC curves for sampling plans with single

specification limits based on the t-statistic for a producer’s risk α of 0.05. Figure 10-22

FIGURE 10-22 OC curves for sampling plans with a single specification limit when the process

standard deviation is unknown for α= .05. [Source: J. Neyman and B. Tobarska (1936), “Errors of

the Second Kind in Testing Student’s Hypothesis,” Journal of the American Statistical Association,

31: 318–326. Reprinted with permission from the Journal of the American Statistical Association.

Copyright  1936 by the American Statistical Association. All rights reserved.]
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shows these OC curves for different values of n. The abscissa represents the parameter λ,

which is given by

jX1 � X2 j
λ � �10-35)

σ̂

If the probability of lot acceptance Pa is set equal to β, the sample size can be found from

Figure 10-22.

Once the sample size is determined, the decision-making process is as follows. A random

sample of size n is chosen, and the t-statistic is computed:

X � X1
t � p �10-36)

s= n

where X and s represent the sample average and sample standard deviation, respectively. If a

lower specification limit is given, the lot is rejected if the calculated value of t < tα,n�1, where
tα,n�1 is the 100α percentile point of the t-distribution with n� 1 degrees of freedom.

Appendix A-4 is used to obtain the percentile points of the t-distribution. If an upper

specification limit is given, the lot is rejected if t > t1�α,n�1, where t1�α,n�1 is the 100(1� α)

percentile point of the t-distribution with (n� 1) degrees of freedom.

Example 10-18 A soft-drink bottling company has a lower specification limit of

3.00 liters (L). Bottles with an average content of 3.08 L or more are accepted 95% of

the time. Bottles with an average content of 2.97 L or less are to be accepted 10% of the

time. The standard deviation of the bottle contents is unknown. However, management

feels that a reasonable estimate is 0.2 L. Find a variable sampling plan.

Solution WehaveX1 � 3:08; α � 0:05; X2 � 2:97; β � 0:10; σ̂ � 0:2. The parameter

λ given by eq. (10-35) is calculated as

j3:08 � 2:97j
λ � � 0:55

0:2

From Figure 10-22, for α= 0.05, λ = 0.55, and a probability of acceptance of 0.10, the

sample size is approximately 30. From Appendix A-4, the t-statistic for a lower-tail area of

α= 0.05 and 29 degrees of freedom is �1.699.
The sampling plan operates as follows. A random sample of 30 bottles is chosen from the

lot, and the sample average X and sample standard deviation s are computed. Given values of

X and s, the t-statistic is computed as

X � 3:08
t � p

s= 30

if t<�1.699, the lot is rejected. Otherwise, the lot is accepted.

10-13 VARIABLE SAMPLING PLANS FOR ESTIMATING THE LOT

PROPORTION NONCONFORMING

Assume that the quality characteristic is normally distributedwith aknownstandard deviation

σ. A relationship can be established between the sample average X, the process standard

deviation σ, and the lot percent nonconforming. If a lower specification limit L is given, a
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standard normal deviate is found from

X � L
ZL � �10-37)

σ

Alternatively, if the upper specification limit U is given, the standard normal deviate is

calculated as
U � X

ZU � �10-38)
σ

Anestimate of the lot proportion nonconforming is the area under the portion of the normal

curve that falls outside ZL or ZU. Note that as the sample mean moves farther away from the

specification limit, the value of the corresponding deviate increases and the percent non

conforming decreases.

Twomethods (Duncan 1986) are commonly used to estimate the proportion nonconform

ing of a lot: Form 1 (the k-method) and Form 2 (theM-method). With Form 1, the standard

normal deviate,ZL orZU, is compared to a critical value k. IfZLorZU is greater than or equal to

k, the lot is accepted; otherwise, the lot is rejected.

With Form 2, the lot percent nonconforming is estimated by first modifying the indices ZL
and ZU to obtain the indices QL and QU which are unbiased and have minimum variance

(Lieberman and Resnikoff 1955). If a lower specification limit L is given, QL is obtained as

�10-39)QL � 
X � L

σ

n

n � 1 � ZL

n

n � 1

If an upper specification limit is given, QU is found as

U � X n n
QU � �10-40)� ZU

σ n � 1 n � 1

Anestimate p̂ of the lot percent nonconforming is obtainedbyfinding the portion of the area

under the standard normal distribution (Appendix A-3) that falls outside QL or QU. The

decisionrule is as follows. If p̂ is greater thanamaximumallowablepercentnonconforming

value M, the lot is rejected; otherwise, the lot is accepted.

Derivation of a Variable Sampling Plan with a Single Specification Limit and Known

Process Standard Deviation

Let’s suppose the following conditionsmust be satisfied. The probability of rejecting lots of a

good quality level for which the proportion nonconforming is p1 should be equal to α. The

probability of accepting lots of a poor quality level forwhich the proportion nonconforming is

p2 should be equal to β. Therefore, the OC curve of the sampling plan must pass through the

two points (1� α, p1) and (β, p2). Let Zα and Zβ denote the upper-tail percentile points of the

standard normal distribution such that the tail areas are α and β, respectively. Suppose a lower

specification limit is given.

Let μ1 denote the processmean for which the proportion nonconforming is p1, as shown in

Figure 10-23a. Denoting the corresponding standard normal deviate as Z1, we have

μ1 � L
Z1 � 

σ



FIGURE 10-23 Distribution of X and X.
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where the tail area outside Z1 is p1. Similarly, we have

μ2 � L
Z2 � 

σ

where the tail area outside Z2 is p2.

Note that the formulas for Z1 and Z2 differ from the usual definition of the standard normal

deviate.Writing them in this format makes them positive; the values corresponding to the tail

areas of the standardnormal distribution that are outside thedeviatesZ1 orZ2 canbe lookedup.

Given σ, we can determine the process mean locations μ1 and μ2.

Figure 10-23b shows the distribution of the sample averages; the relationship among μ1,

μ2, α, and β is shown. Under Form 1, the lot is accepted if �X � L�=σ � k, which is equivalent

to the condition

X � μ

σ= n
p � k � μ � L

σ
n

p 

Using the relation Z1= (μ1� L)/σ and the requirement of accepting lots of good quality

(with process mean at μ1) with a probability of 1� α, we have

X � μ p
P p � �k � Z1� n � 1 � α

σ= n
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If Z1�α is the standard normal deviate such that the probability of falling outside it is 1� α,

we have

p
�k � Z1� n � Z1�α

Note that Z1�α=�Zα, where Zα represents the standard normal deviate such that the

probability of falling outside it isα. Forα< 0.50,Z1�αwill be negative andZαwill be positive.
Hence,

p
�k � Z1� n � �Zα �10-41)

Using the relation Z2= (μ2�L)/σ and the requirement of accepting lots of poor quality

(with process mean at μ2) with a probability of β, we have

P
X � μ

σ= n
p � k � Z2

n
p � β

Denoting Z β as the standard normal deviate such that the probability of falling outside it is

β, we have

�k � Z2� n
p

� Zβ �10-42)
Solving eqs. (10-41) and (10-42) simultaneously, we get the sample size as

n � Zα

Z1

� Zβ

� Z2

2

�10-43)

The value of k can be found from either of the following equations:

k � Z1 � Zα

n
p �10-44)

k � Z2 � Zβ

n
p �10-45)

The use of eq. (10-44) or (10-45) is influenced bywhether we desire to exactly achieve the

value of α or β, respectively.

UsingForm1, theprocedure for thevariable samplingplan is as follows.A randomsample

of size n is selected. The sample mean X is found. Given a lower specification limit L, ZL is

found from eq. (10-37). The value of k is found from eq. (10-44) or (10-45), depending on

whether we want to achieve the value of α or β. Sometimes, the value of k is chosen as the

average of the values obtained using eqs. (10-44) and (10-45). If ZL� k, the lot is accepted.

Otherwise, the lot is rejected.

Using Form 2, if a lower specification limit L is given, a sample of size n is selected. The

samplemeanX is found. The value ofQL is computed using eq. (10-39), and the percent of the

distribution (p̂) that exceeds this value is found fromAppendix A-3. Themaximum allowable

percent nonconforming,M, is found fromAppendix A-3 by determining the area that exceedsp
the standardnormal value of k n=�n � 1�, where k is found fromeq. (10-44) or (10-45), or the

average of both of these values. If p̂ � M, the lot is accepted. Otherwise, the lot is rejected.

For Form 1, if an upper specification limitU is specified, a similar procedure is adopted. A

random sample of size n is selected from a lot, where n is given by eq. (10-43). The sample
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averageX is computed. Given the process standard deviation σ, ZU is found from eq. (10-38).

If ZU� k, where k is found from eq. (10-44) or (10-45) or the average of these two values, the

lot is accepted. Otherwise, the lot is rejected. The procedure for using Form 2 with an upper

specification limit is similar to that for a lower specification limit.

Example 10-19 ln the manufacture of heavy-duty utility bags for household use, the lower

specification limit for the carrying load is 100 kg. We want to accept lots that are 2%

nonconforming with a probability of 0.92. For lots that are 12% nonconforming, the desired

probability of acceptance is 0.10. The standard deviation of the carrying load is known to be

8 kg. Find a variable sampling plan and explain its operation.

Solution We have L= 100, p1= 0.02, α= 0.08, p2= 0.12, β= 0.10, and σ= 8. From

the standard normal distribution tables in Appendix A-3, we get Z1= 2.055, Z2= 1.175,

Zα= 1.405, and Zβ= 1.282. The sample size is

2
1:405 � 1:282

n � � 9:323 ' 10
2:055 � 1:175

If we want to satisfy the value of α= 0.08 exactly, then

1:405
k � 2:055 � p � 1:611

10

We select a sample of 10bags andfind the sample average of the carrying load to be110 kg.

We can use either Form 1 or Form 2.

Using Form 1, we calculate ZL using eq. (10-37) as follows:

110 � 100
ZL � � 1:25

8

Since ZL < k, the decision based on Form 1 is to reject the lot.

Using Form 2, we calculate QL using eq. (10-39) as follows:p
QL � 1:25 10=9 � 1:3176 ' 1:32

From Appendix A-3, the proportion that falls outside the standard normal value of 1.32 is

0.0934. This is the estimated proportion of nonconforming items (p̂). Themaximum allowable

proportion nonconforming, M, is found by first calculating the standard normal value asp p
k n=�n � 1� � 1:611 10=9 � 1:698 ' 1:70

FromAppendixA-3, theareaabove thisstandardnormalvalueof1.70 is0.0446,which is the

maximum allowable proportion nonconformingM. Since p̂ > M, the decision is to reject the

lot, which is consistent with our decision using Form 1.

Standardized Plans: ANSI/ISO/ASQ Z1.9 and MIL-STD-414

Military Standard 414 (MIL-STD-414) is a lot-by-lot acceptance sampling plan for

variables. This standard was developed as an alternative to MIL-STD-105E, which uses

attribute inspection. The civilian version of this plan, ANSI/ISO/ASQ Z1.9, was last

updated in 2013 (ASQ 2013b).

ANSI/ISO/ASQ Z1.9 is an AQL-based plan in which it is assumed that the distribution of

the quality characteristic is normal. Three types of inspection (normal, tightened, and

reduced) are provided in the standard. Switching may take place between these types; the
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rules for switching are the same as those for ANSI/ISO/ASQZ1.4. The recent quality history

of the product determines the type of inspection.

Three general inspection levels, I, II, and III, and two special levels, S-3 and S-4, are used.

The choice of general inspection level is determined by such factors as the unit inspection cost

and the desired degree of discrimination between acceptable and unacceptable products.

Inspection level I is used when less discrimination can be tolerated and the sample sizes are

small. Level III is used when more discrimination is desired and the sample sizes are larger.

Unless otherwise specified, level II is typically used.

The plans in ANSI/ISO/ASQ/Z1.9 can be used in conjunction with single or double

specification limits. As noted earlier, two methods of decision making, namely Form 1 or

Form2, are used. For double specification limits, however, only Form2 is used. Form1uses a

critical value for the standardized distance, expressed in terms of the standard deviation,

between the process mean and a given specification limit. If this standardized distance is

greater than or equal to k,where k is a standard value tabulated inANSI/ISO/ASQZ1.9, the lot

is accepted. Form 2, on the other hand, uses an estimate of the percentage of nonconfoming

items that fall outside the specifications. If this estimate is less than or equal toM, whereM is a

standard value tabulated in the plan, the lot is accepted. For further details the reader should

consult the appropriate references.

SUMMARY

In this chapter we have discussed a variety of acceptance sampling plans for attribute

inspection. From the items selected for inspection, a count of the number of nonconformities

or the number of nonconforming items is made. This count, if less than or equal to a standard

value (based on criteria that are to be satisfied by the sampling plan), determines acceptance of

the lot.Alternatively, if the count exceeds the standard value of the acceptance number, the lot

is rejected. This represents the simplest form of decision making associated with single

sampling plans; this chapter has introduced double andmultiple sampling plans, too.Much of

the chapter is devoted to lot-by-lot attribute sampling plans, for which items are submitted for

inspection in lots, or batches. Single and double sampling plan designs are based on such

criteria as producer’s risk and consumer’s risk. In addition to lot-by-lot attribute inspection

plans, some special plans such as chain sampling and sequential sampling have also been

discussed. A discussion of Deming’s kp rule for sampling, which provides a prescription for

either 0% or 100% inspection, has been included.

This chapter has also introduced sampling plans for variables. Whereas attribute inspec

tion is easier and usually less expensive, variable sampling plans yieldmore information. For

the same degree of protection, the sample sizes for variable sampling plans are usually smaller

than those for corresponding attribute sampling plans. Two main types of variable sampling

plans have been presented. The first deals with controlling a process parameter. Plans for

estimating the process average for single and double specification limits when the process

standard deviation is known have been discussed. For cases in which the process standard

deviation is unknown, plans that estimate the process averagewith a single specification limit

are presented. The second type of variable sampling plan is designed to estimate the lot

proportion nonconforming. Two methods of decision making, Forms 1 and 2, have been

described. The case for which the process standard deviation is known and a single

specification limit is given has been presented.

We have also presented Bayes’ rule for updating estimates of probabilities, based on

sample information. In this context, optimal decision-making concepts are discussed.
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KEY TERMS

acceptability constant

acceptable quality level

acceptance limit

acceptance number

attribute sampling plans

average outgoing quality

average outgoing quality limit

average sample number

average total inspection

Bayes’ rule

chain sampling plans

consumer’s risk

decision rule

Form 1

Form 2

Deming’s kp rule

double sampling plan

double specification limits

expected value of perfect

information

inspection

types of

normal

reduced

tightened

limiting quality level

lot size

lot tolerance percent defective

maximum allowance percent

nonconforming

EXERCISES

Discussion Questions

multiple sampling plans

operating characteristic curve

type A OC curve

type B OC curve

posterior distribution

prior distribution

process average

process standard deviation

producer’s risk

rectifying inspection

rejectable quality level

sample size

sampling plans

design

sampling scheme

sampling system

screening

sequential sampling plan

single sampling plan

single specification limit

standardized sampling plans

ANIS/ISO/ASQ Standard Z1.4

ANSI/ISO/ASQ Standard Z1.9

Dodge–Romig plans

MIL-STD-105E

MIL-STD-414

variable sampling plan

10-1 Discuss the advantages and disadvantages of sampling.

10-2 Distinguish between producer’s risk and consumer’s risk. In this context, explain the

terms acceptable quality level and limiting quality level. Discuss instances for which

one type of risk might be more important than the other.

10-3 What is the importance of the OC curve in the selection of sampling plans? Describe

the impact of the sample size and the acceptance number on the OC curve. What is

the disadvantage of having an acceptance number of zero?

10-4 Discuss the relative advantages and disadvantages of single, double, and multiple

sampling plans.
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10-5 Distinguish between average outgoing quality and acceptable quality level. Explain

the meaning and importance of the average outgoing quality limit.

10-6 If you were interested in protection for acceptance of a single lot from a vendor

with whom you do not expect to conduct much business, what criteria would you

select and why?

10-7 Explain the difference between average sample number and average total inspection.

State any assumptions made.

10-8 If rectification inspection is used, discuss possible criteria to

sampling plans.

use in choosing

10-9 Discuss the context in which minimizing the average sample number would be a

feasible criterion. Which type of sampling plan (single, double, or multiple) would

be preferable and what factors would influence your choice?

10-10 Compare and contrast chain sampling and sequential sampling plans.When are they

used?

10-11 Discuss the assumptions made in Deming’s kp rule. When would you use this rule?

10-12 What are the advantages and disadvantages of variable sampling plans over those for

attributes?

10-13 What are the parameters of a variable sampling plan for which the process average

quality is of interest? Explain the working procedure of such a plan when single and

double specification limits are given.

10-14 Explain the difference between the decision-making procedure using Forms 1 and 2

for variable sampling plans that are designed to estimate the proportion of non

conforming items.

Problems

10-15 Consider a single sampling plan with a lot size of 1500, sample size of 150, and

acceptance number of 3. Construct the OC curve. If the acceptable quality level is

0.05% nonconforming and the limiting quality level is 6% nonconforming, describe

the protection offered by the plan at these quality levels.

10-16 Consider Exercise 10-15. Answer the same questions for the sampling planN= 1500,

n= 200,c= 3.Discuss thedegreeofprotectionof this plan compared to that inExercise

10-15.

10-17 Suppose that desirable producer’s risk is 3% and consumer’s risk is 6%.Which of the

plans described in Exercises 10-15 and 10-16 are preferable? Discuss your choice.

10-18 For the sampling plan N= 1500, n= 150, c= 3, construct the average outgoing

quality curve. What is the AOQL? Interpret it.

10-19 Construct the ATI curve for the sampling planN= 1200, n= 50, c= 1. Suppose that

the process average nonconforming rate is 3%. Explain the value of ATI for that

level of nonconformance.

10-20 For the double sampling plan N= 2000, n1= 80, c1= 1, r1= 3, n2= 100, c2= 2,

r2= 3, construct and interpret the ASN curve. Suppose that process average
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nonconforming rate is 1.5%. Would you prefer the stated double sampling plan or a

single sampling plan with n= 100, c= 2 in order to minimize ASN?

10-21 For the double sampling plan N= 2200, n1= 60, c1= 1, r1= 5, n2= 120, c2= 4,

r2= 5, construct the ASN curve. Within what range of proportion nonconforming

values would you prefer the stated double sampling plan over a single sampling plan

with n= 85, c= 2 in order to minimize ASN?

10-22 A computermonitormanufacturer subcontracts its major parts to four vendors: A, B,

C, and D. Past records show that vendors A and C provide 30% of the requirements

each, vendorBprovides 25%, and vendorDprovides 15%. In a random sample of 10

parts, 4were found to be nonconforming. It is known that vendors A andC operate at

a level of 5% nonconformance rate, while vendors B and D are at 10% and 15%,

respectively. What is the probability that the sample came from vendor A? From

vendor B? From vendor C?

10-23 A manufacturer is considering replacement of an existing machine that performs an

operation on a part. The variable costs are $0.38 per piece on the existing machine

and $0.05 per piece on the new machine. The cost of the new machine is $40,000,

while the existing machine can be scrapped at a value of $5400. It is known that the

proportion nonconforming using the existing machine is 0.05. With the new

machine, since the nonconformance rate will be influenced by the operator and

the new machine, it cannot be specified exactly. Based on experience, the estimated

probability distribution of the proportion nonconforming for the new machine is

shown in Table 10-10. An order exists for 100,000 parts. Assume that the entire cost

of the new machine can be assigned to this order. Note that costs may have to be

calculated on the basis of good parts produced.

(a) If a decision has to be made without sampling, what is that decision?What is the

expected opportunity loss of the optimal decision?

(b) Suppose that the seller of the new machine gives you the opportunity to sample

the output from a new machine set up at another plant. You select a sample of

100 parts and find 4 nonconforming. What is your optimal decision?

TABLE 10-10

Proportion Nonconforming, p Probability, P(p)

0.05 0.20

0.07 0.25

0.09 0.35

0.11 0.30

10-24 Determine the single sampling plans that will reject lots that are 1.3% nonconform

ing 8% of the time. Use acceptance numbers of 1, 3, and 5. From a consumer’s point

of view, which of these three plans would you choose?

10-25 Determine the single sampling plans that will accept lots that are 6% nonconforming

12% of the time. Use acceptance numbers of 1, 2, and 4. From a producer’s point of

view, which of these plans would you choose?

10-26 Determine single sampling plans that will accept lots that are 0.8% nonconforming

with a probability of 0.96.Use acceptance numbers of 1, 3, and 4. If we desire batches
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that are 5% nonconforming to be accepted with a probability of no more than 0.04,

which of the plans above would be preferable? Will the plan meet this criterion?

10-27 A sampling plan is desired to have a producer’s risk of 0.05 at AQL= 0.9% and a

consumer’s risk of 0.10 at LQL= 6.5% nonconforming. Find the single sampling

plan that meets the consumer’s stipulation and comes as close as possible to meeting

the producer’s stipulation.

10-28 A sampling plan is desired to have a producer’s risk of 0.05 at AQL= 1.3%

nonconforming and a consumer’s risk of 0.10 at LQL= 7.1% nonconforming. Find

the single sampling plan that meets the producer’s stipulation and comes as close as

possible to meeting the consumer’s stipulation.

10-29 A sampling plan is desired to have a producer’s risk of 0.05 at AQL= 2.0%

nonconforming and a consumer’s risk of 0.10 at LQL= 7% nonconforming. Find

the single sampling plan with the largest sample size. Find the single sampling plan

with the smallest sample size.

10-30 Consider a double sampling plan given by the following parameters: N= 1200,

n1= 50, c1= 1, r1= 4, n2= 110, c2= 5, r2= 6. Find the probability of accepting lots

that are 4% nonconforming. What is the probability of rejecting a lot on the first

sample?

10-31 Consider a double sampling plan given by the following parameters: N= 2200,

n1= 60, c1= 0, r1= 5, n2= 100, c2= 6, r2= 7. Find the probability of accepting lots

that are 3% nonconforming. What is the probability of accepting a lot on the first

sample? What is the probability of making a decision on the first sample?

10-32 Refer to Exercise 10-30. What is the average sample number of incoming lots that

are 2% nonconforming?What is the average total inspection for this quality level of

2% nonconforming?

10-33 A double sampling plan is desired that has a producer’s risk of 0.05 at AQL= 1.8%

nonconforming and a consumer’s risk of 0.10 at LQL= 8.5% nonconforming. The

lot size is 1500, and the sample sizes are assumed to be equal. Find the sampling plan

if the producer’s stipulation is to be satisfied exactly. Find the average sample

number for lots that are 1.8% nonconforming.

10-34 It is desired to accept lots that are 9.5%nonconformingwith a probability of 0.10 and

to accept lots that are 2.3% nonconforming with a probability of 0.95. Find a double

sampling plan for a lot size of 2000 if the second sample is to be twice as large as the

first sample and the consumer’s stipulation is to be satisfied exactly. Find the average

sample number for lots that are 2.3% nonconforming.

10-35 Refer to Exercise 10-33. Find the double sampling plan if the second sample is to be

twice as large as the first sample and the consumer’s stipulation is to be satisfied

exactly.

10-36 Refer to Exercise 10-33. Find the sampling plan if it is desired to accept batches that

are 5% nonconforming with a probability of 0.5.

10-37 Find a Dodge–Romig single sampling plan if the lot size is 900, LQL= 5%

nonconforming, and the process average is 0.8% nonconforming. What is the

AOQL for the plan? Interpret it.
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10-38 Find a Dodge–Romig single sampling plan if the lot size is 2200 and LQL= 5.0%.

Determine and interpret the AOQL for the plan.

10-39 Find a Dodge–Romig single sampling plan if the lot size is 600, the process average

is 1.4% nonconforming, and AOQL= 3%. Determine and interpret the LQL for the

plan.

10-40 A chain sampling plan is used with a sample size of 5 and a parameter i of 3. If lots

have a proportion nonconforming of 0.06, find the probability of accepting such lots.

10-41 The equations for the acceptance and rejection lines for a sequential sampling plan

are given as follows:

da � �0:95 � 0:06n
dr � 1:22 � 0:06n

What is the first opportunity to reject? What is the first opportunity to accept?

10-42 A sequential sampling plan is to be used. It is desirable to have a producer’s risk of

0.05 at AQL= 0.008 and a consumer’s risk of 0.07 at LQL= 0.082. Determine the

equations for the acceptance and rejection lines. What is the first opportunity to

reject? What is the first opportunity to accept?

10-43 The initial inspection of transmission systems in automobiles is estimated to cost

$0.50 per unit. If a nonconforming transmission is allowed in the assembly, the unit

cost to eventually disassemble and replace it is $225. The estimated proportion

nonconforming of the transmission systems is 0.003. Using Deming’s kp rule, what

inspection policy should be used?

10-44 In Exercise 10-43, if the initial inspection costs of the transmission systems is $1.00

per unit, what inspection policy should be followed using Deming’s kp rule?

10-45 Refer to Exercise 10-43, Suppose that the monthly production is 3000 units. What is

the average savings in total inspection costs per month when using the policy found

from Deming’s kp rule as opposed to no inspection?

10-46 Refer to Exercise 10-44. lf the monthly production is 2000 units, what is the average

savings in total inspection costs when using Deming’s kp rule as opposed to 100%

inspection?

10-47 In the construction industry, the initial inspection of tie beams is estimated to cost

$0.20 per unit. If, however, a nonconforming beam is allowed for construction

purposes, the unit cost of rectifying and replacing it is $50. What inspection policy

should be followed, using Deming’s kp rule, if the nonconformance rate of beams is

0.5%? What is the average savings in total inspection costs if 100% inspection is

used as opposed to no inspection?

10-48 The upper specification limit for the resistance of coils is 30 Ω. The distribution of

coil resistance is known to be normal with a standard deviation of 5Ω. It is preferred

to reject batches that have a mean of 2.3 standard deviations below the upper

specification limit no more than 5% of the time. Also, batches that have a mean of

1 standard deviation below the upper specification should be accepted no more than

8% of the time. Find the parameters of a variable sampling plan and describe its

operation.
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10-49 The lower specification limit for the breaking strength of yarns is 25 g. The

distribution of the breaking strength of yarns is normal with a variance of 6. It is

desirable that lots with a mean such that 3% of the product is nonconforming be

accepted 94% of the time. Lots with a mean such that 8% of the product is

nonconforming should be accepted 7% of the time. Find the parameters of a

variable sampling plan and describe its operation.

10-50 The tensile strength of an alloy has double specification limits. If the process average

tensile strength is below 800 kg/cm2 or above 1200 kg/cm2, it is desired to accept

such lotswith a probability of 0.08. For lotswith a process average of 1000 kg/cm2, it

is desired that the probability of acceptance be 0.96. The distribution of tensile

strength is normal, with a standard deviation of 80 kg/cm2. Find the variable

sampling plan and describe its operation.

10-51 The length of connector pins has an upper specification limit of 45mm and a lower

specification limit of 40mm. It is desirable that lots with a mean such that 8% of the

product is nonconforming, either above the upper specification limit or below the

lower specification limit, be accepted 6% of the time. We wish to accept lots with a

mean of 42.5mm with a probability of 0.94. The distribution of the length of the

connector pin is normal, with a standard deviation of 0.8mm. Find the parameters of

a variable sampling plan and describe its operation.

10-52 The proportion of carbonmonoxide in exhaust gases has an upper specification limit

of 0.30. Emission control devices are being tested to meet such requirements. We

wish that devices with an average carbon monoxide content of 0.15 or less be

accepted 95% of the time. If the average carbon monoxide content is 0.34 or more,

we wish the probability of acceptance to be 0.20. An estimate of the standard

deviation of the proportion of carbon monoxide is 0.25. Find a variable sampling

plan and explain its operation.

10-53 Refer to Exercise 10-52 regarding the proportion of carbon monoxide in exhaust

gases, which has an upper specification limit of 0.30. If the average carbonmonoxide

content is 1 standard deviation below the upper specification limit, the devices

should be rejected 5% of the time. If the average carbon monoxide content is 0.8

standard deviation above the upper specification limit, the probability of acceptance

should be 0.20. The standard deviation of the proportion of carbon monoxide is

unknown. Find a variable sampling plan and describe its operation.

10-54 Unleaded gasoline must meet certain federal standards. The octane number for a

particular brand must be at least 89. The standard deviation of the octane number is

estimated to be 4. It is preferred to accept shipments for which the average octane

number is 94 about 95% of the time. Also, for those shipments that have an average

octane number of 86, the probability of acceptance is desired to be 0.15. Find the

parameters of a variable sampling plan.

10-55 A dairy has to control the amount of butterfat in its low-fat milk. The upper

specification limit of the fat content is 4 g for 4-L containers. The standard deviation

of the fat content for these containers is estimated to be 0.5 g. It is desired to accept

95% of the shipments when the proportion of containers that are nonconforming is

1%. Additionally, when 7% of the containers are nonconforming, the probability of

acceptance is desired to be 8%. Find the parameters of a variable sampling plan and
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explain its operation, assuming that the first condition is to be satisfied exactly. A

random sample of 13 containers yielded an average fat content of 3.05 g.What is the

decision regarding the lot? Demonstrate the use of Forms l and 2.

10-56 The thickness of silicon wafers is an important characteristic in microelectronic

circuits. The upper specification limit for the thickness is 0.015mm. It is estimated

that the standard deviation of the thickness ofwafers is 0.0014mm.Wewish to accept

lots that are 11% nonconforming with a probability of 5%. For lots that are 2%

nonconforming, it is desired that the probability of rejection not exceed 4%. Find the

parameters of a variable sampling plan, assuming the first of the two conditions is to

be satisfied exactly. A random sample of 17 wafers yielded an average of 0.013mm.

Describe the decision regarding the lot based on Forms 1 and 2.

10-57 A cereal manufacturer who claims to meet certain mineral and vitamin requirements

has a minimum specification of 25% for the iron content. The standard deviation of

the iron content is estimated to be 3%. It is preferred to accept batches that are 1.5%

nonconformingwith a probability of 0.92. For batches that are 8%nonconforming, it

is desired that the rejection probability be 0.88. Find the parameters of a variable

sampling plan, assuming that the first condition is to be satisfied exactly. Howwould

the sampling plan change if the second condition were to be satisfied exactly?
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11
RELIABILITY

11-1 Introduction and chapter objectives

11-2 Reliability

11-3 Life-cycle curve and probability distributions in modeling reliability

11-4 System reliability

11-5 Operating characteristic curves

11-6 Reliability and life testing plans

11-7 Survival analysis

Summary

Symbols

λ Constant failure rate θ0
f(t) Probability density function for time to β

failure θ1
F(t) Probability distribution function for time

to failure Ŝ� �t�� 
R(t) Reliability function at time t t( j)

r(t) Failure-rate function nj
Pa Probability of lot acceptance mj

θ Mean life of product qj
n Sample size

r Rejection number

T Predetermined test time

α Producer ’ s risk

Mean life associated with producer’ s risk

Consumer’ s risk

Mean life associated with consumer’ s

risk

Estimate of survival function at time t

Ordered failure time for j�th failure

Number at risk at time t(j)
Number of failures at time t(j)
Number of patients censored in the

interval t(j) 

to t�(j� + 1)

11-1� INTRO�DUC�TION� AND� CHAPT�ER� OBJ�ECTIVE�S

In earlier chapters we dealt with quality assurance and control and explored the notion of

quality during the manufacture of the product or the rendering of a service. Our discussion

focused on a specific instant in time. In this chapter we examine the concept of reliability.

Reliability is a measure of the quality of the product over the long run. In here the concept of

reliability is an extended time period over which the expected operation of the product is

considered; that is, we expect the product will function according to certain expectations over

a stipulated period of time.

Fundamentals of Quality Control and Improvement, Fourth Edition. Amitava Mitra
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To ensure customer satisfaction in the performance phase, we address measures to

improve reliability in the design phase. The complex nature of products requires many

components in their construction; thus, we need to be able to calculate system reliability.

With the customer and warranty costs in mind, we must know the chances of successful

operation of the product for at least a certain stipulated period of time. Such information

helps the manufacturer to select the parameters of a warranty policy.

Our objective is to expose reliability calculations of systems,with a variety of components,

in different configurations, such as series or parallel or combinations of both. We also

introduce the concept of standby components and their impact on system reliability. Finally,

our objective is to demonstrate use of reliability and life testing plans and develop parameter

estimates through sampling plans.

An important topic in the health care setting deals with survival analysis. Here, the

condition of a patient, undergoing a certain treatment, may change with time. It may be of

interest to determine effectiveness of the treatment through estimation of survival probabili

ties. Appropriate procedures are discussed in the chapter.

11-2 RELIABILITY

Reliability is the probability of a product performing its intended function for a stated period

of time under certain specified conditions. Four aspects of reliability are apparent from this

definition. First, reliability is a probability-related concept; the numerical value of this

probability is between 0 and 1. Second, the functional performance of the product has tomeet

certain stipulations. Product designwill usually ensure development of a product thatmeets or

exceeds the stipulated requirements. For example, if the breaking strength of a nylon cord is

expected to be 1000 kg, then in its operational phase/the cord must be able to bear weights of

1000 kg or more. Third, reliability implies successful operation over a certain period of time.

Although no product is expected to last forever, the time requirement ensures satisfactory

performance over at least a minimal stated period (say, two years). Fourth, operating or

environmental conditions under which product use takes place are specified. Thus, if the

nylon cord is specified to be used under dry conditions indoors, then satisfactory performance

is expected for use under those conditions. In the context of these four aspects, the reliability of

the nylon cordmight bedescribed as having a probability of successful performance of 0.92 in

bearing loads of 1000 kg for two years under dry conditions.

11-3 LIFE-CYCLE CURVE AND PROBABILITY DISTRIBUTIONS

IN MODELING RELIABILITY

Most products go through three distinct phases from product inception to wear-out.

Figure 11-1 shows a typical life-cycle curve for which the failure rate λ is plotted as a

function of time. This curve is often referred to as the bathtub curve; it consists of the

debugging phase, the chance-failure phase, and the wear-out phase (Besterfield, 2003).

The debugging phase, also known as the infant mortality phase, exhibits a drop in the

failure rate as initial problems identified during prototype testing are ironed out. The chance-

failure phase, between times t1 and t2, is then encountered; failures occur randomly and

independently. This phase, inwhich the failure rate is constant, typically represents the useful

life of the product. Following this is the wear-out phase, in which an increase in the failure

rate is observed. Here, at the end of their useful life, parts age and wear out.
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FIGURE 11-1 Typical life-cycle curve.

Probability Distributions to Model Failure Rate

Exponential Distribution The life-cycle curve of Figure 11-1 shows the variation of the

failure rate as a function of time. For the chance-failure phase, which represents the useful

life of the product, the failure rate is constant. As a result, the exponential distribution

can be used to describe the time to failure of the product for this phase. In Chapter 4 the

exponential distribution was shown to have a probability density function given by

f �t� � λe�λt; t � 0 �11-1� 
where λ denotes the failure rate. Figure 4-21 shows this density function.

The mean time to failure (MTTF) for the exponential distribution is given as
1

MTTF � �11-2� 
λ

Thus, if the failure rate is constant, themean time to failure is the reciprocal of the failure rate.

For repairable equipment, this is also equal to the mean time between failures (MTBF).

There will be a difference between MTBF and MTTF only if there is a significant repair or

replacement time upon failure of the product.

The reliability at time t,R(t), is the probability of the product lasting up to at least time t. It is

given by
t

�λt �λtR�t� � 1 � F�t� � 1 � e dt � e �11-3� 
where F(t) represents the cumulative distribution function at time t. Figure 11-2 shows

the reliability function,R(t), for the exponential failure distribution.At time 0, the reliability is

1, as it should be. Reliability decreases exponentially with time.

In general, the failure-rate function r(t) is given by the ratio of the time-to-failure

probability density function to the reliability function. We have

f �t� 
r�t� �  �11-4� 

R�t� 
For the exponential failure distribution

�λtλe
r�t� �  � λ�λte

implying a constant failure rate, as mentioned earlier.

0
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FIGURE 11-2 Reliability function for the exponential time-to-failure distribution.

Example 11-1 An amplifier has an exponential time-to-failure distribution with a failure

rate of 8%per 1000 hours.What is the reliability of the amplifier at 5000 hours? Find themean

time to failure.

Solution The constant failure rate λ is obtained as

λ � 0:08=1000 hours � 0:00008=hour

The reliability at 5000 hours is

�λt ��0:00008��5000� � eR�t� � e � e �0:4 � 0:6703
The mean time to failure is

MTTF � 1=λ � 1=0:00008 � 12;500 hours

Example 11-2 What is the highest failure rate for a product if it is to have a probability of

survival (i.e., successful operation) of 95% at 4000 hours? Assume that the time to failure

follows an exponential distribution.

Solution The reliability at 4000 hours is 0.95. If the constant failure rate is given by λ , we

have

R�t� �  e�λt or 0:95 � e�λ�4000� 
This yields

λ � 0:0000128=hour � 12:8=106 hours
Thus, the highest failure rate is 12.8/106 hours for a reliability of 0.95 at 4000 hours.

Weibull Distribution The Weibull distribution is used to model the time to failure of

products that have a varying failure rate. It is therefore a candidate to model the debugging

phase (failure rate decreaseswith time) or thewear-out phase (failure rate increaseswith time)

(Henley and Kumamoto 1991). TheWeibull distribution was introduced in Chapter 4. It is a
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three-parameter distribution whose density function is given in eq. (4-43) as

; t � γ �11-5�f �t� �  β
α

t � γ
α

β�1
exp � t � γ

α

β

The parameters are a location parameter γ (�1 < γ<1), a scale parameter α (α> 0), and a

shape parameter β (β> 0). The probability density functions for γ= 0, α= 1, and several

values β (β= 0.5, 1, 2, 4) are shown in Figure 4-22.

Appropriate parameters are used to model a wide variety of situations. If γ= 0 and β= 1, the

Weibulldistribution reduces to theexponentialdistribution.For reliabilitymodeling, the location

parameter will be zero. If α= 1 and β= 0.5, for example, the failure rate decreaseswith time and

can therefore be used to model components in the debugging phase. Similarly, if α= 1 and

β= 3.5, the failure rate increases with time and so can be used tomodel products in thewear-out

phase. In this case, the Weibull distribution approximates the normal distribution.

The reliability function for the Weibull distribution is given by

βt
R�t� � exp � �11-6� 

α

The mean time to failure, as given by eq. (4-44), is

1
MTTF � αΓ � 1 �11-7� 

β

The failure-rate function r(t) for the Weibull time-to-failure probability distribution is

β�1f �t� βt
r�t� � � �11-8� 

R�t� αβ

Figure 11-3 shows the shape of the failure-rate function for the Weibull failure density

function for values of the parameter β of 0.5, 1, and 3.5.

Example 11-3 Capacitors in an electrical circuit have a time-to-failure distribution that can

be modeled by the Weibull distribution with a scale parameter of 400 hours and a shape

FIGURE 11-3 Failure-rate functions for the Weibull time-to-failure distribution for β= 0.5, 1, 3.5.
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parameter of 0.2.What is the reliability of the capacitor after 600 hours of operation? Find the

mean time to failure. Is the failure rate increasing or decreasing with time?

Solution The parameters of theWeibull distribution are α= 400 hours and β= 0.2. The

location parameter γ is 0 for such reliability problems. The reliability after 600 hours of

operation is given by

β 0:2
t 600

R�t� � exp � exp � 0:3381
α 400

The mean time to failure is

MTTF � αΓ
1

β
� 1 � 400Γ

1

0:2
� 1 � 48;000 hours

The failure-rate function is

0:2�10:2t �0:8r�t� �  � 0:0603t�400�0:2

This function decreases with time. It would model components in the debugging phase.

Availability

Theavailabilityof a systemat time t is theprobability that the systemwill beup and running at

time t. To improve availability,maintenance procedures are incorporated, whichmay include

periodic or preventive maintenance or condition-basedmaintenance. An availability index is

defined as

operating time
Availability � 

operating time � downtime

Downtimemay consist of active repair time, administrative time (processing of necessary

paperwork), and logistic time (waiting time due to lack of parts). It is observed that

maintainability is an important factor in influencing availability. Through design it is possible

to increase the reliability and hence operational probability of a system. Further, downtime

can be reduced through adequate maintenance plans. For a steady-state system, denoting

themean time to repair (MTTR) to include all the various components of down- time, we

have (Blischke and Murthy 2000)

MTTF
Availability � 

MTTF � MTTR

In the situation when the time-to-failure distribution is exponential (with a failure rate λ)

and the time-to-repair distribution is also exponential (with a repair rate μ), the availability is

given by μ/(λ+ μ).

11-4 SYSTEM RELIABILITY

Most products aremadeupof anumber of components. The reliability of each component and

the configuration of the system consisting of these components determine the system

reliability (i.e., the reliability of the product). Although product design, manufacture, and



SYSTEM RELIABILITY 571

FIGURE 11-4 System with components in series.

maintenance influence reliability, improving reliability is largely the domain of design. One

commonapproach for increasing the reliability of the system is through redundance in design,

which is usually achieved by placing components in parallel: As long as one component

operates, the system operates. In this section we demonstrate how to compute system

reliability for systems that have components in series, in parallel, or both.

Systems with Components in Series

Figure 11-4 shows a system with three components (A, B, and C) in series. For the system

to operate, each component must operate. It is assumed that the components operate

independent of each other (i.e., the failure of one component has no influence on the failure

of any other component). In general, if there are n components in series, where the

reliability of the ith component is denoted by Ri, the system reliability is

Rs � R1 � R2 � ∙ ∙ ∙ � Rn �11-9� 
The system reliability decreases as the number of components in series increases.

Although overdesign in each component improves reliability, its impact would be offset

by the number of components in series. Moreover, manufacturing capabilities and resource

limitations restrict the maximum reliability of any given component. Product redesign that

reduces the number of components in series is a viable alternative.

Example 11-4 Amodule of a satellitemonitoring systemhas 500 components in series. The

reliability of each component is 0.999. Find the reliability of the module. If the number of

components in series is reduced to 200, what is the reliability of the module?

Solution The system reliability for the module is

500 � 0:606Rs � �0:999�
Note that evenwith ahigh reliabilityof 0.999 for each component the system reliability is only

60.6%. When the number of components in series is reduced to 200, the reliability of the

module is
200 � 0:819Rs � �0:999�

Use of the Exponential Model If the system components can be assumed to have a time to

failure given by the exponential distribution and each component has a constant failure rate,

we can compute the system reliability, failure rate, andmean time to failure. As noted earlier,

when the components are in the chance-failure phase, the assumption of a constant failure rate

should be justified.

Suppose that the system has n components in series, each with exponentially distributed

time to failure with failure rates λ1, λ2, . . . , λn. The system reliability is found as the product
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i�1

of the component reliabilities:
�λ1t � �λ2t � �λntRs � e e ∙ ∙ ∙ � e

n �11-10� 
� exp � tλi

i�1
Equation (11-10) implies that the time to failure of the system is exponentially distributed

n
with an equivalent failure rate of λi. Thus, if each component that fails is replacedi�1
immediately by another that has the same failure rate, themean time to failure for the system is

given by
1

MTTF � �11-11� n

λi

When all components in series have an identical failure rate, sayλ, theMTTF for the system [a

special case of eq. (11-11)] is given by

MTTF � 1=�nλ� 
Example 11-5 The automatic focus unit of a television camera has 10 components in series.

Each component has an exponential time-to-failure distributionwith a constant failure rate of

0.05 per 4000 hours.What is the reliability of each component after 2000 hours of operation?

Find the reliability of the automatic focus unit for 2000 hours of operation. What is its mean

time to failure?

Solution The failure rate for each component is

λ � 0:05=4000 hours � 12:5 � 10�6=hour

The reliability of each component after 2000 hours of operation is

R � exp���12:5 � 10�6�2000� �  0:975
The reliability of the automatic focus unit after 2000 hours of operation is

Rs � exp���10 � 12:5 � 10�6�2000� �  0:779
The mean time to failure of the automatic focus unit is

MTTF � 1=�10 � 12:5 � 10�6� � 8000 hours
Example 11-6 Refer to Example 11-5 concerning the automatic focus unit of a television

camera which has 10 similar components in series. It is desired for the focus unit to have a

reliability of 0.95 after 2000 hours of operation.What would be themean time to failure of the

individual components?

Solution Let λs be the failure rate of the focus unit. Then, λs= 10λ, where λ represents the

failure rate of each component. To achieve the reliability of 0.95 after 2000 hours, the value of

λs is found from

0:95 � exp��λs�2000�� or λs � 0:0000256=hour
The failure rate for each component is

λs
λ � � 0:00000256=hour � 2:56=106 hours

10
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FIGURE 11-5 System with components in parallel.

The mean time to failure for each component would be

1
MTTF � � 390;625 hours

λ

Systems with Components in Parallel

System reliability can be improved by placing components in parallel. The components are

redundant; the systemoperates as long as at least one of the components operates. The only time

the systemfails iswhenall theparallel components fail. Figure11-5demonstrates anexampleof

a systemwith threecomponents (A,B, andC) inparallel.All components are assumedtooperate

simultaneously. Examples of redundant components placed in parallel to improve the reliability

of the systemabound.For instance, thebrakingmechanism isacritical systemin theautomobile.

Dual subsystems thus exist so that if one fails, the brakes still work.

Suppose that we have n components in parallel, with the reliability of the ith component

denoted by Ri, i= 1, 2, . . . , n. Assuming that the components operate randomly and

independently of each other, the probability of failure of each component is given by

Fi= 1�Ri. Now, the system fails only if all the components fail. Thus, the probability of

system failure is

Fs � �1 � R1��1 � R2� ∙ ∙ ∙ �1 � Rn� 
n

� ∏�1 � Ri� 
i�1

The reliability of the system is the complement of Fs and is given by

Rs � 1 � Fs
n �11-12�� 1 �∏�1 � Ri� 
i�1

Use of the Exponential Model If the time to failure of each component can bemodeled by

the exponential distribution, each with a constant failure rate λi, i= 1, . . . , n, the system
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reliability, assuming independence of component operation, is given by

n

Rs � 1 �∏�1 � Ri� 
i�1
n �11-13� 

�λi t�� 1 �∏�1 � e
i�1

The time-to-failure distribution of the system is not exponentially distributed. In the special

case where all components have the same failure rate λ, the system reliability is given by

�λt�nRs � 1 � �1 � e
Note that if the system reliability could have been expressed in the form exp(� λst), only in

that case could we have concluded that the time to failure of the system is exponentially

distributed. A general definition of MTTF is given by

1 

MTTF � Rs dt

0
1 

� �1 � �1 � e�λt�n� dt

For this situation, after simplification, the mean time to failure for the system with n identical

components in parallel, assuming that each failed component is immediately replaced by an

identical component, is given by

0

1 1 1 1
MTTF � 1 � � � ∙ ∙ ∙ � �11-14� 

λ 2 3 n

Example 11-7 Find the reliability of the system shown in Figure 11-5 with three com

ponents (A, B, and C) in parallel. The reliabilities of A, B, and C are 0.95, 0.92, and 0.90,

respectively.

Solution The system reliability is

Rs � 1 � �1 � 0:95��1 � 0:92��1 � 0:90� 
� 1 � 0:0004 � 0:9996

Note that the system reliability is much higher than that of the individual components.

Designers can increase system reliability by placingmore components in parallel, but the cost

of the additional components necessitates a trade-off between the two objectives.

Example 11-8 For the system shown in Figure 11-5, determine the system reliability for

2000 hours of operation and find the mean time to failure. Assume that all three components

have an identical time-to-failure distribution that is exponential, with a constant failure rate of

0.0005/hour.What is themean time to failure of each component? If it is desired for the system

to have amean time to failure of 4000 hours, what should the mean time to failure be for each

component?

Solution The failure rate of each component is λ= 0.0005/hour. For 2000 hours of

operation, the system reliability is

Rs � 1 � f1 � exp���0:0005��2000��g3
� 1 � �0:63212�3 � 0:7474
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The mean time to failure for the system is

1 1 1
MTTF � 1 � � � 3666:67 hours

0:0005 2 3

The mean time to failure for each component is

1 1
MTTF � � � 2000 hours

λ 0:0005

By placing three identical components in parallel, the system MTTF has been increased by

about 83.3%.

For a desired system MTTF of 4000 hours, we now calculate the required MTTF of the

individual components. We have

1 1 1
4000 � 1 � � 

λ 2 3

where λ is the failure rate for each component. Solving for λ, we get

1:8333
λ � � 0:00046=hour

4000

Thus, the MTTF for each component would have to be

1 1
MTTF � � � 2173:91 hours

λ 0:00046

Systems with Components in Series and in Parallel

Complex systems often consist of components that are both in series and in parallel.

Reliability calculations are based on the concepts discussed previously, assuming that the

components operate independently.

Example 11-9 Find the reliability of the eight-component system shown in Figure 11-6;

some components are in series and some are in parallel. The reliabilities of the components are

as follows: RA1
� 0:92, RA2

� 0:90, RA3
� 0:88, RA4

� 0:96, RB1
� 0:95, RB2

� 0:90,
RB3

� 0:92, and RC1
� 0:93.

FIGURE 11-6 System with components in series and in parallel.
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Solution We first find the reliabilities of each subsystem. For the subsystem with

components A1, A2, A3, and A4, the reliability is

R1 � 1 � �1 � RA1
RA2

��1 � RA3
RA4

� 
� 1 � �1 � �0:92��0:90���1 � �0:88��0:96�� � 0:9733

Similarly, the reliability of the subsystem with components B1, B2, and B3 is

R2 � 1 � �1 � RB1
��1 � RB2

��1 � RB3
� 

� 1 � �1 � 0:95��1 � 0:90��1 � 0:92� �  0:9996
The system reliability is given by

Rs	 � R1 � R2 � RC1

� �0:9733��0:9996��0:93� �  0:9048

Use of the Exponential Model If the time to failure for each component can be assumed to

be exponentially distributed, the system reliability andmean time to failure can be calculated

under certain conditions using procedures discussed previously.

Example 11-10 Find the system failure rate and the mean time to failure for the eight-

component system shown in Figure 11-6. The failure rates (number of units per hour) for

the components are as follows: λA1
� 0:0006, λA2

� 0:0045, λA3
� 0:0035, λA4

� 0:0016,
λB1

� 0:0060, λB2
� 0:0060, λB3

� 0:0060, and λC1
� 0:0050.

Solution First we compute failure rates for the subsystems. We have a failure rate of

�λA1
� λA2

� �  0:0051 for the A1/A2 subsystem; for the A3/A4 subsystem, the failure rate is

(λA3
� λA4

� �  0:0051. The mean time to failure for the A1/A2/A3/A4 subsystem is

1 1
MTTF1 � 1 � � 294:118 hours

0:0051 2

The mean time to failure for the subsystem consisting of components B1, B2, and B3 is

1 1 1
MTTF2 � 1 � � � 305:555 hours

0:0060 2 3

The system failure rate is
1 1

λs � � � 0:005 � 0:01167
294:118 305:555

The mean time to failure for the system is

MTTFs � 85:69 hours
Systems with Standby Components

In a standby configuration, one ormore parallel components wait to take over operation upon

failure of the currently operating component. Here, it is assumed that only one component in

the parallel configuration is operating at any given time. Because of this, the system reliability

is higher than for comparable systems with components in parallel. In parallel systems

discussed previously, all components are assumed to operate simultaneously. Figure 11-7

shows a standby system with a basic component and two standby components in parallel.

Typically, a failure-sensing mechanism triggers the operation of a standby when the

component operating currently fails.
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FIGURE 11-7 Standby system.

Use of the Exponential Model If the time to failure of the components is assumed to be

exponential with failure rate λ, the number of failures in a certain time t adheres to a Poisson

distribution with parameter λt. Using the Poisson distribution introduced in Chapter 4, the

probability of x failures in time t is given by

�λt x
e �λt�

P�x� �  �11-15� 
x!

For a system that has a basic component in parallel with one standby component, the system

will be operational at time t as long as there is nomore than one failure. Therefore, the system

reliability would be
�λt �λtR � e � e �λt� 

For a standby system with a basic component and two standby components (shown in

Figure 11-7), the systemwill be operational if the number of failures is less than or equal to 2.

The system reliability is

�λt�2�λt �λt �λtRs � e � e �λt� � e
2!

In general, if there are n components on standby alongwith the basic component (for a total of

n+ 1 components in the system), the system reliability is given by

2 3 n�λt� �λt� �λt�
Rs � e�λt 1 � λt � � � ∙ ∙ ∙ � �11-16� 

2! 3! n!

The mean time to failure for such a system is

n � 1
MTTF � �11-17� 

λ

Example 11-11 Find the reliability of the standby system shown in Figure 11-7, with one

basic component and two standby components, each having an exponential time-to-failure

distribution. The failure rate for each component is 0.004/hour and the period of operation is

300 hours. What is the mean time to failure?



578 RELIABILITY

If the three components are in parallel (not in a standbymode), what is the reliability of the

system? What is the mean time to failure in this situation?

Solution The failure rate λ for each component is 0.004/hour. For 300 hours of operation,

the system reliability is

Rs � e�λt 1 � λt � �λt�
2

2!

� e�0:004�300� 1 � �0:004��300� �  ��0:004��300��
2

2
�1:2� e �1 � 1:2 � 0:72� �  0:879

The mean time to failure is

n � 1 3
MTTF � � � 750 hours

λ 0:004

If the system has all three components in parallel, the probability of failure of each

component is

�λtF1 � 1 � e � e�0:004�300� � 0:6988
The system reliability is found as

Rs � 1 � �0:6988�3 � 0:659
The mean time to failure for this parallel system is

1 1 1
MTTF � 1 � � 

λ 2 3

1 1 1� 1 � � � 458:333 hours
0:004 2 3

Note that the system reliability and MTTF of the standby and parallel systems differ

significantly.

11-5 OPERATING CHARACTERISTIC CURVES

We have discussed OC curves for acceptance sampling plans in previous chapters. In this

section we discuss OC curves for life and reliability testing plans. A common life testing

plan involves choosing a sample of items from the batch and observing their operation for

a certain predetermined time. If the number of failures exceeds a stipulated acceptance

number, the lot is rejected; if the number of failures is less than or equal to the acceptance

number, the lot is accepted. Two options are possible. In the first option, an item that fails

is replaced immediately by an identical item. In the second, failed items are not replaced.

In the calculations for OC curves, we assume that the time to failure of each item is

exponentially distributed with a constant failure rate λ. The parameters of a life testing plan

are the test time T, the sample size n, and the acceptance number c. The OC curve shows the

probability of lot acceptance, Pa, as a function of the lot quality as indicated by the mean life

(θ) or themean time to failure of the item.Under the stated assumptions, the number of failures

within a specified period adheres to the Poisson distribution. The Poisson distribution is used

to calculate the probability of lot acceptance.
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TABLE 11-1 Calculations for the OC Curve for the Life Testing Plan n= 12, T= 800, c= 2

Failure Expected Number Probability of

Mean Life, θ Rate λ= l/θ of Failures, nTλ Acceptance, Pa

1,000 0.001 9.6 0.0042

2,000 0.0005 4.8 0.1446

3,000 0.00033 3.2 0.3822

4,000 0.00025 2.4 0.5700

5,000 0.0002 1.92 0.6986

6,000 0.00017 1.6 0.7830

7,000 0.00014 1.37 0.8402

8,000 0.000125 1.2 0.8790

9,000 0.00011 1.07 0.9060

10,000 0.0001 0.96 0.9268

12,000 0.000083 0.8 0.9530

14,000 0.000071 0.69 0.9671

16,000 0.0000625 0.6 0.9770

20,000 0.00005 0.48 0.9872

30,000 0.000033 0.32 0.9952

Example 11-12 The parameters of a life testing plan are as follows: time of test T=

800 hours, sample size n= 12, and acceptance number c= 2. Each item has an exponential

time-to-failure distribution.When any item fails, it is immediately replaced by a similar item.

Construct the OC curve for this plan.

Solution Theexpectednumberof failures in the timeperiodT isnTλ ,whereλdenotes the

constant failure rate of the item.Denoting themean life of the itembyθ,wehaveλ= 1/θ. From

the Poisson distribution tables in Appendix A-2, we find the probability of lot acceptance for

different values of themean life θ. Suppose that themean life of the item is 8000 hours, which

leads to a failure rate λ of 1/8000. The expected number of failures is

nTλ � �12��800��1=8000� �  1:2

From Appendix A-2, for a mean number of failures of 1.2, the probability of 2 or fewer

failures is 0.879, which is the probability of lot acceptance. This represents one point on the

OCcurve. Table 11-1 presents the results of similar computations for values of themean life θ

between 1000 and 30,000 hours.

Figure 11-8 shows the OC curve for the life testing plan n= 12, T= 800, c= 2. Note that

the OC curve shown in Figure 11-8 is valid for other life testing plans as long as the total

number of itemhours tested is 9600 and the acceptance number is 2.Note that the product of n

and T represents the total item hours tested because failed items are being replaced. For

instance, a life testing plan with parameters n= 10, T= 960, and c= 2 would have the same

OC curve as one with parameters n= 8, T= 1200, and c= 2.

The notions of producer’s risk α and consumer’s risk β are also used in life testing plans.

The risk of rejecting a good lot (products with a satisfactorymean life of θ0) is theproducer’s

risk. The risk of accepting a poor lot (products with an unsatisfactory mean life of θ1) is the

consumer’s risk. These risks are illustrated in Figure 11-8. Suppose that items with a mean

life of 20,000 hours are satisfactory (θ0= 20,000); the associated producer’s risk α is then

(1� 0.9872)= 0.0128, which is the probability of rejecting items with this mean life.
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FIGURE 11-8 OC curve for the life testing plan in Example 11-12.

Alternatively, suppose that items with a mean life θ1 of 2000 hours are undesirable. The

associated consumer’s risk βwould then be the probability of accepting such lots, which from

Figure 11-8 is 0.1446.

An alternative variable for the horizontal axis of theOCcurve could be θ/θ0, the ratio of the

actual mean life to the desiredmean life θ0 associatedwith good batches. For itemswithmean

life θ0, the probability of lot rejection is the producer’s risk α. Thus, all OC curves would pass

through the point given by Pa= 1� α and θ/θ0= 1.

11-6 RELIABILITY AND LIFE TESTING PLANS

Plans for reliability and life testing are usually destructive in nature. They involve observing a

sampleof itemsuntil a certainnumberof failuresoccur, observingover a certainperiodof time

to record the number of failures, or a combination of both. Such testing is usually done at the

prototype stage, which can be expensive depending on the unit cost of the item. Although a

longer accumulated test time is desirable for a precise estimation of product reliability ormean

life, the cost associated with the testing plan is an important factor in its choice. Of course,

testing is usually conducted under simulated conditions, but it should mimic the actual

operating conditions as closely as possible. Several standardized plans have been established

by the U.S. Department of Defense, such as Handbook H-108, and MIL-STD-690B. Plan

H-108 will be introduced in this chapter.

Types of Tests

The three main types of tests are described here.

Failure-Terminated Test In failure-terminated plans, the tests are terminated when a

preassigned number of failures occur in the chosen sample. Lot acceptance is based on the
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accumulated test time of the items when the test is terminated. One acceptance criterion

involves whether the estimated average life of the item exceeds a stipulated value. Let the

sample size be denoted by n, the predetermined number of failures by r, and the stipulated

mean life byC. From the test results, let’s suppose that the accumulated test time of the items is

T , from which an estimate of the average life is

T
θ � 

θ �

^
^

^

^

r

The lot is accepted if C.

^

Time-Terminated Test A time-terminated test is terminated when a preassigned time

r during the testT is reached.Acceptance of the lot is based on the observed number of failures

time. If the observed number of failures r exceeds a preassigned value r, the lot is rejected;

otherwise, the lot is accepted.

Sequential Reliability Test In sequential reliability testing, no prior decision is made as to

the number of failures or the time to conduct the test. Instead, the accumulated results of the

^

test are used to decide whether to accept the lot, reject the lot, or continue testing. Figure 11-9

shows a sequential life testing plan. The cumulative number of failures based on a chosen

sample is plotted versus the accumulated test time of the items. Based on an acceptable mean

life θ0, an associated producer’s riskα, aminimummean lifeθ1, and an associated consumer’s

risk β, equations for the acceptance line and the rejection lines are found. If the plot stays

within the two lines, testing continues; if the plot falls in the acceptance region, the test is

terminated and the lot is accepted. If the plot falls in the rejection region, the test is terminated

and the lot is rejected.

In Figure 11-9, note that after three failures, when the accumulated test time reaches T, the

test is terminated with an acceptance of the lot. The equations of the acceptance and rejection

lines are similar to the sequential tests discussed for attribute sampling plans in Chapter 10.

The main advantage of sequential test plans is that, for a similar degree of protection, the

expected test time or the expected number of failures required to reach a decision is less than

that for a time- or a failure-terminated plan.

FIGURE 11-9 Sequential reliability test plan.
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For each of these tests, testing can take place with or without replacement of the failed

items. In the situation for which the item is replaced, we assume that the replaced item has the

same failure rate as the one it replaces. This assumption holdswhen the failure rate is constant,

as in the chance-failure phase of the life of the product. Accordingly, the exponential

distribution for the time to failure would be appropriate in this case.

Life Testing Plans Using the Exponential Distribution

The time to failure is assumed to have an exponential distribution with a constant failure rate.

Themean life of the product is estimatedwhen failure- or time-terminated tests are used. Both

point estimates and confidence intervals for the mean life are obtained.

Failure-Terminated Test Let the preassigned number of failures be denoted by r. Suppose

that the failures occur at the following times, in rank order: t1 � t2� ∙ ∙ ∙ � tr . If the sample

size is n, the accumulated life for the test items until the r th failure (Tr), assuming failed items

are not replaced, is given by

Tr � ti � �n � r�tr �11-18� 

If failed items are replaced with items having the same failure rate, we have

Tr � ntr �11-19� 
An estimate of the mean life, in either case, is obtained from

r

i�1

^

θ̂ � 
r

where thevalueofTr is foundusing eq. (11-19)or (11-18), dependingonwhether the items are

replaced or not, respectively.

Next, a confidence interval for the mean life θ is found. It is known that the statistic 2Tr /θ

has a chi-squared distribution with 2r degrees of freedom. Thus, a two-sided 100(1� α)%

confidence interval for the mean life is given by

2Tr 2Tr
< θ < �11-21� 

χ2 χ2
α=2;2r 1�α=2;2r

where the chi-squared values with 2r degrees of freedom are found fromAppendix A-5. This

may be used for cases with and without replacement.

Example 11-13 Life testing is conducted for a sample of 15 transistors. The time to failure

for each is exponentially distributed. The test is terminated after four failures, with no

replacement of the failed items. The failure times (in hours) of the four transistors are

400, 480, 610, and 660. Estimate the mean life of the transistors and the failure rate. Find a

95% confidence interval for the mean life.

Solution The accumulated life for the test items is

T4 � �400 � 480 � 610 � 660� � �15 � 4��660� � 9410 hours

θ � 9410=4 � 2352:5 hours: The

Tr �11-20� 

^

The estimated mean life (or mean time to failure) is

estimated failure rate is
1 1

θ
λ � � � 0:000425=hour

2352:5
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A 95% confidence interval for the mean life is

2Tr 2Tr �2��9410� �2��9410� 
< θ < ; or < θ <

χ2 χ2 17:53 2:180:025;8 0:975;8

1073:588 < θ < 8633:027

Example 11-14 Refer to Example 11-13 concerning the life testing of a sample of 15

transistors. The test is terminated after four failures.Assume that each item that fails is replaced

by an identical item. The failure times of the four transistors are 420, 490, 550, and 580 hours.

Estimate themean life of the transistors and the failure rate. Find a 95%confidence interval for

the mean life.

Solution The accumulated life on the test items is

T4 � �15��580� �  8700 hours

1 1

^Theestimatedmean life is found tobe

λ �^

θ � 8700=4 � 2175 hours:Theestimated failure rate is

� � 0:00046=hour
2175θ

A 95% confidence interval for the mean life is

^

�2��8700� �2��8700� 
< θ < ; or 992:584 < θ < 7981:651

17:53 2:18

Time-Terminated Test Let the preassigned time to terminate the test be denoted by T for a

sample of size n. Let ti denote the time of failure of the ith item. In this case, the observed

number of failures is a random variable. If failed items are not replaced, the accumulated life

for the test items is given by

x

Tx � ti � �n � x�T �11-22� 

where x represents the observed number of failures. When failed items are replaced with

similar items, the accumulated life of the test items is

Tx � nT �11-23� 
An estimate of the mean life may be obtained from

i�1

Tx
θ̂ � 

x

For both situations, an approximate 100(1� α)% confidence interval for the mean life is

given by

2Tx 2Tx
< θ < �11-24� 

χ2 χ2
α=2;2�x�1� 1�α=2;2�x�1� 

where the chi-squared values with 2(x+ 1) degrees of freedom are found in Appendix A-5.

Example 11-15 A sample of 12 electronic components is tested for 1000 hours with no

replacement of failed components. The time to failure is exponentially distributed. Three

components failed within the prescribed test time, the failure times being 650, 680, and
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720 hours. Estimate the mean time to failure and the failure rate. Find a 90% confidence

interval for the mean time to failure.

Solution The accumulated life for the test items is

T3 � �650 � 680 � 720� � �12 � 3��1000� � 11;050 hours

θ � 11;050=3 � 3683:333 hours:^An estimate of the mean time to failure is

An estimate of the failure rate is

1 1
λ � � � 0:00027=hour

θ̂ 3683:333

A 90% confidence interval for the mean time to failure is given by

�2��11;050� �2��11;050� 2�11;050� 2�11;050� 
< θ < ; or < θ <

χ2 χ2 15:51 2:730:05;8 0:95;8

1424:887 < θ < 8095:238

Standard Life Testing Plans Using Handbook H-108

The Quality Control and Reliability Handbook H-108 ( U.S. Department of Defense, 1960)

was developed by the Bureau of Naval Weapons, U.S. Department of the Navy. Life testing

plans in the handbook are based on a time-to-failure distribution that is exponential, and all

three types of plans (failure-terminated, time-terminated, and sequential life testing) are

included. For each plan, provision is made for situations with and without replacement of

failed units. We demonstrate some selected applications of failure- and time-terminated tests

here. Tables from the handbook used to determine the life testing plans are reproduced here as

necessary.

Failure-Terminated Plans A sample of n items is selected from the lot and tested until the

occurrence of the rth failure. If the estimated mean life θ̂ is greater than or equal to a criterion

value C given by the plan, the lot is accepted. The producer’s risk α is the probability of

rejecting a lot with a satisfactory mean life θ0.

Example 11-16 A life testing plan is to be terminated upon occurrence of the sixth failure.

The plan should accept a lot having an acceptable mean life of 1200 hours with a probability

0.95. Twenty items are placed on test. The six failures occur at the following times (in hours):

480, 530, 560, 600, 640, and 670. Failed items are not replaced. Using Handbook H-108,

determine whether the lot should be accepted.

Solution The following parameters are given: r= 6, n= 20, θ0= 1200, α= 0.05. An

estimate of the mean life is

480 � 530 � 560 � 600 � 640 � 670 � �20 � 6��670�
θ̂ � 

6
� 2143:333 hours

Table 11-2 shows the values of C/θ0 for a given producer’s risk α and the predetermined

number of failures r given in Handbook H-108. For r= 6 and α= 0.05, the code is B–6, and

C/θ0 is 0.436. The acceptability criterion C is

C � θ0�C=θ0� � �1200��0:436� � 523:2



RELIABILITY AND LIFE TESTING PLANS 585

TABLE 11-2 Master Table for Life Tests Terminated upon Occurrence of Preassigned

Number of Failures

Producer’s Risk (α)

0.01 0.05 0.10
Rejection

Number, r Code C/θ0 Code C/θ0 Code C/θ0

1 A–l 0.010 B–l 0.052 C–l 0.106

2 A–2 0.074 B–2 0.178 C–2 0.266

3 A–3 0.145 B–3 0.272 C–3 0.367

4 A–4 0.206 B–4 0.342 C–4 0.436

5 A–5 0.256 B–5 0.394 C–5 0.487

6 A–6 0.298 B–6 0.436 C–6 0.525

7 A–7 0.333 B–7 0.469 C–7 0.556

8 A–8 0.363 B–8 0.498 C–8 0.582

9 A–9 0.390 B–9 0.522 C–9 0.604

10 A–10 0.413 B–10 0.543 C–10 0.622

15 A–11 0.498 B–11 0.616 C–11 0.687

20 A–12 0.554 B–12 0.663 C–12 0.726

25 A–13 0.594 B–13 0.695 C–13 0.754

30 A–14 0.625 B–14 0.720 C–14 0.774

40 A–15 0.669 B–15 0.755 C–15 0.803

50 A–16 0.701 B–16 0.779 C–16 0.824

75 A–17 0.751 B–17 0.818 C–17 0.855

100 A–18 0.782 B–18 0.841 C–18 0.874

The estimatedmean life θ̂of 2143.33 hours exceeds the criterionvalueC. Therefore, the lot

should be accepted.

Time-Terminated Plans For time-terminated plans using Handbook H-108, the

preassigned test time is denoted by T. An acceptable mean lot life is denoted by θ0,

where the probability of rejection is α, the producer’s risk, and a minimum mean life is

denoted by θ1, where the probability of acceptance is β, the consumer’s risk. The rejection

criterion number r is obtained from the tables. If the observed number of failures within the

preassigned test time is greater than or equal to r, the lot is rejected; otherwise, the lot is

accepted. The following examples demonstrate the use of tables fromHandbook H-108. The

first example shows the determination of a plan given the producer’s and consumer’s risks,

their associated mean lives, and the sample size.

Example 11-17 Find a time-terminated life testing plan (using Handbook H-108) that

rejects lots with a mean life of 1250 hours with a probability of 0.05 and accepts lots with a

mean life of 400 hourswith aprobability of 0.10. Items that fail during the test are not replaced.

Solution We have θ0= 1250, α= 0.05, θ1= 400, β= 0.10. Hence,

θ1 400� � 0:32
θ0 1250

Table11-3 shows the life test samplingplan codedesignation for variousvalues ofα,β, and

θ1/θ0 given in Handbook H-108. Using Table 11-3, we select the table value of θ1/θ0 that



586 RELIABILITY

TABLE 11-3 Life Testing Plan Code Designation

α= 0.01 α= 0.05 α= 0.10 α= 0.25 α= 0.50

β= 0.01 β= 0.10 β= 0.10 β= 0.10 β= 0.10

Code θ1/θ0 Code θ1/θ0 Code θ1/θ0 Code θ1/θ0 Code θ1/θ0

A–1 0.004 B–1 0.022 C–1 0.046 D–1 0.125 E–1 0.301

A–2 0.038 B–2 0.091 C–2 0.137 D–2 0.247 E–2 0.432

A–3 0.082 B–3 0.154 C–3 0.207 D–3 0.325 E–3 0.502

A–4 0.123 B–4 0.205 C–4 0.261 D–4 0.379 E–4 0.550

A–5 0.160 B–5 0.246 C–5 0.304 D–5 0.421 E–5 0.584

A–6 0.193 B–6 0.282 C–6 0.340 D–6 0.455 E–6 0.611

A–7 0.221 B–7 0.312 C–7 0.370 D–7 0.483 E–7 0.633

A–8 0.247 B–8 0.338 C–8 0.396 D–8 0.506 E–8 0.652

A–9 0.270 B–9 0.361 C–9 0.418 D–9 0.526 E–9 0.667

A–10 0.291 B–10 0.382 C–10 0.438 D–10 0.544 E–10 0.681

A–11 0.371 B–11 0.459 C–11 0.512 D–11 0.608 E–11 0.729

A–12 0.428 B–12 0.512 C–12 0.561 D–12 0.650 E–12 0.759

A–13 0.470 B–13 0.550 C–13 0.597 D–13 0.680 E–13 0.781

A–14 0.504 B–14 0.581 C–14 0.624 D–14 0.703 E–14 0.798

A–15 0.554 B–15 0.625 C–15 0.666 D–15 0.737 E–15 0.821

A–16 0.591 B–16 0.658 C–16 0.695 D–16 0.761 E–16 0.838

A–17 0.653 B–17 0.711 C–17 0.743 D–17 0.800 E–17 0.865

A–18 0.692 B–18 0.745 C–18 0.774 D–18 0.824 E–18 0.882

matches the calculatedvalue. If an exactmatch is not found, thenext larger valueofθ1/θ0 in the

table is used. For this example, the code is B–8.

For each code letter, theHandbookH-108 lists a table for determining the rejection number

r and the value of T/θ0. Table 11-4 shows the value of T/θ0 for code letter B when testing is

conductedwithout replacement of the failed items; a similar table for testingwith replacement

of failed items is shown in Table 11-5.

Using Table 11-4 and a code of B–8, the rejection number is 8. Note that the sample size is

indicated asmultiples of the rejection number. Increasing the sample size reduces the average

time needed to reach a decision at the expense of added costs because more items must be

tested.

Suppose we use a sample size that is a multiple, 4r, of the rejection number. From

Table 11-4, the value of T/θ0 is 0.141. Thus,

T � �0:141��1250� � 176:25 hours

The life testing plan cannowbe specified.A randomsampleof 32 items is selected from the

lot and tested simultaneously. If the eighth failure occurs before the test termination time of

176.25 hours, the lot is rejected; otherwise, the lot is accepted.

The next example illustrates the determination of a plan given the producer’s risk, the

associated mean life, the rejection number, and the sample size.

Example 11-18 Find a time-terminated life testing plan that rejects lots with a mean

life of 1800 hours with a probability of 0.05. The rejection number is 5, and the sample

size is 30. Items that fail during the test are replaced. Determine the plan using

Handbook H-108.
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TABLE 11-4 Values of T/θ0 for α= 0.05: Time Terminated, TestingWithout Replacement,

Code Letter B

Sample Size

Code r 2r 3r 4r 5r 6r 7r 8r 9r 10r 20r

B–1 1 0.026 0.017 0.013 0.010 0.009 0.007 0.006 0.006 0.005 0.003

B–2 2 0.104 0.065 0.048 0.038 0.031 0.026 0.023 0.020 0.018 0.009

B–3 3 0.168 0.103 0.075 0.058 0.048 0.041 0.036 0.031 0.028 0.014

B–4 4 0.217 0.132 0.095 0.074 0.061 0.052 0.045 0.040 0.036 0.017

B–5 5 0.254 0.153 0.110 0.086 0.071 0.060 0.052 0.046 0.041 0.020

B–6 6 0.284 0.170 0.122 0.095 0.078 0.066 0.057 0.051 0.045 0.022

B–7 7 0.309 0.185 0.132 0.103 0.084 0.072 0.062 0.055 0.049 0.024

B–8 8 0.330 0.197 0.141 0.110 0.090 0.076 0.066 0.058 0.052 0.025

B–9 9 0.348 0.207 0.148 0.115 0.094 0.080 0.069 0.061 0.055 0.027

B–10 10 0.363 0.216 0.154 0.120 0.098 0.083 0.072 0.064 0.057 0.028

B–11 15 0.417 0.246 0.175 0.136 0.112 0.094 0.082 0.072 0.065 0.032

B–12 20 0.451 0.266 0.189 0.147 0.120 0.102 0.088 0.078 0.070 0.034

B–13 25 0.475 0.280 0.199 0.154 0.126 0.107 0.093 0.082 0.073 0.036

B–14 30 0.493 0.290 0.206 0.160 0.131 0.111 0.096 0.085 0.076 0.037

B–15 40 0.519 0.305 0.216 0.168 0.137 0.116 0.101 0.089 0.079 0.039

B–16 50 0.536 0.315 0.223 0.173 0.142 0.120 0.104 0.092 0.082 0.040

B–17 75 0.564 0.331 0.235 0.182 0.149 0.126 0.109 0.096 0.086 0.042

B–18 100 0.581 0.340 0.242 0.187 0.153 0.130 0.112 0.099 0.089 0.043

TABLE 11-5 Values of T/θ0 for α= 0.05: Time Terminated, Testing with Replacement,

Code Letter B

Sample Size

Code r 2r 3r 4r 5r 6r 7r 8r 9r 10r 20r

B–1 1 0.026 0.017 0.013 0.010 0.009 0.007 0.006 0.006 0.005 0.003

B–2 2 0.089 0.059 0.044 0.036 0.030 0.025 0.022 0.020 0.018 0.009

B–3 3 0.136 0.091 0.068 0.055 0.045 0.039 0.034 0.030 0.027 0.014

B–4 4 0.171 0.114 0.085 0.068 0.057 0.049 0.043 0.038 0.034 0.017

B–5 5 0.197 0.131 0.099 0.079 0.066 0.056 0.049 0.044 0.039 0.020

B–6 6 0.218 0.145 0.109 0.087 0.073 0.062 0.054 0.048 0.044 0.022

B–7 7 0.235 0.156 0.117 0.094 0.078 0.067 0.059 0.052 0.047 0.023

B–8 8 0.249 0.166 0.124 0.100 0.083 0.071 0.062 0.055 0.050 0.025

B–9 9 0.261 0.174 0.130 0.104 0.087 0.075 0.065 0.058 0.052 0.026

B–10 10 0.271 0.181 0.136 0.109 0.090 0.078 0.068 0.060 0.054 0.027

B–11 15 0.308 0.205 0.154 0.123 0.103 0.088 0.077 0.068 0.062 0.031

B–12 20 0.331 0.221 0.166 0.133 0.110 0.095 0.083 0.074 0.066 0.033

B–13 25 0.348 0.232 0.174 0.139 0.116 0.099 0.087 0.077 0.070 0.035

B–14 30 0.360 0.240 0.180 0.144 0.120 0.103 0.090 0.080 0.072 0.036

B–15 40 0.377 0.252 0.189 0.151 0.126 0.108 0.094 0.084 0.075 0.038

B–16 50 0.390 0.260 0.195 0.156 0.130 0.111 0.097 0.087 0.078 0.039

B–17 75 0.409 0.273 0.204 0.164 0.136 0.117 0.102 0.091 0.082 0.041

B–18 100 0.421 0.280 0.210 0.168 0.140 0.120 0.105 0.093 0.084 0.042
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Solution We are given the following parameters: θ0= 1800, α= 0.05, r= 5, and n= 30.

Forα= 0.05 and life testing planswith replacement, we useTable 11-5 and a rejection number

r of 5 and a sample size of 6r to get T/θ0= 0.066. The test termination time is

T � �0:066��1800� � 118:8 hours

The plan is as follows. A random sample of 30 items is selected from the lot and testing is

conducted for 118.8 hours. If the fifth failure occurs before the termination time, the lot is

rejected; if the fifth failure has not occurred within 118.8 hours, the lot is accepted. Items that

fail are replaced.

In the following example we determine a time-terminated plan given the producer’s and

consumer’s risks, their associated mean lives, and the test time.

Example 11-19 Find a time-terminated life testing plan that accepts a lot with a mean life of

5000 hours with a probability of 0.90 but rejects a lot with a mean life of 1000 hours with a

probability of 0.95. The test should be terminated by 500hours. Items that fail are not replaced.

Determine the plan assuming the time to failure is exponentially distributed.

Solution We are given the following parameters: θ0= 5000, α= 0.01, θ1= 1000,

β= 0.05, T= 500. The following ratios are calculated:

θ1 1000 1 T 500 1� � ; � � 
θ0 5000 5 θ0 5000 10

Table 11-6 lists the values of the rejection number r and the sample size n, knowing α, β,

θ1/θ0, and T/θ0 for time-terminated plans without replacement of failed units. Table 11-7

lists values of the rejectionnumber r and the sample sizen,givenα,β,θ1/θ0, andT/θ0, for time-

terminated plans with replacement of failed items.

We use Table 11-6. For α= 0.10, β= 0.05, θ1/θ0= 1/5, and T/θ0= 1/10, we have r= 4 and

n= 19.Therefore, the life testing plan is to select a sample of 19 items from the lot. If the fourth

failure occurs before the termination time of 500 hours, the lot is rejected; otherwise, the lot is

accepted.

11-7 SURVIVAL ANALYSIS

In many health care studies, the time to a certain defined event is of interest to determine

the effectiveness of a procedure or a treatment. Consider, for example, patients who have

undergone coronary artery bypass surgery. One could be interested in analyzing the time

from surgery to death. Another application could be to determine the effectiveness of a

therapy, for example, radiation or chemotherapy, to certain cancer patients. In this case,

the time from start of therapy until remission ends could be explored. The data, therefore,

consist of the time from a fixed or designated initial point (such as time of surgery or start

time of therapy) to a defined event (such as death of the patient or end of remission). It is

assumed that patient reaction times, in this case, say, survival times, are independent of

each other.

Estimation of the Survival Function

The survival function represents the proportion of individuals living beyond a specified time t

or beyond. Hence, if the random variable T represents the survival time, the survival function
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FIGURE 11-10 Example of right-censored data.

is represented by

S�t� � P�T > t� � 1 � F�t� �11-25� 
where F(t) represents the cumulative distribution function of T at time t.

A common estimator of the survival function is the Kaplan—Meier (K-M) estimator

(Kaplan andMeier 1958), alsoknownas theproduct limit estimator. It is used to estimate the

proportion of patients that are surviving (or living) for a certain amount of time after a chosen

treatment. An advantage of the K-M survival function is that it can take into account certain

types of censored data. Consider, for example, observations that are right-censored, where

the patientwithdraws from the study, or is lost to some follow-up treatment, or survives till the

^

end of the test period. In that case, the patient’s exact survival time is not known. Figure 11-10

shows, for example, the observations for three patients in a treatment plan after surgery. The

treatment plan lasted eight months. Patient 1withdrew after fourmonths. So, we do not know

^

the exact survival time for this patient; it is at least fourmonths and so is right-censored. Patient

2 survived thedurationof the study. So, this patient’s exact survival time is alsonot known—it

is at least eight months and is also right-censored. Patient 3 had to undergo a follow-up

procedure after six weeks. Here also, the patient’s exact survival time is not known—it is at

least sixmonths and is right-censored.When there is no sensoring, theK-M survival function

is the complement of the empirical distribution function.

The theoretical survival function S(t) ranges from unity (at time zero) to zero (at time

infinity) and is nonincreasing as time increases from zero. As the number of patients in the

study becomes large or equivalently the time between failures (say, death) of patients

becomes small, the empirical survival function will approach the theoretical survival

function. We introduce the following notation for computation of the empirical survival

function. Let

t�1� < t�2� < ∙ ∙ ∙ � < t�k� 

represent the ordered distinct times at which the failure (in this case, death) of patients occurs,

where there are n patients at the beginning of the study. Let nj represent the number of patients

“at risk” just prior to the time t(j),mj thenumberof patientswho failed (i.e., died) at time t(j), and

qj the number patients who are censored in the interval t(j) to just prior to t(j+1). The number at

risk at some time t(j) is nj= nj�1�mj�1� qj�1. The product limit estimator of the survival

function at time t(j) is

S� S�j�� � �j�1�� � P�T > t�j�jT � t�j�� �11-26�t t�

The above expression is recursive in nature, that is, knowing the value of t�j�1��, the valueŜ�
j�� can be computed. In words, it states that the probability of surviving till time t(j) is theŜ�

product of the probability of surviving till time t(j-1) and the conditional probability of

of t�
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surviving past time t(j) given that the patient has survived at least to time t(j). Using eq. (11-26)

iteratively leads to the following expression for the K-M nonparametric estimator of the

survival function:

S�

S�

^

^

t� � 1 for t < t�1� 
i nj � mj

t� � ∏ for t�i� � t < t�i�1�; i < k �11-27� 
j�1 nj

t� � 0 for t�k� � t if mk � nk �i:e:; no one survives past time t�k��S�

Example 11-20 Suppose that 10 heart surgery patients are observed for 60 days. Patients 3,

5, 9, and10died after 5, 30, 40, and50days, respectively. Patient 2was called for surgery after

10 days, patient 4 left the study after 30 days, while patient 6 was called for surgery after 40

days. The others survived till the end of the study period. Estimate the product limit survival

function.

Solution Since four patients died during the observation period of 60 days, we have

t(1)= 5, t(2)= 30, t(3)= 40, and t(4)= 50, respectively. At time zero, the number of patients at

^

Ŝ�
Table 11-8 shows the calculations of the K-M estimate of the survival function at the time

points when the patients died. For instance, since t(1)= 5, note the number at risk prior to the

death of thefirst patient is 10 (10� 0� 0) since there were no deaths and no censures just prior

to the time of 5 days. The conditional probability of survival at this time point is 9/10 (since 1

10. Since all are living at time zero, the survival probability at time 0 � 0� � 1.risk= n0=

Ŝ�
survival function at the previous failure time multiplied by the conditional probability of

survival= 1× 9/10= 0.9. Now, the number at risk at time 30= n(2)= 10� 1� 1= 8, since 1

patient died at time 5 and 1 patient was censored at time 10, which is between time 5 and just

5� � estimate ofpatient died). Hence, the estimate of the survival function at time 5 is

^Ŝ� S�
and was not present when the next death was observed at time 40, q2= 1, and n3= n2 – m2 –

30� � 5� � 7=8 � 0:9 � 7=8 � 0:788.Since 1patient left after 30daysbefore time30. So,

Ŝ�
40� � 3=4 � 0:492.Also q4=

Ŝ�
3, since 3 patients survived past

q2= 8� 1� 1= 40� � 30� � 5=6 � 0:656. For the6.Using the same procedure as before,
^Ŝ� S�

time 50. The sum of the number failed and the number censored at the end of the study period

should add up to the total number of patients in the study at the beginning of the period.

Note that the survival function is a step function with the drops taking place at the time

points of failure or patient deaths. A K-M survival function plot with right-sensored

observations may also be created using Minitab. A worksheet is initially set up, where the

patient’s failure time or censored time is listed in one column and a second column lists

whether the observed time is a failure, as indicated by F, or is censored, as indicated by C.

The Minitab commands are Stat>Reliability/Survival>Distribution Analysis (Right

TABLE 11-8 Kaplan–Meier Estimate of Survival Function

50� �last death at time 50,

^
Ordered Ordered Number at Number Number Survival

S�t�j��Failure, j Failure Time, t(j) Risk, nj Failed, mj Censored, qj Function,

0 10 0 0 1.

1 5 10 1 1 1× (10� 1)/10= 0.9

2 30 8 1 1 0.9× (8� 1)/8= 0.788

3 40 6 1 1 0.788× (6� 1)/6= 0.656

4 50 4 1 3 0.656× (4� 1)/4= 0.492
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FIGURE 11-11 K-M survival function with confidence limits.

Censoring)>Nonparametric Distribution Analysis. In the window for Variables, input

the column number or name of the variable that is to be analyzed, in this case Time. Click

^

on the Censor option and input the column number or name of the variable that contains

information on the particular observation, that is, whether it represents a failed time point

or censored value. Click OK. Minitab generates a survival function plot as shown in

Figure 11-11. This survival function matches the computations shown in Table 11-8. A

95%confidence interval for the survival function, to be discussed subsequently, is also shown

on the plot.

Confidence Intervals for the Survival Function

TheK-Mestimator of the survival function at time tmaybeviewed as aproduct of proportions

[see eq. (11-27)]. The logarithm of the K-M estimator is

S�t�� � 
nj �11-28� 

nj � mj
ln� ln

t�i��t
i

� ^ln �pj� 
j�1

� �nj � mj�=nj represents the survival probability at that failure time t(j) based on thewhere

^^

p̂j
number of patients at risk at that time. Under the assumption that the observations at risk at

pj�1 � pj� � �=nj. Also, the variance of^failure times t(j) are independent of each other, Var�pj
^ln� 

^

S�t��, using Taylor’s series expansion, is approximately

Var�S�t��^Var ln�S�t�� �Mean� 
Using this result, we have

^
� : �11-29� 

S�t���2

1 ��1 � �^^

^

�pj pj� � � 
p

^Var ln�pj
mj �11-30�

2
j

nj nj�nj � mj� 



594 RELIABILITY

Hence, we obtain

Var�ln� �� Var�ln�S�t��� � pjj

i �11-31�mj� ; t�i� � t < t�i�1� 
j�1 nj�nj � mj�

Using eqs. (11-29) and (11-31) we obtain

S�t��2

^

^

^

i
mj

Var�S�t��^ ' � �i� � t < t�i�1� �11-32�; t
j�1 nj�nj � mj�

It has been established that the K-E estimator S�t� and its functions are asymptotically

normally distributed. Pointwise confidence interval estimates of the survival function could,

^

therefore, be obtained by adding and subtracting, from the point estimate, the product of the

estimated standard error times a quantile of the standard normal distribution. However, it is

possible for the endpoints of the confidence interval to be less than zero or greater than unity

using this approach. Further, the normality assumption may not hold for small to moderate

sample sizes. To overcome these issues, Kalbfleisch and Prentice (2002) suggest obtaining a

Ŝ�t��g, called a log–log survival

function. The estimate of the variance of the log–log survival function is given by

i

confidence interval estimate based on the function lnf�ln�

1

j�1

mj

nj�nj � mj� ; t�i� � t < t�i�1� �11-33�Var ln �ln� ̂S�t�� � 
^�ln�S�t���2

Hence, the endpoints of a 100(1� α)% confidence interval for the log–log survival

function are given by

^S�t��� � zα=2 SEfln��ln�S�t���g 
where zα/2 is the upper α/2 percentile of the standard normal distribution and SE(�) is obtained
from eq. (11-33) as its positive square root. Denoting the lower and upper endpoints of the

^ln��ln� �11-34� 

^ĉl and cu
upper endpoints of a confidence interval for the survival function are, respectively,

confidence interval for the log–log survival function by , respectively, the lower and

^^exp��exp�cu exp��exp�cl�� 
Note that the lower endpoint from eq. (11-34) yields the upper endpoint in eq. (11-35) for

the survival function.

Example 11-21 Use the survival data onheart surgery patients inExample11-20.Construct

approximate 95% confidence limits for the K-M survival function.

Solution We demonstrate the calculations at t= 40, the time of the third failure. The

�� �11-35�and

Ŝ�40� �  0:656 and stays at this value till the next
= 50. The estimate of the log–log survival function at this time t= 40

^

estimated survival function at this point is

failure occurs at t

S�40�� 

is ln��ln�0:656�� � �0:8637. The variance of the log–log survival function as given by

eq. (11-33) at t= 40 is obtained as

1 1 1 1

^
� � � � 0:3505

S�40���2Var ln �ln� �ln� �10��9� �8��7� �6��5� 
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TABLE 11-9 95% Confidence Intervals for Survival Function

Ordered Ordered Survival Function, Lower Confidence Upper Confidence
^Failure, j Failure Time, t(j) S�t�j�� Limit Limit

1 5 0.9 0.4732 0.9853

2 30 0.788 0.3809 0.9426

3 40 0.656 0.2605 0.8762

4 50 0.492 0.1305 0.6119

^which yields a standard error SEfln��ln�S�40���g � 0:592. From the standard normal

distribution, for a 95% confidence interval z0.025= 1.96. Thus, the lower and upper endpoints

of a confidence interval for the log–log survival function at t= 40 is obtained as

�0:8637 � �1:96��0:592� � ��2:0240; 0:2966� 
To find the 95% confidence intervals for the survival function at t= 40, we use the

transformation given by eq. (11-35) and obtain them as

exp��exp�0:2966�� and exp��exp��2:0240�� 
yielding (0.2605, 0.8762).

Table 11-9 shows the confidence limits of the survival function at the corresponding failure

points of the observations. As indicated previously, Figure 11-11 shows a plot of the survival

function and the associated 95% confidence intervals.

Comparison of Survival Functions of Two Groups

It may be of interest to compare the efficacy of two treatment plans for a certain patient group.

Alternatively, a comparison of a given treatment plan across two patient groups in two

different health care facilities could be of interest. In such cases, the question involves a

comparison of the K-M survival curves for the two plans or the two groups. The null

hypothesis conjectures that the population survival curves are equal to each other.

The statistical test for such a comparisonmakes use of the concept of a test statistic that utilizes

theobservedversus expectedcell frequencycounts. Suchachi-squared statisticwas introduced in

Chapter5 .Thetest, in thisparticularapplication, isknownas the log-rank test.Onecategorization

of the survivaldata is by thegroup index (i). In this case, sinceweare comparingpatients fromtwo

groups, i= 1, 2, say groups 1 and 2. The second attribute for categorization of the survival data is

the ordered failure time when both groups are considered together. For each ordered failure time

t(j), the number of patients failing (e.g., dying) is indicated bymij,where idenotes the group index,

while the number of patients in the risk set at that time is indicated by nij, respectively.

When only two groups are being compared, assuming that the groups have the same survival

function, the expected frequency of failures (say, deaths) for a given group is found from the

proportionofpatientsat riskinthatgroup,of thetotalnumberatriskforbothgroupsat theparticular

failure time,multipliedby the total numberof failuresoverbothgroups.For the jthordered failure,

at time t(j), the expected frequencies or counts for each of the two groups are given by

n1j
e1j � � �m1j � m2j� 

n1j � n2j �11-36� 
n2j

e2j � � �m1j � m2j� 
n1j � n2j
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j

The numerator of the test statistic involves the difference of the observed failures and

expected failures summed over all the failure times for one of the two groups and squaring

this value. The denominator is the variance of the summed difference of the observed and

expected counts. When there are only two groups that are being compared, the log-rank

statistic may be computed for only one of the groups as the outcome of the test will be the

same had the statistic been computed for the other group. The log-rank statistic is given

by, using group 1 as an index,

2�O1 � E1�
LR1 � �11-37� 

Var�O1 � E1� 
where

�Oi � Ei� �  �mij � eij�; i � 1; 2

and

n1jn2j�m1j � m2j��n1j � n2j � m1j � m2j� 
Var�Oi � Ei� �  ; i � 1; 2 �11-38�

2
j �n1j � n2j� �n1j � n2j � 1� 

Under the null hypothesis, the log-rank statistic has approximately a chi-squared

distribution with one degree of freedom. Hence, if the test statistic exceeds the critical

value of χ2 for a chosen level of significance α, the null hypothesis of equality of the

survival curves is rejected. Alternatively, if the p-value associated with the test statistic is

less than α, the null hypothesis is rejected.

When the number of groups (g) whose survival functions are to be compared exceeds two,

an appropriate test is the traditional chi-squared test discussed in Chapter 5. Using the

previously defined notation, let Oi and Ei denote the observed and expected number of

failures,when summedover all the failure times, fromgroup i, respectively.The test statistic is

g �Oi � Ei�2
χ2 ' �11-39� 

Eii�1

whichhas approximately a chi-squareddistributionwhen the null hypothesis is truewithg� 1

degrees of freedom. A decision on testing the null hypothesis that the population survival

functions of all groups are equal to each other is accomplished by comparing the value of the

test statistic to the critical value of χ2 for a chosen level of significance. Alternatively, the

p-value for the test statistic under the assumption that the null hypothesis is true may be

compared to the chosen level of significance. If thep-value< α, the null hypothesis is rejected.

Example 11-22 The remission times, in weeks, for leukemia patients are observed for two

groups. Group 1 is the treatment group while group 2 is the placebo group. The ordered

remission times of patients in each group are shown inTable 11-10,where a “+”notation next

TABLE 11-10 Remission Time of Leukemia Patients

Group 1, Treatment Group Group 2, Placebo Group

3, 3, 6, 7, 8+, 9, 11, 1, 2, 2, 2, 3, 3, 4, 4, 6+,

11, 13, 14, 15, 15, 15, 16+, 8, 8, 9, 10+, 12, 14,

17+, 19+, 20+, 20+ 14, 15, 15, 15, 15+
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TABLE 11-11 Computations for Comparison of Survival Functions

Number of Number in Observed�Expected
Ordered

Failures Risk Set Expected Failures Failures
Ordered Failure

Failure, j Time, t(j) m1j m2j n1j n2j e1j e2j m1j� e1j m2j� e2j

1 1 0 1 18 20 (18/38)× 1 (20/38)× 1 �0.474 0.474

2 2 0 3 18 19 (18/37)× 3 (19/37)× 3 �1.459 1.459

3 3 2 2 18 16 (18/34)× 4 (16/34)× 4 �0.118 0.118

4 4 0 2 16 14 (16/30)× 2 (14/30)× 2 �1.067 1.067

5 6 1 0 16 12 (16/28)× 1 (12/28)× 1 0.429 �0.429
6 7 1 0 15 12 (15/27)× 1 (12/27)× 1 0.444 �0.444
7 8 0 2 14 11 (14/25)× 2 (11/25)× 2 �1.120 1.120

8 9 1 1 13 9 (13/22)× 2 (9/22)× 2 �0.182 0.182

9 11 2 0 12 7 (12/19)× 2 (7/19)× 2 0.737 �0.737
10 12 0 1 10 7 (10/17)× 1 (7/17)× 1 �0.588 0.588

11 13 1 0 10 6 (10/16)× 1 (6/16)× 1 0.375 �0.375
12 14 1 2 9 6 (9/15)× 3 (6/15)× 3 �0.800 0.800

13 15 3 3 8 4 (8/12)× 6 (4/12)× 6 �1.000 1.000

Totals �4.823 4.823

to the time indicates that the time has to be censored due to the patient leaving the study or

surviving the entire observed period of 20 weeks. Test the null hypothesis of equality of the

survival functions using a level of significance of 0.05.

Solution Table 11-11 shows the expanded table of ordered failures that includes both

groups of patients. Also shown are the observed number of failures, expected number of

failures, and their difference for each failure time. The number in the risk set, at each

failure time, that accounts for the censored observations is also shown for each group.

Since there are two groups to be compared, we may select the total of the differences

between observed and expected number of failures to be from any one of the two groups.

Suppose we select the first group, for which O1�E1=�4.823 from Table 11-10. Using

eq. (11-38), the variance of O1�E1 is obtained as

�18��20��0 � 1� �18 � 20 � 0 � 1� �8��4��3 � 3� �8 � 4 � 3 � 3� 
Var�O1 � E1� �  � ∙ ∙ ∙ � �18 � 20�2�18 � 20 � 1� �8 � 4�2�8 � 4 � 1� 

� 6:0286

Hence, the log-rank statistic= (O1�E1)
2/Var(O1 – E1)= (�4.823)2/6.0286= 3.858.

For α= 0.10, the critical value of χ2 with one degree of freedom is 2.71. Since the test

statistic exceeds this critical value, we reject the null hypothesis and conclude that there is

significant evidence to indicate that the survival curves for the treatment and placebo are not

equal to each other.

We demonstrate the use of Minitab using the same data. First, we set up a Minitab

worksheet for the combined data from both groups as follows. The remission times, which

include failure and censored times, are entered in a column, the group number (1 or 2) for the

corresponding times in a second column, and a third column indicates whether the remission
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FIGURE 11-12 K-M survival function plots for remission data.

time is a right-censored time or a failure. A letter C indicates that the data are censored and a

letter F indicates that a failure occurred. To obtain a visual representation of the survival

function for each group, Figure 11-12 shows theK-M survival functions for the treatment and

placebo groups. One can observe the degree of separation of the two survival functions. We

observe that, in the observed range of remission times, the survival function for the treatment

group seems to dominate that for the placebo group.

The Minitab commands for comparing the survival functions are Stat>Reliability/

Survival>Distribution Analysis (Right Censoring)>Nonparametric Distribution

Analysis. Under Variables, input the column number or name of the variable that stores

remission times. Check the box indicating By variables and indicate the column number or

name of the variable that indicates the group number. Click on theCensor option, check the

Use censoring column box, and input the column number or name of the variable that

includes information on the censoring of the observation. Click OK.

Minitab displays summary statistics for comparison of the survival curves using the

log-rank statistic and the Wilcoxon statistic. The Wilcoxon statistic weights the observed

minus expected failures at time t(j) by the number of patients at risk (n1j+ n2j) at that time.

So, this test places more emphasis on the observations at the beginning of the study, when

the number at risk is larger, allowing early failures to receive more weight than later

failures. Hence, if the effect of a certain treatment is stronger in the earlier phase of

administration and tends to be less effective over time, the Wilcoxon statistic could be a

preferred measure. The log-rank statistic, on the other hand, uses a constant weight of

unity at each failure time. A sample output from Minitab is shown in Figure 11-13.

FromFigure 11-13, for the log-rank statistic for group1, the treatment group, the sumof the

differences (O1�E1) is shown tobe -4.844,which is close to our calculated value, as shown in

Table 11-11. Similarly, the variance of the statistic for O1�E1 is 6.026, which closely

matchesourprevious calculations. Finally, the log-rank statistic is observed as3.894,which is

close to our previous computations.Note that thep-value associatedwith the log-rank statistic

is 0.048, which is smaller than the chosen level of significance of 0.10.Hence, we arrive at the

same decision as before, which is to conclude a difference in the survival functions of the

treatment and placebo groups.
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FIGURE 11-13 Comparison of survival functions of remission times of two groups.

SUMMARY

This chapter introduced the concept of reliability and methods for its computation.

Reliability implies the successful operation of a product over a certain period of time

under stipulated environmental conditions. Reliability is needed in the performance phase of

quality, but plans for its achievement are actually addressed in the design phase. Procedures

for improving the reliability of a system by means of adding components in parallel

(redundant systems) or through standby systems have been discussed. The concept of

availability is also presented. The life-cycle curve of a product was studied to identify the

period of useful life of the product. Probability distributions that model different phases of

the life-cycle curve have been explored. Some tests for reliability and life testing have been

covered in this chapter. The exponential distribution for time to failure is used as a basis for

these tests. Failure-terminated, time-terminated, and sequential tests for life testing have

been introduced. Standardized tests developed by the government have been treated in some

detail. The chapter also contains an exposure to survival analysis, especially in the context

of health care. Comparison of survival functions of distinct groups are also discussed.

KEY TERMS

accumulated life life-cycle curve

availability life testing plans

bathtub curve failure-terminated

chance-failure phase Handbook H-108

chi-squared random variable sequential

consumer’s risk time-terminated test

debugging phase with replacement

failure-rate curve without replacement

failure-rate function mean time between failures

constant failure rate mean time to failure

infant mortality phase mean time to repair
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operating characteristic curve confidence interval

Poisson process Kaplan–Meier estimator

probability distributions log-rank statistic

exponential distribution survival function

Weibull distribution systems
producer’s risk complex
product limit estimator components in parallel
reliability components in series
system reliability standby

survival analysis wear-out phase

EXERCISES

Discussion Questions

11-1 Define reliability. Explain its role in quality control and improvement.

11-2 Describe the life cycle of a product. What probability distributions would you use to

model each phase?

11-3 Explain procedures that might improve the reliability of a system. How would you

increase the availability of a system?Distinguish between a systemwith components

in parallel and another with standby components.

11-4 Distinguish between failure-, time-terminated, and sequential tests for reliability and

life testing.

Problems

11-5 A transistor has an exponential time-to-failure distribution with a constant failure

rate of 0.00006/hour. Find the reliability of the transistor after 4000 hours of

operation. What is the mean time to failure? If the repair rate is 0.004/hour, find the

availability.

11-6 An electronic component in a video recorder has an exponential time-to-failure

distribution. What is the minimum mean time to failure of the component if it is to

have a probability of 0.92 of successful operation after 6000 hours of operation?

11-7 An optical sensor has aWeibull time-to-failure distributionwith a scale parameter of

300 hours and a shape parameter of 0.5. What is the reliability of the sensor after

500 hours of operation? Find the mean time to failure.

11-8 A remote control unit has 40 components in series. The reliability of each component

is 0.9994. What is the reliability of the remote control unit? If a redesign has 25

components in series, what is the reliability of the unit?

11-9 Refer to Exercise 11-8 concerning the redesigned remote control unit with 25

components in series. If it is desired that the remote unit has a reliability of 0.996 for

3000 hours of operation, what should the failure rate be for each component? What

should the mean time to failure be for each component? Assume that the time to

failure for each component is exponentially distributed.

11-10 Four components A, B, C, and D are placed in parallel to make a subassembly in a

circuit board. The reliabilities of A, B, C, and D are 0.93, 0.88, 0.95, and 0.92,

respectively. Find the reliability of the subassembly.
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11-11 Refer to Exercise 11-10. Each component has a time to failure that is exponentially

distributed, with a mean time to failure of 3000 hours. Find the reliability of the

subassembly for 2500 hours of operation. What is the mean time to failure of the

subassembly? If it is desired that the subassembly has a mean time to failure of

6600 hours, what would have to be the mean time to failure of the components?

11-12 Consider the seven-component system shown in Figure 11-14. The reliabilities of

the components are as follows: RA= 0.96, RB= 0.92, RC= 0.94, RD= 0.89, RE

= 0.95,RF= 0.88,RG= 0.90. Find the reliability of the system. If you had a choice of

improving system reliability by modifying any two components, how would you

proceed?

FIGURE 11-14 System with seven components.

11-13 Consider the seven-component system shown in Figure 11-14. Assume that the time

to failure for each component has an exponential distribution. The failure rates are as

follows: λA= 0.0005/hour, λB= 0.0005/hour, λC= 0.0003/h, λD= 0.0008/hour, λE
= 0.0004/hour, λF= 0.006/hour, and λG= 0.0064/hour. Find the reliability of the

system after 1000 hours. What is the mean time to failure of the system?

11-14 A standby system has a basic unit with four standby components. The time to failure

of each component has an exponential distribution with a failure rate of 0.008/hour.

For a 400-hour operation period,find the reliability of the standby system.What is its

mean time to failure? Suppose that all five components are operating simultaneously

in parallel. What would the system reliability be in that situation? What would the

mean time to failure be?

11-15 Refer to Exercise 11-13 and the system shown in Figure 11-14. Suppose that

component B is a standby component. Find the reliability of the system after 1000

hours. What is the mean time to failure?

11-16 Construct the OC curve for the life testing plan n= 6, T= 900 hours, c= 3. For a

producer’s risk of 0.05, what is the associated quality of batches as indicated by their

mean life? For a consumer’s risk of 0.10, what is the associated quality level of

batches as indicated by their mean life?

11-17 A sample of 20 diodes is chosen for life testing. The time to failure of the diodes is

exponentially distributed. The test is terminated after six failures, with no replace

ment of the failed items. The failure times (in hours) of the six diodes are 530, 590,

670, 700, 720, and 780. Estimate the mean time to failure of the diodes as well as the

failure rate. Find a 95% confidence interval for the mean life.
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11-18 Refer to Exercise 11-17. Assume that each failed item is replaced with an identical

unit. Estimate the mean time to failure and the failure rate. Find a 90% confidence

interval for the mean time to failure.

11-19 A sample of 25 relays is chosen for life testing. The time to failure of a relay is

exponentially distributed. The test is terminated after 800 hours, with five failures

being observed at times 610, 630, 680, 700, and 720 hours. Failed items are not

replaced. Estimate the mean life and the failure rate of the relays. Find a 95%

confidence interval for the mean life.

11-20 A life testing plan is to be terminated after the eighth failure. It should reject a lot that

has an acceptable mean life of 900 hours with a probability of 0.10. Items that fail

during the test are not replaced. A sample of 15 items is placed on test with the eight

failures occurring at the following times (in hours): 400, 430, 435, 460, 460, 490,

520, 530. Based on Handbook H-108, should the lot be accepted?

11-21 Refer to Exercise 11-20. Assume that failed items are immediately replaced during

the test. Using Handbook H-108, what is your recommendation on the lot?

11-22 A life testing plan is to be terminated after the third failure. It should accept a lot that

has an acceptable mean life of 600 hours with a probability of 0.99. Failed items are

not replaced during the test. A sample of eight items is chosen, and three failures are

observed at the following times (in hours): 200, 240, 250. Using Handbook H-108,

should the lot be accepted?

11-23 A time-terminated life testing plan is to be found thatwill reject lotswith amean life of

1500 hours with a probability 0.05 and accept lots with amean life of 600 hourswith a

probability of 0.10. Items that fail during the test are not replaced. Determine the plan,

using Handbook H-108, if the sample size is to be five times the rejection number.

11-24 Refer to Exercise 11-23. Suppose that items that fail during the test are immed

iately replaced with similar items. Determine the life testing plan using Handbook

H-108.

11-25 A time-terminated life testing plan is to be found that will reject lots that have amean

life of 1400 hourswith a probability of 0.05. The rejection number is 7, with a sample

size of 35. Determine the plan using Handbook H-108 if the time to failure is

exponentially distributed. Items that fail during the test are not replaced.

11-26 Refer to Exercise 11-25. If failed items are replaced with similar items, determine a

life testing plan using Handbook H-108.

11-27 A time-terminated life testing plan is desired that will accept lots with a mean life of

6000 hours with a probability of 0.99 and will accept lots with a mean life of 2000

hours with a probability of 0.10. The test should be terminated by 1200 hours. Items

that fail will be replaced immediately. Determine the plan using Handbook H-108,

assuming that the time to failure is exponential.

11-28 Refer to Exercise 11-27. Find the appropriate plan using Handbook H-108 if failed

items are not replaced during the test.

11-29 In a time-terminated life testing plan, it is desired to reject lots with a mean life of

1500 hours with a probability of 0.95 and reject lots with a mean life of 7500 hours
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with a probability of 0.10. The test is to be terminated by 2500 hours. Items that fail

during the test will be replaced. Assuming the time-to-failure distribution to be

exponential, determine the plan using Handbook H-108.

11-30 Refer to Exercise 11-29. If failed items are not replaced during the test, determine the

plan using Handbook H-108.

11-31 Two groups of samples of patients were randomly selected from a county. The

first group (Group 1) had no history of a chronic disease while the second group

(Group 2) had a positive history. The selected patients were observed for a period of

15 years. Some patients had to leave the study due to relocation or other reasons

while some survived the total observation period. The censored survival times for

such patients are indicated by a “+” after the listed time. Table 11-12 shows the

survival times for patients in each group. Find the estimated survival function for

patients in each group.

TABLE 11-12 Survival Time of Patients

Group 1, No Chronic Disease Group 2, Chronic Disease

4, 5, 5, 6+, 8, 10, 12+, 2, 3, 3, 4, 6, 7+, 8,

13+, 13, 14, 14, 15, 15+, 8, 9+, 9, 10, 10, 11, 12+,

15+, 15+ 13, 14+, 14, 14, 15, 15

11-32 Refer to Exercise 11-31. Test the null hypothesis of equality of the survival functions

of the two groups using a level of significance of 0.05.
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12-1 INTRODUCTION AND CHAPTER OBJECTIVES

Quality should be designed into a product. Principles of experimental design, which aid in

selecting optimal product and process parameters, facilitate this objective. We have emphasized

the neverending cycle of quality improvement throughout this text. The quality control phase

is followed by quality improvement, which leads to the creation of a better product or service.

We have examined the principles of quality control in the chapters dealing with control

charts. Control chart techniques deal with online control methods, in which it is necessary to

determine whether the process is in a state of statistical control. Adjustments are made on the

process, preferably in real time, as data from the process are collected and analyzed to

determine its state. Data collected from the process are used to make changes in the process.

Although these methods, sometimes collectively grouped under the heading of statistical

process control (SPC), are no doubt useful, they nevertheless provide an action-taking

framework in the product-manufacturing phase or in the operational phase of a service that is

somewhat downstream in the cycle.

In this chapterwediscuss aclassofproceduresknownasoff-linecontrolmethods,whichare

used in the design phase of the product/process or service and which are quite beneficial. The

Taguchimethodofexperimentaldesign is introduced in this context.Theseproceduresareused

during initial design and prototype testing to determine optimal settings for the product and

process parameters. Analysis is thus conducted earlier in the cycle, which allows us to address

problems thatmight appear in the production phase. The product or process is then designed to

minimize any detrimental effects. The proper choice in the design phase of parameter settings

for both the product and process can reduce costs and improve quality.

We introduce several common experimental designs such as the completely randomized

design, the randomizedblockdesign, and theLatin square design in this chapter.Thedetails of

the analysis associatedwith these designs, such as the analysis of variance, are not extensively

discussed. For a thorough treatment of the relevant analytical procedures, consult the

references provided (Box et al., 2005; Montgomery 2013a; Peterson 1985; Wadsworth

et al. 2001.). Our objective will be on the fundamental principles of experimental design.

There are several advantages to experimental design. First, it can be useful in identifying

the key decision variables that may not only keep a process in control but also improve it.

Second, in the development of new processes for which historical data are not available,

experimental design used in the developmental phase can identify important factors and their

associated levels that will maximize yield and reduce overall costs. This approach cuts down

on the lead time between design andmanufacturing and produces a design that is robust in its

insensitivity to uncontrollable factors. The principles of factorial experiments are also

presented (Box et al., 2005; Hunter 1985; Raghavarao 1971; Ryan 2011.). These help us

determine the more critical factors and the levels at which the chosen factors should be

maintained (Box and Wilson 1951; Box and Draper 1986). Such experiments are usually

conducted under controlled conditions (in a laboratory, for example). They can provide

crucial information for choosing the appropriate parameters (Gunter 1990d) and levels for the

manufacturing phase or for the delivery of services.

12-2 EXPERIMENTAL DESIGN FUNDAMENTALS

An experiment is a plannedmethod of inquiry conducted to support or refute a hypothesized

belief or to discover new information about a product, process, or service. It is an active
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method of obtaining information, as opposed to passive observation. It involves inducing a

response to determine the effects of certain controlled parameters. Examples of controllable

parameters, often called factors, are the cutting tool, the temperature setting of an oven,

the selected vendor, the amount of a certain additive, or the type of decor in a restaurant. The

factorsmaybequantitativeorqualitative (discrete). For quantitative factors,wemust decide

on the range of values, how they are to be measured, and the levels at which they are to be

controlled during experimentation. For example, we might be interested in the effect of

temperature on the output of a chemical compound. Three selected levels of the factor

(temperature in this case) could be 100, 200, and 300°C. The response variable in this case is

the output of the chemical compound asmeasured in, say, kilograms.Qualitative factors, such

as the vendor of an input raw material, are arbitrarily assigned codes representing discrete

levels.

In the terminology of experimental design, a treatment is a certain combination of factor

levelswhose effect on the response variable is of interest. For example, suppose we have two

factors—oven temperature and the selected vendor of a certain raw material—that are of

interest in determining the effect on the output of the response variable, which is the yield of a

chemical compound. The temperature can be set at 100, 200, or 300°C, and the raw material

can be purchased from vendor A or B. The selected vendor is then a qualitative factor. The

treatments for this experiment are the various combinations of these two factor levels. The

case where vendor A is chosen and the oven temperature is set at 100°C is one treatment. A

total of six treatments could possibly be considered in this situation.

An experimental unit is the quantity of material (in manufacturing) or the number served

(in a service system) to which one trial of a single treatment is applied. For the chemical

compound, if production is in batches of 2000 kg and each treatment is applied to a batch, the

experimental unit is the batch. A sampling unit, on the other hand, is a fraction of the

experimental unit on which the treatment effect is measured. If 100 g of themixture is chosen

for analysis, then 100 g is the sampling unit.

The variation in experimental units that have been exposed to the same treatment is

attributed to experimental error. This variability is due to uncontrollable factors, or noise

factors.

Experimental design is used to determine the impact of factors on the response variable.

With quantitative factors, which vary on a continuous scale,we can obtain information about

the variable’s behavior even for factor levels that have not been experimentally determined.

This concept is illustrated in Figure 12-1, where the quantitative factor is the amount of

catalyst used in a process and the response variable is the reaction time. Six experiments are

conducted for catalyst levels of 10, 20, 30, 30, 40, and 40 g.Note that as the amount of catalyst

increases, the reaction time increases at a decreasing rate. Assuming that the behavior of the

response variable is representative of the observed values, a smooth curve is drawn to depict

its relationship with the factor of interest. This relationship is then used to interpolate the

performance of the response variable for values of the amount of catalyst (say, 15 or 25 g) for

which experiments have not been performed.

Such interpolation may not be feasible for qualitative factors with discrete levels. For

example, let’s say our response variable is the elasticity of a rubber compound and the factor is

the vendor of raw material. We have four vendors: A, B, C, and D. Observations of the

response variable are available, say, for vendors A, B, and D. From this information, we

cannot interpolate the elasticity of the compound for raw material provided by vendor C.

Frequently, more than one factor is considered in experimental analysis. If more than one

factor is under consideration, experiments do not usually involve changing one variable at a
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FIGURE 12-1 Behavior of a response variable for a quantitative factor.

time. Some disadvantages of changing one variable at a time are discussed later. With two

variables,wegetadesignknownas thecuboidaldesign, showninFigure12-2a.Each factor can

be set at two levels, denoted by�1 and 1. The point (0, 0) represents the current setting of the
factor levels. In this notation, thefirst coordinate represents the level of factorA, and the second

coordinate represents the level of factor B. A level of�1 represents a value below the current

setting of 0, and a level of 1 represents a value above the current setting. Thus, four new design

points, (�1, �1), (1, �1), (�1,1), and (1,1), can be investigated. The value of the response

variable at these design points determines the next series of experiments to be performed.

Let’s suppose thatwehaveobtained the response function value at the experimental design

points shown inFigure 12-2b and the response surface shown in Figure 12-2c. If our objective

is to maximize the response function, we will consider the direction in which the gradient is

steepest, as indicated by the arrow. Our next experiment could be conducted in a region with

the center at (2,2) with respect to the current origin. These same principles apply tomore than

two variables as well (Gunter 1989,1990a,c).

Experiments with two or more variables usually avoid changing only one variable at a

time—that is, keeping the other variables constant. There are reasons for this. Figure 12-3a

shows the design points for such an approach, with (0, 0) representing the current state. If the

value of factor A is fixed, the two design points are (0,�1) and (0, 1). Likewise, if factor B is

FIGURE 12-2 Experimental design for more than one variable.
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FIGURE 12-3 Design approach involving changes in one variable at a time.

fixed, the two additional design points are (�1, 0) and (1, 0). Keep in mind the response

function shown in Figure 12-2b for the same factors. Figure 12-3b shows the response

function value at the design points. Note that to maximize the response function in this

experiment, wewouldmove in the direction of the arrow shown along themajor axis of factor

A. The next experimentwould be conducted in a regionwith the center at (2, 0)with respect to

the current origin. This, however, does not lead to the proper point for maximizing the

response function indicated in Figure 12-2c. These concepts also apply to the case with more

than two variables. Experiments for one variable at a time are not as cost-effective.

Another drawback to the one-variable-at-a-time approach is that it cannot detect inter

actionsbetween two ormore factors (Gunter 1990b). Interactions exist when the nature of the

relationship between the response variable and a certain factor is influenced by the level of

some other factor. This concept is illustrated graphically in Figure 12-4.

Let’s suppose that factor A represents the raw material vendor and factor B represents the

amount of catalyst used in a chemical process. The response variable is the elasticity of

theoutputproduct, the valuesofwhich are shownbeside the plottedpoints. InFigure 12-4a, the

functional relationship between the response and factorA stays the same regardless of the level

FIGURE 12-4 Interaction between factors.



610 EXPERIMENTAL DESIGN AND THE TAGUCHI METHOD

FIGURE 12-5 Contour plots of the response function.

of factorB.This depicts the case forwhich there is no interaction between factorsA andB.The

factors are said to have an additive effect on the response variable. The rate of change of the

response as the level of factor A changes from �1 to 1 is the same for each level of B.

Nowobserve Figure 12-4b,where interaction does exist between factorsA andB. The rate

of change of the response as a function of factor A’s level changes as B’s level changes

from�1 to 1.The response has a steeper slopewhenB is 1.Hence,B’s level does influence the

relationship between the response function and factorA. In such a situation, interaction is said

to exist between factors A and B.

Interactions depict the joint relationship of factors on the response function. Such effects

should be accounted for in multifactor designs because they better approximate real-world

events. For example, a new motivational training program for employees (factor B) might

impact productivity (response variable) differently for different departments (factorA)within

the organization. Another way to represent interaction is through contour plots of the

response function. Figure 12-5a shows contour plots of the response function with factors A

and Bwhen there is no interaction between the factors. Here, the axes of the plotted contours

are parallel to the axes of the factors. In Figure 12-5b, the response surface has a form of

curvature. The natural axes of the contours are rotated with respect to the factor coordinate

axes. Interaction between factors A and B exists in these circumstances.

Features of Experimentation

Experimental design incorporates features of replication, randomization, and blocking.

Replication involves a repetition of the experiment under similar conditions (that is, similar

treatments). It allows us to obtain an estimate of the experimental error, the variation in the

experimental units under identically controlled conditions. The experimental error forms a

basis for determining whether differences in the statistics found from the observations are

significant. It serves as a benchmark for determining what factors or interactions are

significant in influencing the response variable.

Replication serves another important function. If the sample mean is used to estimate the

effect of a factor, replication increases the precision by reducing the standard deviation of the
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mean. In Chapter 4 we found the following from the central limit theorem. The variance of

the sample mean �y is given by

σ2
σ2 �	 �12-1��y n

where σ2 represents the variance of the observations and n is the number of replications used

to determine the samplemean.As the number of replications increases, the standard deviation

of the mean (σ�y) decreases.

Replication can also provide a broader base for decision making. With an increase in the

numberof replications, a variety of experimental units canbeused, permitting inferences tobe

drawn over a broader range of conditions.

A second feature of experimentation deals with the concept of randomization.Randomi

zationmeans that the treatments should be assigned to the experimental units in such a way

that every unit has an equal chance of being assigned to any treatment. Such a process

eliminates bias and ensures that no particular treatment is favored. Random assignments of

the treatments and the order in which the experimental trials are run ensure that the

observations, and therefore the experimental errors, will be independent of each other.

Randomization “averages out” the effect of uncontrolled factors.

Let’s consider a situation in which customer reaction and satisfaction are to be tested for

three types of loan application in a financial institution. The factor is the type of loan

application, with three levels. Customers who are given these applications should be

randomized so that the effects of all other factors are averaged out. Any differences in the

observed customer satisfaction levels will thus be attributed to differences in the loan

applications. Hence, care should be taken to ensure that the different loan applications are

given to customers of various financial status or educational backgrounds, not merely to

customers with similar backgrounds.

The third feature of experimentation is the principle of blocking, or local control. The idea

is to arrange similar experimental units into groups, or blocks. Variability of the response

function within a block can then be attributed to the differences in the treatments because the

impact of other extraneous variables has been minimized. Treatments are assigned at random

to the units within each block. Variability between blocks is thus eliminated from the

experimental error, which leads to an increase in the precision of the experiment.

Let’s consider a situation in which the effect of four different machine tools on the surface

finish of a machined component is to be evaluated. We could create blocks consisting of

different feed rates associatedwith themachiningoperation. The effect on surfacefinishof the

four machine tools could then be compared within blocks. Assessing differences between

blocks due to the variabilities in the feed rateswould be distinct fromdetermining the effect of

the treatment—in this case, the type of machine tool. Blocking allows treatments to be

compared under nearly equal conditions because the blocks consist of uniform units.

12-3 SOME EXPERIMENTAL DESIGNS

The design of an experiment accounts for the following:

• The set of treatments to be considered

• The set of experimental units to be included

• The procedures through which the treatments are to be assigned to the experimental

units (or vice versa)
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• The response variable(s) to be observed

• The measurement process to be used

A manageable number of treatments is chosen from a larger set based on their relative

degree of impact on the response variable. Economic considerations (such as the cost

associated with the application of a particular treatment) are also a factor in selecting

treatments. Ideally, the goal is to optimize the response variable in the most cost-effective

manner possible (Box and Draper 1986).

The distinguishing feature of the experimental designs considered in this section is the

manner in which treatments are assigned. The selection of an appropriate measurement

process is critical to all experimental designs. Measurement bias, which occurs when

differences in the evaluation and observation processes go unrecognized, can cause serious

problems in the analysis. Suppose we want to determine the effectiveness of a new drug on

lowering blood cholesterol levels. The experimental subjects are randomly selected patients

while the evaluator is a doctor or medical technician who monitors cholesterol levels.

Patients in this experiment are randomly assigned either the “old” or the “new” drug, which

are the treatments. Measurement bias can be eliminated by not divulging the assignment of

treatment to the experimental subject and the evaluator. Any personal bias that the evaluator

might have toward the new drug is eliminated since the evaluator does not know the type of

drug received by each patient. Such an experiment, where the experimental subjects and

the evaluator are not cognizant of the treatment assigned to each subject, is known as adouble-

blind study. When the knowledge of the treatment assignment is not disclosed to the

experimental subject or the evaluator, the study is said to be single blind.

For the experimental designs in this chapter, we consider situations that use fixed effects

models, where the treatment effects are considered to be fixed. This means that the inferences

drawn from the analysis pertain only to the treatments selected in the study. Alternatively, if

the selected treatments are randomly chosen from a population of treatments, a random

effects model is used to make inferences about the whole population of treatments.

To illustrate these models, let’s consider an experiment in which the treatments are the

amount of a certain compound used in a chemical process: 100, 200, and 300 g of

the compound. The response variable is the reaction time. A fixed effects model considers

the effect of only these three treatments on the response. That is, we are only interested in

significant differences between these three treatments.

Now suppose the treatment (the amount of a certain compound) is assumed to be a normal

random variable with a mean of 200 g and a standard deviation of 100 g. We could

conceivably have an infinite number of treatments. From this population of available

treatments, we randomly select three: 100, 200, and 300 g of the compound. These are the

same amounts that we used in the fixed effects model; however, here we seek to make

inferences on a population of treatments (the amount of chemical compound used) that is

normally distributed. Specifically, the null hypothesis is that the variance of the treatments

equals zero. This is a random effects model.

Completely Randomized Design

A completely randomized design is the simplest and least restrictive design. Treatments are

randomly assigned to the experimental units, and each unit has an equal chance of being

assigned to any treatment. One way to accomplish this is through the use of uniform random

number tables.
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TABLE12-1 Assignment ofTreatments toExperimental Units

in a Completely Randomized Design

Random Rank of Random Number

Number (Experimental Unit) Treatment

682 10 A

540 8 A

102 2 A

736 11 B

089 1 B

457 6 B

198 3 C

511 7 C

294 4 C

821 12 D

304 5 D

658 9 D

Suppose that we have four treatments, A, B, C, andD, that wewould like to assign to three

experimental units, making a total of 12 experimental units. In the terminology of experi

mental design, each treatment is replicated three times; thus, we need 12 random numbers.

Starting at any point in a random number table and going across a row or down a column, we

obtain the following 12 three-digit random numbers sequentially: 682, 540,102, 736, 089,

457,198, 511, 294, 821, 304, and 658. Treatment A is assigned to the first three numbers,

treatment B to the second three numbers, and so forth. These numbers are then ranked from

smallest to largest, with the ranks corresponding to the experimental unit numbers. The

scheme of assignment is depicted in Table 12-1. From Table 12-1 we find that experimental

unit 1 is assigned treatment B, experimental unit 2 is assigned treatment A, and so on. A table

of uniform random numbers is given in Appendix A-8. The rank order of the random number

should be the time order of the data collection and experimentation.

There are several advantages to a completely randomized design. First, any number of

treatments or replications can be used. Different treatments need not be replicated the same

number of times, making the design flexible. Sometimes it is not feasible to replicate

treatments an equal number of times. In a situation where the treatments represent different

vendors, vendor A, because of capacity and resource limitations, may not be able to supply as

much raw material as vendors B and C. When all treatments are replicated an equal number

of times, the experiment is said to bebalanced; otherwise, the experiment isunbalanced. The

statistical analysis is simple even for the unbalanced case, although comparisons between the

treatment effects are more precise in the balanced case.

Another advantage is that the completely randomized design provides themostdegrees of

freedom for the experimental error. This ensures a more precise estimation of the experi

mental error. Recall that the experimental error provides a basis for determining which

treatment effects are significantly different.

One disadvantage of a completely randomized design is that its precisionmay be low if the

experimental units are not uniform. This problem is overcome by means of blocking, or

grouping, similar homogeneous units. Designs utilizing the principle of blocking will be

discussed later.
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Analysis of Data The statistical procedure used most often to analyze data is known as the

analysis of variance (ANOVA). This technique determines the effects of the treatments, as

reflected by their means, through an analysis of their variability. Details of this procedure are

found in the listed references (Box et al. 2005; Peterson 1985). The total variability in the

observations is partitioned into two components: the variation among the treatment means

(also known as the treatment sum of squares) and the variation among the experimental

units within treatments (also known as the error sum of squares). We have

Total sum of squares �SST� � treatment sum of squares �SSTR� �12-2� 
� error sum of squares �SSE� 

Themean squares for treatments and for error are obtained by dividing the correspond

ing sum of squares by the appropriate number of degrees of freedom. This number is 1 less

than the number of observations in each source of variation. For a balanced design with p

treatments, each with r replications, the total number of observations is rp. The total

variability, therefore, has rp� l degrees of freedom. The number of degrees of freedom for

the treatments isp� 1.For each treatment, there are robservations, so r� l degrees of freedom

apply toward the experimental error. The total number of degrees of freedom for the

experimental error is, therefore, p(r� 1). We have the following notation:

p : number of treatments

r : number of replications for each treatment

yij : response variable value of the jth experimental unit that is assigned treatment i,

i= l, 2, . . . , p; j= l, 2, . . . , r
r

yi.: sum of the responses for the ith treatment; that is, j�1 yij
�y i.: mean response of the ith treatment; that is, yi./r

p r
y.. : grand total of all observations; that is, i�1 j�1 yij
y : grand mean of all observations; that is, y../rp

The notation, consisting of r observations for each of the p treatments, is shown in

Table 12-2. The computations of the sum of squares are as follows. A correction factor C

is first computed as
y::2

C � �12-3� 
rp

The total sum of squares is
P r

SST � y2ij � C �12-4� 
i�1 j�1

TABLE 12-2 Notation for the Comletely Randomized Design in the Balanced Case

Replication

Treatment 1 2 . . . r Sum Mean

1 y11 y12 . . . y1r y1. y1:

2 y21 y22 . . . y2r y2. y2:
... 

... 
... 

... 
... 

... 

p y y . . . y y yp1 p2 pr p. p:

yy..
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The treatment sum of squares is determined from

P

i�1
y2i:

SSTR � 
r

� C �12-5� 

Finally, the error sum of squares is

SSE � SST � SSTR �12-6� 
Next, the mean squares are found by dividing the sum of squares by the corresponding

number of degrees of freedom. So, the mean squares for treatment are

SSTR
MSTR � �12-7� 

p � 1

The mean square error is given by

SSE
MSE � �12-8� 

p�r � 1� 

Test for Differences Among Treatment Means It is desirable to test the null hypothesis that

the treatment means are equal against the alternative hypothesis that at least one treatment

mean is different from the others. Denoting the treatment means μ1, μ2, . . . , μp, we have the

hypotheses

H0 : μ1= μ2= � � �= μp

Ha : At least one μi is different from the others

The test procedure involves the F-statistic, which is the ratio of the mean squares for

treatment to the mean squares for error. The mean square error (MSE) is an unbiased

estimate of σ2, the variance of the experimental error. The test statistic is

MSTR
F � �12-9� 

MSE

with (p� 1) degrees of freedom in the numerator and p(r� 1) degrees of freedom in the

denominator. For a chosen level of significance α, the critical value of F, which is found

from the tables in Appendix A-6, is denoted by Fα , p�1, p(r�1). If the computed test statistic

F > Fα , p� 1, p(r� 1), the null hypothesis is rejected, andwe conclude that the treatmentmeans

are not all equal at the chosen level of significance. This computational procedure is known as

analysis of variance; it is shown in tabular format in Table 12-3.

TABLE 12-3 ANOVA Table for the Completely Randomized Design for a Balanced

Experiment

Source of Variation Degrees of Freedom Sum of Squares Mean Square F-Statistic

Treatments p� 1 SSTR MSTR � SSTR
p � 1

F � MSTR

MSE

Error p(r� 1) SSE MSE � SSE

p�r � 1� 
Total rp� 1 SST
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If the null hypothesis is not rejected, we conclude that there is no significant difference

among the treatment means. The practical implication is that as far as the response variable is

concerned, it does not matter which treatment is used. Whichever treatment is the most cost-

effective would be selected.

If the null hypothesis is rejected, management might be interested in knowing which

treatments are preferable. The sample treatment means would be ranked; depending on

whether a large or small value of the response variable is preferred, the desirable treatments

would then be identified. The sample treatment means serve as point estimates of the

population treatment means. If interval estimates are desired, the following relation can be

used to find a 100(1� α)% confidence interval for the treatment mean μi:

MSE �12-10�L�μi� � yi: � tα=2; p�r�1� 
r

where tα/2,p(r�1) is the t-value for a right-tail area of α/2 and p(r� 1) degrees of freedom; it isp
found from Appendix A-4. The quantity MSE=r represents the standard deviation of the

sample treatment mean yi.

Perhapsmanagementwants to estimate the difference between two treatmentmeans. Such

an inference would indicate whether one treatment is preferable to the other. A 100(1� α)%

confidence interval for the difference of two treatment means, μi1� μi2, is given by

2MSE
L�μi1 � μi2� � �yi1 � yi2� � tα=2;p�r�1� �12-11� 

r

where tα/2, p(r�1) is the t-value for a right-tail area of α/2 and p(r� 1) degrees of freedom. Thep
quantity 2MSE=r represents the standard deviation of the difference between the sample

treatment means, yi1 � yi2.

Example 12-1 Three adhesives are being analyzed for their impact on the bonding strength

of paper in a pulp and paper mill. The adhesives are each randomly applied to four batches.

The data are shown in Table 12-4. Here, the three treatments are the adhesives (p= 3), and the

number of replications for each treatment is 4 (r= 4). The completely randomized design is a

balanced one.

(a) Is there a difference among the adhesives in terms of the mean bonding strength? Test

at the 5% level of significance.

Solution To test for differences among the adhesive mean bonding strengths, we per

form analysis of variance usingMinitab.We selectStat>ANOVA>Oneway.Wefirst enter

the data by listing the value of the response variable (bonding strength in this case) in one

column and the corresponding treatment or factor (adhesive type) in a second column.

TABLE 12-4 Bonding Strength Data

Adhesive Type Bonding Strength (kg) Sum Mean

1 10.2 11.8 9.6 12.4 44.0 11.000

2 12.8 14.7 13.3 15.4 56.2 14.050

3 7.2 9.8 8.7 9.2 34.9 8.725

135.1 11.258
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FIGURE 12-6 Minitab’s ANOVA table for bonding strength data.

The column number of the response variable is input in Response and that of the factor in

Factor and we then click OK. The ANOVA table is shown in Figure 12-6.

To test the hypotheses

H0 : μ1= μ2= μ3

Ha : At least one μi is different from the others

the F-statistic (shown in Figure 12-6) is computed as

MSTR 28:56
F � � � 19:36

MSE 1:48

From Appendix A-6, for a chosen significance level α of 0.05, F0.05,2,9= 4.26. Since the

calculated value of F exceeds 4.26, we reject the null hypothesis and conclude that there is a

difference in themean bonding strengths of the adhesives. Note also fromFigure 12-6 that the

p-value associated with the calculated F-value is 0.001< 0.05. So we reject the null

hypothesis.

(b) Find a 90% confidence interval for the mean bonding strength of adhesive 1.

Solution A90%confidence interval for themean bonding strength of adhesive 1 is given

by

L�μ1� � y1: � t0:05;9
MSE

4

� 11:000 � 1:833
1:48

4

� 11:000 � 1:115 � �9:885; 12:115� 

Note that Figure 12-6 also shows 95% confidence intervals for the treatment means.

(c) Find a 95% confidence interval for the difference in the mean bonding

strengths of adhesives 1 and 3. Is there a difference in the means of these two

adhesives?
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Solution A 95% confidence interval for the difference in the mean bonding strengths of

adhesives 1 and 3 is given by

2MSE
L�μ1 � μ3� � �y1 � y3� � t0:025;9

4

�2��1:48� � �11:00 � 8:725� � 2:262
4

� 2:275 � 1:945 � �0:33; 4:22� 
Since the confidence interval does not include the value of zero, we conclude that there

is a difference in the means of adhesives 1 and 3 at the 5% level of significance.

Randomized Block Design

Blocking involves grouping experimental units that are exposed to similar sources of

variation. The idea is to eliminate the effects of extraneous factors within a block such that

the impact of the individual treatments, which is our main concern, can be identified.

Experimental units within a block should therefore be as homogeneous as possible.

To illustrate, let’s consider a situation in which we want to investigate the differences

between the raw materials from vendors A, B, and C. Processing will take place in either of

two machines, Ml or M2. The treatments of interest are the vendors. Extraneous factors are

those due to differences caused byMl andM2. If we randomly assign rawmaterials from the

vendors to themachines, wewill not be able to claim that any differences in the output are due

to the vendors, because the variability of the machines will not have been isolated.

Now let’s use the concept of blocking in the experimental design. The blocking variable is

the type ofmachine (M1 orM2). For a givenmachine, sayM1 (which represents a block), the

rawmaterials fromvendorsA,B, andCare randomlyused.Differences in the output from this

block now represent the impact of the treatments, not the variability of the machines. This

scheme would be repeated for the remaining block, machine M2. Differences in the outputs

between the two blocks will measure the impact of the blocking variable (that is, whether

blocking is effective).

The criterion on which we base blocking is identified before we conduct the experiment.

Successful blocking minimizes the variation among the experimental units within a block

while maximizing variation between blocks. An advantage of blocking is that differences

between blocks can be eliminated from the experimental error, thereby increasing the

precision of the experiment. However, blocking is effective only if the variability within

blocks is smaller than the variability over the entire set. Precision usually decreases as the

block size (the number of experimental units per block) increases.

In a randomized block design, the experimental units are first divided into blocks. Within a

block, the treatments are randomly assigned to the experimental units as in a completely

randomized design. If we have p treatments and r blocks in a completely randomized block

design, each of the p treatments is applied once in each block, resulting in a total of rp experimental

units. Thus, r blocks, each consisting of p units, are chosen such that the units within blocks are

homogeneous. Next, the p treatments are randomly assigned to the units within the blocks, with

each treatment occurring only once within each block. The blocks serve as replications for the

treatments. We assume that there is no interaction between the treatments and blocks.

Table 12-5 shows the layout for an example inwhich there are four treatments,A,B,C, and

D, and three blocks, I, II, and III (hence, p= 4 and r= 3). Within each block, the four
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TABLE 12-5 Assignment of Treatments to Units Within

Blocks in a Randomized Block Design

Block I Block II Block III

B C C

A A B

C D D

D B A

treatments are randomly applied to the experimental units. Each treatment appears only once

in eachblock, The treatments can also be assigned as for the completely randomizeddesign.A

random number table would then be used, with the scheme depicted in Table 12-1 adopted.

There are several advantages to using the randomized block design. First and foremost is

that it increases the precision by removing a source of variation (variability between blocks)

from the experimental error. The design can accommodate any number of treatments and

blocks. The statistical analysis is relatively simple and can easily accommodate the dropping

of an entire treatment or block, due to reasons such as faulty observations.Onedisadvantage is

that missing data can require complex calculations. The number of degrees of freedom for the

experimental error is not as large as that for the completely randomized design. In fact, if there

are r blocks, then there are r� l fewer degrees of freedom in the experimental error.

Furthermore, if the experimental units are homogeneous, the completely randomized design

is more efficient.

Analysis of Data Let’s define the following notation:

p : number of treatments

r : number of blocks

yij : response variable value of the ith treatment applied to the jth block, i= 1, 2, . . . p;

j= 1, 2, . . . , r
r

= sum of responses for the ith treatmentyi. : j�1 yij
yi: : yi./r = mean response of the ith treatment

y.j :
p

= sum of the responses for the jth blocki�1 yij
�y.j : y.j /p = mean response of the jth block

p r
y.. : = grand total of all observationsj�1 yiji�1
y : y../rp = grand mean of all observations

The notation, consisting of the p treatments assigned to each of the r blocks, is shown in

Table 12-6.

Computations for the sum of squares are as follows. The correction factor C is given by

eq. (12-3), the total sum of squares is given by eq. (12-4), and the treatment sum of squares is

given by eq. (12-5).

For a randomized block design, the block sum of squares is

y:2j
j�1

SSB � � C �12-12� 
p

r
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TABLE 12-6 Notation for the Randomized Block Design

Block

Treatment 1 2 . . . r Sum Mean

1 y11 y12 . . . y1r y1� y1� 
2 . . .y21 y22 y2r y2� y2� 

p y y . . . y y yp1 p2 pr p� p� 
Sum . . .y�1 y�2 y�r y�� 
Mean y�1 y�2 . . . y�r y

... 
... 

... 
... 

... 
... 

The error sum of squares is

SSE � SST � SSTR � SSB

The number of degrees of freedom for the treatments is p� 1 and for the blocks is r� 1, 1

less than the number of blocks. The number of degrees of freedom for the error is (p� 1)

× (r� 1), and the total number of degrees of freedom is rp� 1. The mean squares for the

treatments, blocks, and experimental error are found on division of the respective sum of

squares by the corresponding number of degrees of freedom.

Test for Difference Among Treatment Means Denoting the treatment means by μ1, μ2,

. . . , μp, one set of hypotheses to test would be

. . . μpH0 : μ1= μ2=

Ha : At least one μi is different from the others

This test is conducted by finding theF-statistic (the ratio of themean squares for treatment

to the mean square error), that is,

MSTR
F � 

MSE

The calculated F-statistic is compared to the critical value of F from Appendix A-6 for a

chosen significance level α, with p� 1 degrees of freedom in the numerator and

(p� 1)(r� 1) in the denominator. If the computed test statistic F > Fα, p�1,(p�1)(r�1), the
null hypothesis is rejected, and we conclude that the treatment means are not all equal at the

chosen level of significance. The ANOVA table is shown in Table 12-7.

Note that blocking is typically used as a means of error control. The variability between

blocks is removed from the experimental error. Whereas the treatments are replicated (each

treatment being used once in each block), the blocking classifications are not. Therefore, we

do not have a true measure of the experimental error for testing the difference between block

means.

Sometimes, an F-statistic given by the ratio of the mean squares for blocks to the mean

squares for error, that is,

MSB
FB � �12-13� 

MSE
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TABLE 12-7 ANOVA Table for the Randomized Block Design

Source of Variation Degrees of Freedom Sum of Squares Mean Square F-Statistic

SSTR MSTR
Treatments p� 1 SSTR MSTR � F � 

p � 1 MSE
SSB

Blocks r� 1 SSB MSB � 
r � 1

SSE
Error (p� 1)(r� 1) SSE MSE � �p � 1��r � 1� 
Total rp� 1 SST

is used to determine whether blocking has been effective in reducing the experimental error.

The computed value of FB from eq. (12-13) is compared to Fα, r�1, (p�1)(r�1) for a level of
significance α. If FB>Fα, r�1, (p�1)(r�1), we conclude that blocking has been effective;

technically, though, a true significance level cannot be assigned to the test because we

intentionally try to select the blocks to maximize the variability between them.

If FB < Fα, r�1, (p�1)(r�1), we infer that blocking has not been effective. In such a case, the
efficiency of the experiment has decreased relative to the completely randomized design,

because we lost r� 1 degrees of freedom from the error without a sufficiently compensating

reduction in the mean square error. This means that even though the sum of squares for error

(SSE) decreased due to blocking, the MSE did not decrease because the reduction in the

number of degrees of freedomwas not adequately compensated for. Note that, sincewe strive

to maximize the variability between blocks, it is not necessary to test the null hypothesis that

the block means are equal.

Interval estimates for a single treatment mean μi are obtained as before. A 100(1� α)%

confidence interval for μi is given by

�12-14�L�μi� � yi: � tα=2;�p�1��r�1� 
MSE

r

where tα/2,(p�1)(r�1) is the t-value for a right-tail area of α/2 and (p� 1)(r� 1) degrees of

freedom and is found from Appendix A-4.

Usually, it would be of interest to estimate the difference between two treatment means. A

100(1� α)% confidence interval for the difference between two treatmentmeans,μi1� μi2, is

given by

2MSE �12-15�L�μi1 � μi2� � �yi1 � yi2� � tα=2;�p�1��r�1� 
r

where tα/2,(p�1)(r�1) is the t-value for a right-tail area of α/2 and (p� 1)(r� 1) degrees of

freedom.

Example 12-2 A construction company intends to test the efficiency of three different

insulators. Since the area where the company builds has varying temperature differentials,

the following experimental procedure has been planned. The company has divided the area

into four geographical regions based on climatic differences. Within each geographical

region, it randomly uses each of the three insulators and records the energy loss as an index.

Smaller values of the index correspond to lower losses. Table 12-8 shows the energy loss

data.
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TABLE 12-8 Energy Loss Data for Example 12-2

Geographical Region

Insulator I II III IV Sum Mean

1 19.2 12.8 16.3 12.5 60.8 15.2

2 11.7 6.4 7.3 6.2 31.6 7.9

3 6.7 2.9 4.1 2.8 16.5 4.125

Sum 37.6 22.1 27.7 21.5 108.9

Mean 12.533 7.367 9.233 7.167 9.075

(a) Is there a difference in the mean energy loss for the three insulators? Test at a

significance level of 10%.

Solution Here, the treatments are the insulators, and the blocks are the geographical

regions. Using the raw data in Table 12-8, we calculate the sample treatment sums andmeans

and the block sums andmeans. The number of treatments p is 3, and the number of blocks r is

4. These are also shown in Table 12-8.

We use Minitab to obtain the analysis-of-variance results by selecting Stat>ANOVA

>Balanced ANOVA. Data are first entered by listing the value of the response variable

(energy loss index) in one column, the corresponding treatment (type of insulator) in a second

column, and the blocking variable (geographical region) in a third column. Themodel used is

to predict the response variable using the main effects of the treatments and blocks. The

resulting ANOVA table is shown in Figure 12-7.

To test whether there is a difference in the mean energy loss index between the three

insulators, the F-statistic is calculated as the ratio of the mean squares for insulators to the

mean squares for error.

From Figure 12-7, note that the value of theF-statistic is 170.90, and the p-value [which is

P(F> 170.90)] is 0.000. Since this p-value< 0.10, the chosen level of significance, we reject

the null hypothesis and conclude that at least one of the mean energy loss indices, using the

three insulators, is different from the others.

(b) Find a 99% confidence interval for the mean energy loss index for insulator 3.

Solution A 99% confidence interval for the mean energy loss index for insulator 3 is

L�μ3� � y3: � t0:005;6
MSE

4

� 4:125 � �3:707� 0:742

4
� 4:125 � 1:597 � �2:528; 5:722� 

FIGURE 12-7 Minitab’s ANOVA Table for Energy Loss Data.
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(c) Find a 90% confidence interval for the difference in the mean energy loss index of

insulators 2 and 3. Is there a difference in these two means?

Solution A 90% confidence interval for the difference in the mean energy loss index of

insulators 2 and 3 is

2MSE
L�μ2 � μ3� � �y2: � y3:� � t0:05;6

4

�2��0:742� � �7:9 � 4:125� � 1:943
4

� 3:775 � 1:183 � �2:592; 4:958� 

Since the confidence interval does not include the value of zero, we conclude that there is a

difference in themean energy loss index of insulators 2 and 3 at the 10% level of significance.

(d) Which insulator should the company choose?

Solution Since smaller values of the energy loss index correspond to low losses, insulator

3wouldbe chosen, as it has the lowestmean (4.125). Part (c) showed that themean energy loss

of insulator 3 is different from that of insulator 2. Since the mean energy loss of insulator 1 is

even higher than that of insulator 2, the mean energy loss of insulator 3 will be significantly

different from that of insulator 1.

Latin Square Design

In the randomized block design, we control one source of variation. Experimental units are

grouped into blocks consisting of homogeneous units based on a criterion that reduces the

variability of the experimental error. Variability between blocks is thus separated from

the experimental error, and each treatment appears an equal number of times in each block.

The Latin square design controls two sources of variation; in effect, it blocks in two variables.

The number of groups, or blocks, for each of the two variables is equal, which in turn is equal

to the number of treatments. Suppose we denote one of the blocking variables as the row

variable and the other as the column variable. The treatments are assigned so that each

treatment appears once and only once in each row and column. The number of experimental

units required is the square of the number of treatments.

Let’s consider an example in which blocking in two variables is appropriate. We will

assume that the productivity of bank tellers varies from one person to another and that

productivity changes as a function of the day of the week. Bank management is interested

in determining whether the type of break, as characterized by the frequency and duration,

affects productivity. They decide to test five types of breaks (A, B, C, D, and E). Type A

represents short breaks (say, 5min) that occur once each hour. Type B represents longer

breaks (10min) that occur once every two hours, and so forth. In the Latin square design,

five tellers (I, II, III, IV, and V) are randomly selected and comprise the first blocking

variable (the row classification). The five days of the week (1, 2, 3, 4, and 5) comprise the

column classification. The treatments are the types of break (A, B, C, D, and E).

Treatments are always denoted by Latin letters, hence the name Latin square design.

The design is square because the number of row and column classifications is equal
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TABLE 12-9 Latin Square Design for Five Treatments

Day of Week

Teller 1 2 3 4 5

I A B C D E

II B C D E A

III C D E A B

IV D E A B C

V E A B C D

(in this case, five), which is also equal to the number of treatments. Each break type is

assigned to each teller and to each day of the week only once.

One particular assignment of break type (treatments) is shown inTable 12-9. For instance,

typeA is assigned to teller I for thefirst dayof theweek (day 1). Similarly, typeB is assigned to

teller I for the second day of theweek (day 2), and so on. Note that each treatment occurs only

once in each rowand in each column. Forfive treatments, 25 experimental units are needed for

the Latin square design. The assignment strategy shown in Table 12-9 is one of several that

could satisfy the preceding criteria.

The Latin square design is an example of an incomplete block design, in which not all

treatments are necessarily assigned to each block. In the example just considered, we actually

have 25 blocks,which represent the different combinations of tellers and day of theweek (that

is, block 1: teller I, day 1; block 2: teller I, day 2; and so on). For a randomized block design, in

which each treatment appears once in each block, we would need 125 experimental units. In

the Latin square designwe can get bywith only 25 experimental units. In general, ifwe have p

treatments, we need p2 experimental units; each of the two blocking variables should have p

classes.

The main advantage of the Latin square design is that it allows the use of two blocking

variables. This usually results in greater reductions in the variability of experimental error

than can be obtained by using either of the two blocking variables individually.

There are some disadvantages to the Latin square design, however. First, since the number

of classes of each blocking variablemust equal the number of treatments, very few degrees of

freedom are left for the experimental error if the number of treatments is small. When the

number of treatments is large, the number of degrees of freedom for the experimental error

may be larger than necessary. Since the number of experimental units is equal to the square of

the number of treatments, the number of treatments has to be limited (usually to 10 or less) for

practical studies. Also, the model is restrictive because it assumes that there is no interaction

between either the blocking variable and the treatment or between the blocking variables

themselves. Another restriction is that the number of classes for the two blocking variables

must be the same.

Randomization of the Latin Square Design For a given number of treatments, various

Latin squares are possible. For example, for three treatments denoted by A, B, and C

(p= 3), four possible Latin squares are shown in Table 12-10. As p increases, the number of

possible arrangements increases dramatically. The idea behind randomization is to select

one out of all possible Latin squares for a given number of treatments in such a way that

each square has an equal chance of being selected.
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TABLE 12-10 Four Possible Latin Square Designs for Three Treatments

Blocking variable I Blocking variable I

A B C A C B

Blocking variable II B C A Blocking variable II B A C

C A B C B A

Blocking variable I Blocking variable I

B A C C B A

Blocking variable II C B A Blocking variable II A C B

A C B B A C

Analysis of Data The analysis of variance is similar to the previously described

procedures. The following notation is used:

p : number of treatments

yij(k) : response variable value of the experimental unit in the ith row and jth column

subjected to the kth treatment

yi. :
p

sum of the responses in the ith rowj�1 yij =
y.j :

p
sum of the responses in the jth columni�1 yij =

p
y.. :

p
grand total of all observationsj�1 yij =

Tk : sum of the responses for the kth treatment

yk : Tk/p sample mean response for the kth treatment

i�1

The notation for the Latin square design is shown in Table 12-11. The sum of squares is

calculated as follows.

A correction factor C is computed as

y::2
C � �12-16� 

2p

The total sum of squares is

2SST � yij � C �12-17� 

TABLE 12-11 Notation for the Latin Square Design

p

i�1

p

j�1

Column

Row 1 2 . . . p Sum

... 
... 

... 
... 

... 
... 

1 y11 y11 . . . y1p y1� 
2 y21 y22 . . . y2p y2� 

p yp1 yp2 . . . ypp yp� 
Sum y�1 y�2 . . . y�p y�� 

Treatment

1 2 . . . p

Sum T1 T2 . . . Tp
Mean y1 y2 . . . yp
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The sum of squares for the row blocking variable is

p
2yi:

i�1
SSR � � C �12-18� 

p

The sum of squares for the column blocking variable is

2y:j
j�1

SSC � � C �12-19� 
p

The sum of squares for the treatments is

T2
k

k�1
SSTR � � C �12-20� 

p

Finally, the error sum of squares is

SSE � SST � SSR � SSC � SSTR �12-21� 

The number of degrees of freedom for the row blocking variable as well as for the column

blocking variable is p� 1. The number of degrees of freedom for the treatments is p� 1. The

total number of degrees of freedom is p2� 1. The number of degrees of freedom for the

experimental error is found as follows:

2Error degrees of freedom � �p � 1� � �p � 1� � �p � 1� � �p � 1� 
� �p � 1��p � 2� 

Next, the mean squares are found by dividing the sum of squares by the appropriate

number of degrees of freedom. A tabular format of the ANOVA calculations is shown in

Table 12-12.

TABLE 12-12 ANOVA Table for the Latin Square Design

p

p

Source of Degrees of Sum of

Variation Freedom Squares Mean Square F-Statistic

Rows (blocking

variable I)

p� 1 SSR
MSR � SSR

p � 1

Columns (blocking

variable II)

Treatments

p� 1

p� 1

SSC

SSTR

MSC � SSC
p � 1

MSTR � SSTR
p � 1

F � MSTR

MSE

SSE
Error (p� 1)(p� 2) SSE MSE � �p � 1��p � 2� 
Total p2� 1 SST
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Test for Difference Among Treatment Means If the treatment means are denoted by μ1,

μ2, . . . , μp, one set of hypotheses to test is

. . .=H0 : μ1= μ2= μp

Ha : At least one μi is different from the others

The test is conducted by calculating the F-statistic as the ratio of the mean squares for

treatments to the mean square for error, that is,

MSTR
F � 

MSE

If the calculated F-statistic >Fα,(p�1),(p�1)(p�2), which is found in Appendix A-6, for a

right-tail area of α with p� 1 degrees of freedom in the numerator and (p� 1)(p� 2) in the

denominator, the null hypothesis is rejected. In that case, we conclude that at least one of the

treatment means is different from the others at a chosen level of significance α.

Note that treatments are replicated in the Latin square (as in the randomized block

design), but the row and column classifications of the two blocking variables are not.

Thus, an F-statistic for determining the effectiveness of the row blocking variable

calculated as

MSR
FR � 

MSE

is used in an approximate significance test to determine whether the row classification is

effective in reducing the experimental error. Similarly, for testing the effectiveness of the

column blocking variable, an F-statistic calculated as

MSC
FC � 

MSE

is used in an approximate significance test for the column blocking variable. Each of these

two statistics can be compared with Fα,p�1,(p�1)(p�2) to make such inferences.

A 100(1� α)% confidence interval for a single treatment mean μk is given by

L�μk� � yk � tα=2;�p�1��p�2� 
MSE

p
�12-22� 

where tα/2,(p�1)(p�2) is the t-value for a right-tail area of α/2 and (p� 1)(p� 2) degrees of

freedom and is found from Appendix A-4.

Aswith the previous designs, it is usually of interest to estimate the difference between two

treatmentmeans.A100(1� α)%confidence interval for the difference between two treatment

means, μk1� μk2, is given by

2MSE �12-23�L�μk1 � μk2� � �yk1 � yk2� � tα=2;�p�1��p�2� 
p

where tα/2,(p�1)(p�2) is the t-value for a right-tail area of α/2 and (p� 1)(p� 2) degrees of

freedom.
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TABLE 12-13 Pricing Policy Data

Sales

Volume
Geographical Location

Class Northeast East Midwest Southeast Sum

1 A 19.2 B 15.4 C 6.6 D 10.5 51.7

2 B 13.2 C 5.3 D 8.2 A 16.8 43.5

3 C 4.2 D 9.4 A 14.6 B 8.5 36.7

4 D 8.4 A 13.3 B 7.6 C 6.2 35.5

45.0 43.4 37.0 42.0 167.4

From a practical point of view, the number of treatments in a randomized Latin square

design that can be analyzed is somewhat restricted. Note that the number of error degrees of

freedom is given by (p� 1)(p� 2), where p is the number of treatments. If p is very small,

the number of error degrees of freedom is small, which will cause the mean square error to

be large. The number of treatments cannot be less than 3, because if p= 2, the number of

error degrees of freedom is zero. As p becomes large, the number of experimental units

required (p2) becomes too large and may not be feasible from a cost and operational

standpoint.

Example 12-3 A retail company is interested in testing the impact of four different pricing

policies (A, B, C, and D) on sales. The company suspects that variation in sales could be

affected by factors other than the pricing policy, such as store location and sales volume. The

company has four location classifications: Northeast, East, Midwest, and Southeast. It has

four classes of sales volume: 1, 2, 3, and4,with class 1 representing the largest volume and the

others representing decreasing volume in succession. Each pricing policy is applied in each

geographic region and each sales volume class exactly once. Table 12-13 shows the sales (in

thousands of dollars) for a three-month period, with the pricing policy shown appropriately.

(a) Is there a difference in the pricing policies in terms of mean sales? Test at a level of

significance of 5%.

Solution Table 12-13 also shows the row and column sums for the blocking variables

sales volume class andgeographical location. The sumof squares for each of the twoblocking

variables as well as for the treatments (the pricing policies) are found as follows. The

correction factor is

2y:: �167:40�2
C � � � 1751:4225

2 42p

From eq. (12-17), the total sum of squares is

2SST � yij � C
i�1 j�1

� 2046:48 � 1751:4225 � 295:0575

p p
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TABLE 12-14 Sums and Means of Sales for Pricing Policy Data

Pricing Policy

A B C D

Sum 63.9 44.7 22.3 36.5

Mean 15.975 11.175 5.575 9.125

p

The sum of squares of the row blocking variable (sales volume class) is found from

eq. (12-18) as

2yi:
i�1

SSR � � C
p

2 2 2 2�51:7� � �43:5� � �36:7� � �35:5�� � 1751:4225 � 41:6475
4

The sumof squares for the columnblocking variable (geographical location) is found from

eq. (12-19) as

p

2y:j
j�1

SSC � � C
p

2 2 2 2�45:0� � �43:4� � �37:0� � �42:0�� � 1751:4225 � 8:9675
4

Table 12-14 shows the sums of sales and their means for the pricing policies. The sum of

squares due to the pricing policies is found from eq. (12-20) as

p

T2
k

k�1
SSTR � � C

p

2 2 2 2�63:9� � �44:7� � �22:3� � �36:5�� � 1751:4225 � 226:2875
4

The error sum of squares is

SSE � SST � SSR � SSC � SSTR

� 295:0575 � 41:6475 � 8:9675 � 226:2875 � 18:155

TheANOVA table is shown in Table 12-15. To test the null hypothesis that themean sales

for the four pricing policies (A,B,C, andD) are equal against the alternative hypothesis that at

least one mean is different from the others, the F-statistic is

MSTR 75:4292
F � � � 24:9287

MSE 3:0258

For a level of significance α of 5%, the value of F from Appendix A-6 is F0.05,3,6= 4.76.

Since the calculated value of F= 24.9287> 4.76, we reject the null hypothesis and conclude

that at least one mean sales value differs from the others at this level of significance.
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TABLE 12-15 ANOVA Table for Pricing Policy Data

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square F-Statistic

Sales volume class (rows)

Geographic location (columns)

Pricing policy (treatments)

Error

3

3

3

6

41.6475

8.9675

226.2875

18.1550

13.8825

2.9892

75.4292

3.0258

24.9287

15 295.0575

(b) Find a 90% confidence interval for the mean sales using pricing policy A.

Solution	 A 90% confidence interval for policy A’s mean sales is

MSE
L�μA� � yA � t0:05;6

4

3:0258� 15:975 � 1:943 � �14:285; 17:665� 
4

(c) Find a 95% confidence interval for the difference in mean sales for pricing policies A

and C. Is there a difference between these two policies?

Solution A95% confidence interval for the difference in policies A and C’s mean sales

is

2MSE
L�μA � μC� � �yA � yC� � t0:025;6

4

�2��3:0258� � �15:975 � 5:575� � �2:447� � �7:390; 13:410� 
4

Since the confidence interval does not include zero, at the 5% level of significancewe con

clude that the mean sales of pricing policies A and C differ.

(d) Which pricing policy should be used?

Solution Wehave concluded that there is a difference between themean sales of the four

pricing policies. From Table 12-14 we find that pricing policy A yields the highest mean

sales of 15.975. When we check if mean sales of policies A and B (the two highest values)

differ at the 5% level of significance, we find

yA � yB � 15:975 � 11:175 � 4:8

Using the calculations from part (c), a 95% confidence interval for μA� μB is

4:8 � 3:010 � �1:790; 7:810� 

Since the confidence interval does not include zero, we conclude that the mean sales for

policy A differs significantly from policy B at the 5% level of significance. Hence, if our
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objective is to maximize sales, pricing policy A is preferable. If there were no significant

differences between policies A and B, we would then look at the costs of implementing

them.

Let’s investigate the effectiveness of blocking in two variables: sales volume and

geographic location. For the row classification of sales volume, the calculated F-statistic

(from Table 12-15) is

MSR 13:8825
FR � � � 4:588

MSE 3:0258

Since the table value of F at the 5% level of significance is F0.05,3,6= 4.76, which exceeds

the calculated value ofFR,we cannot conclude that blocking through the classificationof sales

volume has been effective at this significance level. Similarly, to test the effectiveness of the

column blocking variable, geographic location, we calculate the F-statistic as follows:

MSC 2:9892
FC � � � 0:988

MSE 3:0258

The value ofFC= 0.988<F0.05,3,6= 4.76. So,we cannot conclude that blocking bymeans

of geographic location has been effective.

For future experiments, either the completely randomized design or the randomized block

design with sales volume class as the blocking variable could be investigated. If the Latin

square design were to be run, we should select some alternative blocking variables, the

inclusion of which would effectively reduce the error mean squares.

12-4 FACTORIAL EXPERIMENTS

When there are two or more factors, each at two or more levels, a treatment is defined as a

combinationof the levels of each factor. In a factorial experiment, all possible combinations of

the factors (i.e., all treatments) are represented for each complete replication of the experi

ment. The number of treatments is equal to the product of the number of factor levels and can

therefore become large when either the factors or the levels are numerous.

Let’s consider the assembly of television sets. Our response variable is the assembly time

and the factors are the experience of operators (six levels), the training program used (four

levels), and the type of lighting used in the factory (three levels). A factorial experiment with

these three factors would require 72 (6× 4× 3) treatments. Thus, a single replication of the

treatments, with each treatment used only once, would require 72 trials, which could be

cumbersome. Moreover, treatments usually need to be replicated because the purpose of

factorial experiments is to ensure that any possible interaction effects between factors can be

estimated. This further increases the total number of required trials. Note that the factorial set

of treatments can be used with any of the previously discussed design types (the completely

randomized design, randomized block design, or Latin square design).

Factorial experiments offer the ability to estimate the interaction effects between factors,

which is not possiblewith the one-variable-at-a-time approach. In the presence of twoormore

factors, knowledge of interaction effects is of prime importance to the experimenter. When

interaction between two factors is significant, the difference in the response variable to

changes in the levels of one factor is not the same at all levels of the other factor. If the effect of

both factors on the responsevariable is tobedetermined, interaction effects cannot be ignored.

Interaction effects, if present, mask the main effects of the factors, so testing for the main
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effects if the interaction effects are significant is inappropriate. Only when the factors are

independent and interaction is not present are themain effects of the factors of interest. In such

cases, fewer trials are required to estimate the main effects to the same degree of precision.

Usually, single-factor experiments requiremore trials to achieve the same degree of precision

as factorial experiments.

Factorial experiments play an important role in exploratory studies to determine which

factors are important.Additionally, by conducting experiments for a factor at several levels of

other factors, the inferences from a factorial experiment are valid over a wide range of

conditions. As noted earlier, a disadvantage of factorial experiments is the exponential

increase in experiment size as the number of factors and/or their number of levels increase.

The cost to conduct the experiments can become prohibitive. Another drawback is the

feasibility of finding blocks large enough to complete a full replication of treatments,

assuming that each treatment is used once in each block. Also, higher-order interactions

need interpreting, and this can be complex.

We discuss the simplest type of factorial experiment, involving two factors, with a certain

number of levels, for completely randomized and randomized block designs.

Two-Factor Factorial Experiment Using a Completely Randomized Design

Let the two factors be denoted byAandB,with factorAhavinga levels andBhaving b levels.

Theab treatments are randomly assigned to the experimental units. Suppose the experiment is

replicated n times, yielding a total of abn observations. This model is described by

yijk � μ � αi � βj � �αβ�ij � εijk �12-24� 
i � 1; 2; . . . ; a; j � 1; 2; . . . ; b; k � 1; 2; . . . ; n

where yijk represents the response for the ith level of factor A, the jth level of factor B, and

the kth replication; μ is the overall mean effect; αi is the effect of the ith level of factor A; βj
is the effect of the jth level of factor B; (αβ)ij is the effect of the interaction between factors

A and B; and εijk is the random error component (assumed to be normally distributed with

mean zero and constant variance σ2). The following notation is used:

b n
= sum of the responses for the ith level of factor Ayi�� : k�1 yijk

= average response for the ith level of factor A
j�1

yi�� : yi�� =�bn�

a n

= sum of the responses for the jth level of factor By�j� : k�1 yijk
y�j� : y�j�	 =an= average response for the jth level of factor B

n

i�1

sum of the responses for the ith level of factor A and jth level ofyij� : k�1 yijk =
factor B

: = average response for the ith level of factor A and jth level of factor Byij: yij� =n
a b n

y. . . :  = grand total of all observationsk�1 yijki�1 j�1
y. . . :  y . . . =abn= grand mean of all observations

The notation is shown in Table 12-16.

Computations of the sumof squares needed for the analysis of variance are as follows. The

correction factor is calculated as

2y...C �	 �12-25� 
abn
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TABLE 12-16 Notation for Factorial Experiments Using a Completely Randomized Design

Factor B

Factor A 1 2 . . . b Sum Average

1 y111, y112, . . . , y11n y121, y122, . . . ,y12n . . . y1b1, y1b2, . . . , y1bn y1�� y1�� 
Sum= Sum= Sum=y11� y12� y1b� 

2 y211, y212, . . . , y21n y221, y222, . . . , y22n . . . y2b1, y2b2, . . . , y2bn y2�� y2�� 
Sum= Sum= . . . Sum=y21� y22�	 y2b� 

a	 ya11, ya12, . . . , ya1n ya21, ya22, . . . , ya2n . . . yab1, yab2, . . . , yabn yya�� a�� 
Sum= ya1� Sum= ya2� . . . Sum= yab� 

Sum y�1� y�2� . . . y�b� y. . .  

Average y�1� y�2� . . . y�b� y. . .  

... 
... 

... 
... 

... 
... 

... 

The total sum of squares is given by

2SST � yijk � C	 �12-26� 

The sum of squares for the main effects of factor A is found from

2yi::
i�1

SSA � � C	 �12-27� 
bn

The sum of squares for the main effects of factor B is found from

b
2y�j� 

j�1
SSB � � C	 �12-28� 

an

The sum of squares for the subtotals between the cell totals is given by

2yij� 
i�1 j�1

SSsubtotal � � C	 �12-29� 

a

i�1

b

j�1

n

k�1

a

a b

n

The sum of squares due to the interaction between factors A and B is given by

SSAB � SSsubtotal � SSA � SSB �12-30� 
Finally, the error sum of squares is

SSE � SST � SSsubtotal �12-31� 
There are a� 1 degrees of freedom for factor A, 1 less than number of levels of A.

Similarly, there areb� 1degrees of freedomfor factorB, 1 less than the number of levels ofB.

Thenumber of degrees of freedomfor the interactionbetween factorsAandB is the product of

the number of degrees of freedom for each—that is, (a� 1)(b� 1). Since the total number of

degrees of freedom is abn� l, by subtraction, the number of degrees of freedom for the

experimental error is ab(n� 1). The mean squares for each category are found by dividing

the sum of squares by the corresponding number of degrees of freedom. To test for the

significance of the factors and the interaction, the F-statistic is calculated. Table 12-17

shows the ANOVA table.
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TABLE 12-17 ANOVATable for the Two-Factor Factorial Experiment Using aCompletely

Randomized Design

Source of

Variation

Degrees of

Freedom

Sum of

Squares Mean Square F-statisic

Factor A a� 1 SSA MSA � SSA
a�1 FA � MSA

MSE

Factor B b� 1 SSB MSB � SSB
b�1 FB � MSB

MSE

Interaction

between A and B

Error

Total

(a� 1)(b� 1)

ab(n� 1)

abn� 1

SSAB

SSE

SST

MSAB � SSAB
�a�1��b�1� 

MSE � SSE
ab�n�1� 

FAB � MSAB
MSE

Tests for Significance of Factors In a factorial experiment, the first set of hypotheses to

be tested usually deals with the interaction between factors. The hypotheses of interest are

thus

H0 : (αβ)ij= 0 for all i, j; i= 1, 2, . . . , a; j= 1, 2, . . . , b

Ha : At least one (αβ)ij is different from zero

The test statistic is the F-statistic, which is shown in Table 12-17 and is calculated as

MSAB
FAB � �12-32� 

MSE

which is the ratio of the mean square due to interaction to the mean square error. If the

calculated value ofFAB>Fα,(a�1)(b�1),ab(n�1), the null hypothesis is rejected, andweconclude
that the interactions between factors are significant at the level α.

The presence of significant interaction effects masks the main effects of the factors, in

which case the main effects are usually not tested. When interaction exists, the value of the

response variable due to changes in factor A depends on the level of factor B. In such a

situation, the mean for a level of factor A, averaged over all levels of factor B, does not have

any practical significance. What is of interest under these circumstances is the treatment

means along with their standard deviations. A plot of the treatment means may identify the

preferable levels of the factors.

The standard deviation of the treatment mean, which is the mean of any combination of

factors A and B, is given by

MSE �12-33�sy�AB� � 
n

Thus, a100(1� α)%confidence interval for a treatmentmeanwhen factorA is at level i and

factor B is at level j is given by

MSE �12-34�yij� � tα=2;ab�n�1� 
n

where tα/2,ab(n�1) is the t-value found from Appendix A-4 for a right-tail area of α/2 and

ab(n� 1) degrees of freedom. For inferences on the difference d of two treatment means, the
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standard deviation is

2MSE �12-35�sd�AB� � 
n

Let’s consider the treatments for which factor A is at level i and factor B is at level j, which

yields a sample average of yij:. The other treatment has factor A at level i ´ and factor B at level

j ´ , the sample average being yi ´ j ´�. A 100(1� α)% confidence interval for the difference

between the two treatment means is given by

2MSE �12-36��yij� � yi ´ j ´ �� �  tα=2;ab�n�1� 
n

When the interaction effects are not significant,we can test for the effects of the two factors.

To testwhether factorA is significant, theF-statistic, as shown inTable 12-17, is calculated as

the ratio of the mean squares due to factor A to the mean squares for error, that is,

MSA
FA � �12-37� 

MSE

This calculated value ofFA is then compared toFα,a�1,ab(n�1), the critical value ofF found

from Appendix A-6 for a right-tail area of α, (a� 1) numerator degrees of freedom and

ab(n� 1) denominator degrees of freedom. IfFA>Fα,a�1,ab(n�1), we conclude that the factor

means at the different levels of A are not all equal.

A 100(1� α)% confidence interval for the mean of factor A when at level i is given by

MSE �12-38�yi�� � tα=2;ab�n�1� 
bn

Also, a 100(1� α)% confidence interval for the difference between the factorAmeans that
´ are at levels i and i is found from

2MSE �12-39��yi�� � yi ´ ��� �  tα=2;ab�n�1� 
bn

The inferences described for factor A can be applied to factor B as well. To determine the

significance of factor B—as to whether the means at all levels are equal—the test statistic is

MSB
FB � �12-40� 

MSE

If FB > Fα,b�1,ab(n�1), the means of factor B are not all equal for the different levels.

A 100(1� α)% confidence interval for the mean of factor B when at level j is given by

MSE �12-41�y�j� � tα=2;ab�n�1� 
an

Similarly, a 100(1� α)% confidence interval for the difference between two factor B
´ means that are at levels j and j is determined from

2MSE �12-42��y�j� � y�j ´�� �  tα=2;ab�n�1� 
an
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Two-Factor Factorial Experiment Using a Randomized Block Design

The randomized block design has been illustrated for the one-factor case. The same principles

apply to the two-factor case. A unique feature, however, is the potential interaction between

the two factors.

Suppose that we have two factors, A andB; factor A has a levels, and factor B has b levels.

Let the number of blocks be r, with each block containing ab units. The ab treatments are

randomly assigned to theabunitswithin eachblock. Theunitswithin each block are chosen to

be homogeneouswith respect to the blocking variable. For instance, wewant to determine the

impact of two factors, temperature and pressure, on the viscosity of a compound. The possible

levels of temperature are 75°, 150°, 200° and 250°C, and the levels of pressure are 50,

75,100,125, and 150 kg/cm2. Because the batches of incoming material vary, the batch is

selected as the blocking variable, and we select 10 batches. Within each batch, we randomly

apply the 20 treatments to selected units. Factor A denotes temperature and factor B denotes

pressure, so we have a= 4, b= 5, r= 10.

The model for the two-factor factorial experiment using a randomized block design is

yijk � μ � αi � βj � ρk � �αβ�ij � εijk �12-43� 
i � 1; 2; . . . ; a; j � 1; 2; . . . ; b; k � 1; 2; . . . ; r

where yijk represents the response for the ith level of factor A, the jth level of factor B, and the

kth block; μ is the overall mean effect; αi is the effect of the ith level of factor A; βj is the effect

of the jth level of factor B; and (αβ)ij is the interaction effect between factors A and B. The

quantity ρk represents the effect of block k, and εijk represents the random error component,

assumed to be distributed normally with mean zero and constant variance σ2. We use the

following notation:

b r
sum of the responses for the ith level of factor Ayi�� : k�1 yijk =

yi�� =�br�= average response for the ith level of factor A
j�1

yi�� :
 
a r

= sum of the responses for the jth level of factor By�j� : k�1 yijk
y�j� : y�j�	 =�ar�= average response of the jth level of factor B

r

i�1

sum of the responses for the treatment if factor A is at the ith level andyij� : k�1 yijk =
factor B is at the jth level over the blocks

average response for the treatment consisting of the ith level of factor Ayij� :	 yij� =r =
and jth level of factor B over the blocks

a b
= sum of the responses for the kth blocky��k : j�1 yijki�1

a b r
y. . . :  = grand total of all observationsk�1 yijki�1 j�1

The computations for the sumof squares are similar to those for the one-factor case, except

that we have an additional factor and that factor interactions need to be considered. The

correction factor is

2y...C �	 �12-44� 
abr

The total sum of squares is

a b r
2SST � yijk � C �12-45� 

i�1 j�1 k�1



r
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a b

The sum of squares due to the blocks is

2y��k
k�1

SSBL � � C �12-46� 
ab

The sum of squares for the main effects of factor A is

a
2yi�� 

i�1
SSA � � C �12-47� 

br

The sum of squares for the main effects of factor B is

b
2y�j� 

j�1
SSB � � C �12-48� 

ar

The sum of squares for the interaction between factors A and B is given by

2yij� 
i�1 j�1

SSAB � � C � SSA � SSB �12-49� 
r

Finally, the error sum of squares is

SSE � SST � SSBL � SSA � SSB � SSAB �12-50� 
The number of degrees of freedom is a� 1 for factor A, b� 1 for factor B, r� 1 for the

blocks, and (a� 1)(b� 1) for the interaction between factors A and B. Since the total number

of degrees of freedom is abr� 1,1 less than the total number of observations, the number of

error degrees of freedom upon subtraction is (ab� l)(r� 1). The complete ANOVA table is

shown in Table 12-18.

Tests for Significance of Factors As previously mentioned for factorial experiments, the

significance of interaction effects between the factors is usually tested first. The test statistic,

as shown in Table 12-18, is the F-statistic calculated as the ratio of the mean square due to

TABLE 12-18 ANOVA Table for the Two-Factor Factorial Experiment Using a

Randomized Block Design

Degrees of Sum of

Source of Variation Freedom Squares Mean Sqaure F-Statistic

Factor A a� 1 SSA MSA � SSA
a � 1

FA � MSA

MSE

Factor B b� 1 SSB MSB � SSB
b � 1

FB � MSB

MSE

Interaction between

A and B

Blocks

(a� 1)(b� 1)

r� 1

SSAB

SSBL

MSAB � SSAB

�a � 1��b � 1� 
MSBL � SSBL

r � 1

FAB � MSAB

MSE

FBL � MSBL

MSE

Error

Total

(ab� 1)(r� 1)

abr� 1

SSE

SST

MSE � SSE

�ab � 1��r � 1� 
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interaction to the mean square error, that is,

MSAB
FAB � 

MSE

IfFAB > Fα, (a�1)(b�1), (ab�1)(r�1),which is the table value found fromAppendixA-6 for a

level of significance α and (a� l)(b� 1) degrees of freedom in the numerator and

(ab� 1)(r� 1) in the denominator, we conclude that the interaction effects between factors

A and B are significant. Since the individual factor mean effects are not important to test in

the presence of interaction, a 100(1� α)% confidence interval for the treatment mean is

found from

MSE
yij� � tα=2;�ab�1��r�1� �12-51� 

r

where tα/2, (ab�1)(r�1) is the t-value found from Appendix A-4 for a right-tail area of α/2 and

(ab� l)(r� 1) degrees of freedom.

Inferences about the difference between two treatmentmeans through confidence intervals

with a level of confidence of (1� α) may be found as follows:

2MSE �12-52��yij� � yi ´ j ´ �� �  tα=2;�ab�1��r�1� 
r

When the interaction effects are not significant, tests for the individual factormeans can be

conducted. The significance of the means of factor A is tested by calculating the F-statistic,

shown in Table 12-18:

MSA
FA � 

MSE

At a level of significance α, if FA > Fα,(a�1),(ab�1)(r�1), we conclude that the means of

factor A are not all equal at the different levels.

In making an inference about an individual mean for a certain level of factor A, a

100(1� α)% confidence interval is given by

MSE �12-53�yi�� � tα=2;�ab�1��r�1� 
br

Similarly, a 100(1� α)%confidence interval for the difference between the factorAmeans
´ at levels i and i is found from

2MSE �12-54��yi�� � yi ´ ��� �  tα=2;�ab�1��r�1� 
br

The inference-making procedure described for factor A can be applied in a similarmanner

to factorB. First, to determine the significance of factor B concerningwhether themeans at all

levels are equal, the test statistic (as shown in Table 12-18) is

MSB
FB � 

MSE

If FB > Fα,b–1,(ab–1)(r–1), we conclude that the factor Bmeans are not all equal at a level of

significance α. Aswith factor A, a 100(1�α)% confidence interval for themean of factor B at
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level j is given by

MSE �12-55�y:j: � tα=2; �ab�1��r�1� 
ar

A100(1�α)%confidence interval for the difference between two factorBmeans that are at
´ levels j and j is found from

2MSE �12-56��y:j: � y:j ´ :� �  tα=2;�ab�1��r�1� 
ar

Example 12-4 In a study on the effectiveness of synthetic automobile fuels, two factors are

of importance. Factor A is an additive that is to be tested at three levels of use in successively

increasing amounts. Factor B is a catalyst, for which three levels of use (1, 2, and 3,

representing successively increasing amounts) are also to be tested. Forty-five automobiles

are randomly selected for the study, and each of the nine treatments is randomly used in five

different automobiles. Table 12-19 shows the efficiency ratings, in percentage, of the

treatments.

(a) At a level of significance of 5%, what can we conclude about the significance of the

factors?

Solution The problem involves two factors using a completely randomized design.

Using the raw data as given in Table 12-19, the summary information shown in Table 12-20

is computed.

We conduct the analysis of variance using Minitab by selecting Stat >ANOVA>

BalancedANOVA. UnderModel, inputAdditiveCatalystAdditive∗Catalyst, indicating
that the main effects and interaction effects should be considered. Data are entered by listing

TABLE 12-19 Efficiency Ratings, in Percentage, of a Synthetic Fuel Involving an Additive

and a Catalyst

Catalyst Level

Additive Level 1 2 3

I

75

72

66

74

65

64

62

58

56

60

43

48

42

46

46

II

50

58

46

53

55

73

70

67

68

70

58

62

54

60

62

III

67

60

60

62

63

82

76

80

84

75

44

43

38

42

44
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TABLE 12-20 Summary Information for Synthetic Fuel Data

Catalyst Level
Additive

Level 1 2 3 Sum Average

I Sum (y11.) = 352 Sum (y12.)= 300 Sum (y13.)= 225 y1�� = 877 y1�� = 58.467

Average Average Average

(y11:)= 70.4 (y12�)= 60 (y13�)= 45

II Sum (y21.)= 262 Sum (y22)= 348 Sum (y23.)= 296 y2�� = 906 y2�� = 60.400

Average Average Average

(y21:)= 52.4 (y22�)= 69.6 (y23.)= 59.2

III Sum (y31.)= 312 Sum (y32.)= 397 Sum (y33�)= 211 y3�� = 920 y3�� = 61.333

Average Average Average

(y31:)= 62.4 (y32�)= 79.4 (y33�)= 42.2

Sum y.1.= 926 y�2�= 1045 y�3�= 732 y...= 2703

Average y�1� = 61.733 y�2� = 69.667 y�3� = 48.800 y��� = 60.067

the value of the response variable (efficiency rating) in one column, the corresponding first

factor (additive level) in a second column, and the second factor (catalyst level) in a third

column.Note that there arefive replications at each factor combination.TheMinitabANOVA

table is shown in Figure 12-8.

The value of F for testing the significance of the interaction effects between additive and

catalyst is shown inFigure 12-8 to be 54.33,with thep-value as 0.000. Since thep-value is less

than 0.05, the chosen level of significance, we reject the null hypothesis and conclude that the

interaction effects between additive and catalyst are significant. Although Figure 12-8 shows

the values of F for testing the significance of the additive (factor A) means and the catalyst

(factor B) means, they are not necessary because the interaction effect is significant.

(b) What level of additive and level of catalyst should be used?

Solution Since we found the interaction effects to be significant in part (a), we need to

take into account the joint effect of both factors on the efficiency rating. Let’s consider the

mean efficiency for different levels of the catalyst at each level of the additive. We use the

summary information given in Table 12-20 to construct the plot shown in Figure 12-9 where

we find that the mean efficiency does not change uniformly with catalyst levels for each

additive level. For additive levels 2 and 3, as the catalyst level increases from 1 to 2, the mean

FIGURE 12-8 Minitab’s ANOVA table for the synthetic fuel data using a completely randomized

design.



FACTORIAL EXPERIMENTS 641

FIGURE 12-9 Plot of treatment means for the synthetic fuel data.

efficiency increases, but as the catalyst level increases from 2 to 3, the mean efficiency

decreases, and the decline is more drastic for additive level 3. For additive level 1, the mean

efficiency decreases as the catalyst level increases from 1 to 2 and then to 3. If maximizing

efficiency is our objective, we will choose additive level 3 and catalyst level 2.

(c) Is there a difference between the means of catalyst levels 1 and 3 at a 5% level of

significance?

Solution We find a 95% confidence interval for the difference between the mean

efficiencies of catalyst levels 1 and 3. This interval is given by

2MSE�y:1: � y:3:� � t0:025;36 �3��5� 
�2��11:6� � �61:733 � 48:80� � �2:028� 

15

� 12:933 � 2:522

Observe that the confidence interval does not include zero, indicating a difference between

the means at this significance level. Note, however, as discussed in parts (a) and (b), that

because the interaction effect is significant, we cannot consider one factor effect separately

from the other.

(d) Find a 95% confidence interval for the difference between the treatment means for

additive level 1, catalyst level 1 and for additive level 2, catalyst level 3.

Solution We have

2MSE
( y11: � y23:� � t0:025;36

5

�2��11:6� � �70:4 � 59:2� � �2:028� � 11:2 � 4:368
5
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Since this confidence interval does not include zero, we conclude that there is a difference

between these two treatment means at the 5% level of significance.

Role of Contrasts

In factorial experiments involving multiple treatments, we often want to test hypotheses on a

linear combination of the treatment means or to partition the total sum of squares of all

treatments into component sums of squares of certain desirable treatments. A contrast can be

helpful in such circumstances. A contrast of treatment means is a linear combination of the

means such that the sumof the coefficients of the linear combination equals zero. Suppose that

we have p treatments with means μ1, μ2, . . . , μp. Then, a contrast of means is defined as

L � k1μ1 � k2μ2 � . . .  � kpμp
p �12-57�� kiμi
i�1

where ki are constants such that ki � 0
i�1

Let’s consider an example in which four selling methods for computer salespeople are of

interest. Let the mean sales for each method be denoted by μ1, μ2, μ3 and μ4.We desire to test

the null hypothesis that the average sales of people using the first two methods is the same as

the average sales of people using the last two methods. The null hypothesis is

H0 : L � 0
where

L � μ1 � μ2 � μ3 � μ4

2 2

The quantity L is a contrast, its coefficients are given by k1 � 1
2
; k2 � 1

2
; k3 � � 1

2
;

^

and k4 � � 1 : Note that the sum of the coefficients equals zero. To test the null hypothesis,
2

we need a sample estimate of L and the sample variance of the estimate of L. The sample

estimate of L is given by

p

L � k1y1

p

� � ∙ ∙ ∙ � kpy � kiyi �12-58�k2y2 p

i�1

L̂ is found from

k21
r1

� k
2
2

r2
� ∙ ∙ ∙ � k

2
p

rp
MSE � 

p

i�1

k2i
ri

where yi is the sample mean of treatment i. The variance of

L̂� �  

where ri represents the number of observations from which the ith sample mean is computed

andMSE is themean square error for the design used in the experiment. The test statistic, then,

is the t-statistic given by

Var� MSE �12-59� 

^

L̂
t � �12-60� 

L�
p
Var� 

At a level of significance α, if | t | > tα/2,ν, where ν is the number of degrees of freedom

of the experimental error and α/2 is the right-tail area of the t-distribution, the null



FACTORIAL EXPERIMENTS 643

hypothesis is rejected. If the null hypothesis is rejected, we may need to find an interval

estimate for the contrast L. A 100(1 – α)% confidence interval for L is given by

L � tα=2;ν L�^^ Var� �12-61� 
where tα/2, ν represents the t-value, found fromAppendixA-4, for a right-tail area of α/2 and ν

degrees of freedom.

Example 12-5 Table 12-21 shows the total computer sales, in thousands of dollars, of

salespeople using five different methods. The number of people chosen from each method is

also indicated. A completely randomized design is used. The mean square error is 30.71.

(a) Is the mean sales using method 2 different from the average of the mean sales of

methods 1 and 3? Test at a significance level of 5%.

Solution The total number of experimental units is 21, yielding a total of 20 degrees of

freedom. Since there are five selling methods (treatments), there are 4 degrees of freedom for

^

the treatments. Upon subtraction, the number of degrees of freedom for the error is 16.

If μi represents the mean sales using method i, the null hypothesis to be tested is

μ1 � μ3H0 : μ2 � � 0
2

The corresponding contrast L can be written as L � 2μ2 � μ1 � μ3. Note that L is a

L � 2y2L̂ obtained as

mean for method i. We have

contrast, with its estimate � y1 � y3; where �yi represents the sample

239 80 255

^

L̂ � 2

The variance of L is found from eq. (12-59) as

� � � 119:5 � 26:667 � 51:0 � 41:833
4 3 5

^Var�L� �  
4 3 5

For testing the specified null hypothesis, the test statistic given by eq. (12-60) is

�2�2 ��1�2 ��1�2� � �30:71� �  47:078

^

L̂
t � � � 6:097

L� 
41:833p p

Var� 47:078

TABLE 12-21 Computer Sales for Five Different Methods (thousands)

Selling Method

1 2 3 4 5

Number of salespeople 3 4 5 4 5

Total sales 80 239 255 249 367
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At the 5% level of significance, with 16 error degrees of freedom, the t tables in Appendix

A-4 give t0.025,16= 2.120. The test statistic of 6.097 is greater than 2.120, sowe reject the null

hypothesis.

Thus, we conclude that the mean sales using method 2 is different from the average of

the mean sales using methods 1 and 3.

(b) Find a 95% confidence interval for the contrast in part (a).

Solution A 95% confidence interval for L= 2 μ2 – μ1 – μ3 is given by
p p

� 41:833 � �2:120� 47:078L � t0:025;16 L� 
� 41:833 � 14:546 � �27:287; 56:379� 

(c) Can we conclude that the average of the mean sales using methods 4 and 5 is different

from that using methods 2 and 3? Test at the 1% level of significance.

Solution The null hypothesis to be tested is

μ4 � μ5 μ2 � μ3H0 : � � 0
2 2

The corresponding contrast L is given by L � μ4 � μ5 � μ2 � μ3:

^

The estimate of L is

^	

^

Var� 

� y4L � y5 � y2 � y3

� 249
4

� 367
5

� 239
4

� 255
5

� 62:25 � 73:4 � 59:75 � 51:0 � 24:9

L̂ is given byThe variance of

�1�2
4

� �1�
2

5
� ��1�

2

4
� ��1�

2

5

^

^

L̂� �  

L
The test statistic is t � � � 4:736:

L� 

Var� �30:71� � 27:639

24:9p p
Var� 27:639

For a two-tailed test at a 1% level of significance, the t-value for 16 degrees of freedom,

from Appendix A-4, is t0.005,16= 2.921. Since the test statistic of 4.736 is greater than 2.921,

we reject the null hypothesis and conclude that the average of themean sales usingmethods 4

and 5 is not equal to that using methods 2 and 3.

Orthogonal Contrasts For a given set of treatments, it is possible to form more than one

meaningful contrast. Given p treatments, we can construct p – l contrasts that are statistically

independent of each other. Two contrasts L1 and L2 are independent if they are orthogonal to

each other. Suppose we have the two following contrasts:

L1 � k11μ1 � k12μ2 � � � � � k1pμp

L2 � k21μ1 � k22μ2 � � � � � k2pμp
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The contrasts L1 and L2 are orthogonal if and only if

k1jk2j � 0

that is, if the sum of the products of the corresponding coefficients associated with the

treatment means is zero.

To illustrate, let’s consider the following two contrasts involving three treatment

means:

L1 � μ1 � μ3
L2 � �μ1 � 2μ2 � μ3

Thus,L1 is used to test the null hypothesis of the equality of treatmentmeans 1 and3, andL2

^ 

is used to test the null hypothesis that the mean of treatments 1 and 3 equals the mean of

treatment 2. Note that the contrasts L1 and L2 are orthogonal, because the sum of the products

of the corresponding coefficients of the means is 1(–1)+ 0(2)+ (�l)(�l)= 0.

Contrasts of Totals Similar to contrasts of means, contrasts of totals are also useful in

analysis of variance. Such contrasts aid in partitioning the treatment sum of squares into

components such that each component is associatedwith a contrast of interest. Let rj represent

the number of replications for the jth treatment (out of p treatments). Let

Ti � yi: � yij
j�1

L is a contrast of totals given by

p

j�1

ri

^

be the sum of the responses of the ith treatment. Then

L � k1T1 � k2T2 � � � � � kpTp �12-62� 

^ 

if and only if r1k1 � r2k2 � � � � � rpkp � 0. If the number of replications is given by r for

L is a contrast ifeach of the treatments,

p

^

ki � 0
i�1

The variance of the contrast of totals is obtained from

L� � �r1k2 � r2k
2 � � � � � rpk

2
1 2Var� �MSE �12-63� p

^

^

whereMSE is themean square error for the experimental design considered. Two contrasts of

totals given by

L1 � k11T1 � k12T2 � � � � � k1pTp

L2 � k21T1 � k22T2 � � � � � k2pTp

p

j�1
are orthogonal if and only if k1jk2j � 0.

This condition is similar to the condition for the contrasts for means.

Orthogonal contrasts for totals are important because they can be used to decompose

the treatment sum of squares in analysis of variance and thereby test hypotheses on

the effectiveness of selected treatments. If L1 is a contrast of totals, then a single
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degree-of-freedom component for that contrast of the treatment sum of squares (SSTR) is

2

S2
L1

1 � �12-64� 
D1

where D1 � r1k2 � r2k2 � ∙ ∙ ∙ � rpk2 � rjk
2

11 12 1p 1j.

^

p

L2 are orthogonal, the sum of squares for the contrast
j�1

Similarly if
2

L̂

L1 and

2=D2;whereD2=

^^ L̂2 is given by

. In fact, S2 is a component of SSTR – S1
2.2S2 � r1k

2
22 + ∙ ∙ ∙ + rpk

2
21 + r2k

2
2p

Similarly, if L1, L2, . . . , Lp�1 are mutually orthogonal contrasts of totals, then

S21 + S22 + ∙ ∙ ∙+ S2p�1 � SSTR

Example 12-6 A regional bank is considering various policies to stimulate the local

economy and promote home improvement loans. One factor is the interest on the mortgage

loan,which the bankhas chosen to be of two types:fixed rate or variable rate.Another factor is

the payback period, which the bank has selected to be 10 or 20 years. For each of the four

treatments, the bank has randomly selected four loan amounts.

The four treatments are represented by the notation shown in Table 12-22. In factorial

experiments in which each factor has two levels—low and high—a factor at the high level is

denoted by a lowercase letter. A factor at the low level is indicated by the absence of this letter.

Additionally, the notation (1) denotes the treatmentwhere all factors are at the low level.Thus,

Table 12-23 shows treatment i, the four randomly selected loan amounts, and indicates that

the interest type is at the high level (variable rate) and the payback period is at the low level

(10 years). Similarly, for the other treatments, Table 12-23 shows the loan amounts (in

thousands of dollars).

Wewill use a set of three orthogonal contrasts of totals, the coefficients of which are shown

in Table 12-24 . Note that capital letters denote contrasts, whereas lowercase letters denote

TABLE 12-22 Notation for Treatments Comprising the Interest Rate

and Payback Period

Treatment Type of Interest Rate and Payback Period

(1) Fixed-rate interest and 10-year payback period

i Variable-rate interest and 10-year payback period

p Fixed-rate interest and 20-year payback period

ip Variable-rate interest and 20-year payback period

TABLE 12-23 Loan Amounts for Types of Interest Rate

and Payback Period (hundreds)

Treatment

(1) i p ip

16

12

14

12

54

22

18

25

20

85

38

45

40

42

165

56

58

54

59

227
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TABLE12-24 Coefficients of a Set of ThreeOrthogonal Contrasts

of Totals for the Bank Loan Amounts

Treatment

Contrast (1) i p ip

I �l +l �l +l

P �l �l +l +l

IP +l �1 �1 +l

treatments. Contrast I compares the totals for the treatments when the interest rate is variable

versus when it is fixed. Using Table12-24 and eq. (12-62), contrast I is given by

I � �T1 � T2 � T3 � T4

where T1 = Sum for treatment (1)

T2 = Sum for treatment i

T3 = Sum for treatment p

T4 = Sum for treatment ip

In experimental design notation, this same relation is expressed as

I � ��1� � i � p � ip

where the quantities on the right-hand side of the equation represent the sum of the response

variables for the corresponding treatments. Theother two contrasts can be similarly expressed

using Table 12-24. Thus, we have

P � ��1� � i � p � ip

which compares the totals for treatmentswhen thepayment period is 20years versuswhen it is

10 years. We also have
IP � �1� � i � p � ip

which compares two sets of totals. Thefirst set includes treatments forfixed-rate interest and a

10-year payback period and for variable-rate interest and a 20-year payback period. The

second set includes treatments for variable-rate interest and a 10-year payback period and for

fixed-rate interest and a 20-year payback period. Based on the previously discussed concepts,

contrast I represents the main effect of the interest rate factor; contrast P represents the main

effect of the payback period factor; the contrast IP represents the interaction effects between

the type of interest and the payback period. Now let’s compute the sum of squares for these

orthogonal contrasts of totals. For contrast I, an estimate is

Î � ��1��54� � �1��85� � ��1��165� � �1��227� � 93

This estimate is found by using the sum of the treatments from Table 12-23, the contrast

coefficients from Table 12-24, and eq. (12-62). The sum of squares due to contrast I is

obtained using eq. (12-64) as follows:

�93�2
S2 � � 540:56251 �4��4� 

Note that the number of replications for each treatment is 4 (r1= r2= r3= r4= 4).

Similarly, the estimate of contrast P is

P̂ � ��1��54� � ��1��85� � �1��165� � �1��227� � 253
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The sum of squares due to contrast P is

�253�2
S2 � � 4000:26252 �4��4� 

The estimate of contrast IP is

ÎP � �1�54 � ��1��85� � ��1��165� � �1��227� � 31

The sum of squares due to contrast IP is

�31�2
S2 � � 60:06253 �4��4� 

Since I, P, and IP are three mutually orthogonal contrasts, of the four treatments, the total

treatment sum of squares is therefore the sum of these three component sums of squares.

Hence, the treatment sum of squares is

SSTR � S2 � S2
2 � S2 � 540:5625 � 4000:5625 � 60:0625 � 4601:18751 3

Since the given design is a completely randomized one, the same results can also be

obtained using the formulas in Section 12-3. The use of orthogonal contrasts helps us test the

significance of specific factor configurations.

The 2k Factorial Experiment

Experimentation involves first determining the more important factors (in terms of impact on

the response variable) while taking into account the number of factors that can be dealt with

feasibly. Next, the desirable levels of the selected factors are identified. Finally, it may be of

interest tofind the relationship between the factor levels, the corresponding responses, and the

physical and economic constraints that are imposed. Although different types of designs can

be used at each of these stages, multifactor experiments are usually employed. One such

multifactor experiment used in the exploratory stage is the 2k factorial experiment, which

involves k factors, each at two levels. The total number of treatments is 2k. Thus, if we have

two factors, each at two levels, there are 22, or 4, treatments.

Usually, the level of each factor is thought of as either low or high. A treatment is

represented by a series of lowercase letters; the presence of a particular letter indicates that the

corresponding factor is at the high level. The absence of this letter indicates that the factor is at

the low level. The notation (1) is used to indicate the treatment for which all factors are at the

low level. Suppose thatwehave three factors,A,B, andC, each at two levels. The full factorial

set of eight treatments is designated in the following order:

1. (1) 5. c

2. a 6. ac

3. b 7. bc

4. ab 8. abc

Figure 12-10 shows the layout of a 23 experiment with three factors, A, B, and C. The high

levels are denoted by 1 and the low levels by �1 for each factor.

Toestimate themain effects and interactions, the concept of contrasts, introduced earlier, is

used. For example, to determine the main effect of factor A, we average the observations for
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3FIGURE 12-10 Layout of a 2 experiment with three factors.

which A is at the high level and subtract from this value the average of the observations for

which A is at the low level. From Figure 12-10, if there are r replications for each treatment,

the main effect of factor A is

a � ab � ac � abc �1� � b � c � bc
A � � 

4r 4r
-

� 1 �a � ab � ac � abc � �1� � b � c � bc� (12-65)
4r

where the lowercase letters denote the sum of the responses for the corresponding treat

ments. The quantity inside the square brackets in eq. (12-65) is a valid contrast of totals.

Similarly, the main effect of factor B is

1
B � �b � ab � bc � abc � �1� � a � c � ac� �12-66� 

4r

The quantity inside the square brackets of eq. (12-66) is also a valid contrast. Note that the

contrasts for factors A and B obtained from eqs. (12-65) and (12-66) are also orthogonal

contrasts of totals. If we can come up with a set of orthogonal contrasts to estimate the main

effects and interactions, then the methodology described earlier can be used to determine the

corresponding sum of squares for the treatment components. Table 12-25 is such a table of

coefficients for orthogonal contrasts in a 23 factorial experiment. Since themagnitude of each

coefficient is 1, it has been omitted.

Note that the contrasts for factors A and B match those obtained from eqs. (12-65) and

(12-66).We constructed Table 12-25 as follows. For eachmain effect contrast, we use a+ for

each treatment combination in which the letter for the effect occurs. All other combinations

receive a �. The signs for the interaction contrasts are the product of the signs of the main
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TABLE 12-25 Coefficients for Orthogonal Contrasts in a 23 Factorial Experiment

Treatment

Contrast (1) a b ab c ac bc abc

A � + � + � + � +

B � � + + � � + +

AB + � � + + � � +

C � � � � + + + +

AC + � + � � + � +

BC + + � � � � + +

ABC � + + � + � � +

effects whose letters appear in the interaction. For example, consider the contrast AB. Its sign

under treatment column a is �, which is the product of the sign of A in the treatment column

a (+) and the sign ofB in the treatment columna (�). The contrast for anyof themain effects or

interactions can thus be obtained from Table 12-25. For instance, the interaction AC is

estimated as

1
AC � ��1� � b � ac � abc � a � ab � c � bc� 

4r

The sum of squares for the set of orthogonal contrasts for the totals is found from

eq. (12-64). If the number of replications for each treatment is r, then (because the contrast

coefficients are unity inmagnitude), we use eq. (12-64) for a 2k factorial experiment to get the

sum of squares for an effect:

�contrast�2
SS � �12-67� 

r2k

Also, the following relation is used to estimate the effect:

contrast
Effect � �12-68�

1r2k�

Note that eq. (12-65), derived to estimate the main effect of A, matches the general

expression given by eq. (12-68).

Example 12-7 In the furniture industry, the quality of surface finish of graded lumber is an

important characteristic. Three factors are to be tested, each at two levels, for their impact on

the surface finish. Factor A is the type ofwood: oak (level�1) or pine (level 1). Factor B is the

rate of feed: 2m/min (level �1) or 4m/min (level 1). Factor C is the depth of cut: 1mm

(level�1 )or 3mm(level 1). For each treatment combination, three replicationsare carriedout

using a completely randomized design. Table 12-26 shows the surface finish for the eight

treatments. The larger the value, the rougher the surface finish.

(a) Find the main effects and the interaction effects.

Solution Since we have a 23 factorial experiment, the orthogonal contrasts and their

coefficients corresponding to each treatment combination are as shown in Table 12-25. To

find the effect of each contrast, we use eq. (12-68) and the coefficients from Table 12-25.
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TABLE 12-26 Surface Finish of Wood Based on Type of Wood, Rate of Feed, and Depth

of Cut

Treatment Surface Finish Sum

(1) 6 8 9 23

a 10 16 15 41

b 18 12 15 45

ab 12 9 10 31

c 20 26 29 75

ac 34 28 32 94

bc 36 44 46 126

abc 25 22 24 71

For example, the main effect of factor A, using the data from Table 12-26, is

1
A � �a � ab � ac � abc � �1� � b � c � bc� 

3�4�
 
1� �41 � 31 � 94 � 71 � 23 � 45 � 75 � 126� 
12

� �2:667

Similarly, the othermain effects and interaction effects are found as shown inTable 12-27.

(b) Find the sum of squares for each of the main effects and interaction effects.

Solution The sum of squares for the factorial effects are found from eq. (12-67). For

example, the sum of squares for A is

��32�2
SSA � � 42:667

3�8� 
Table 12-27 shows the sum of squares for the factorial effects. The total sum of squares is

found from eq. (12-4) as SST= 3025.833.

The error sum of squares, found by subtracting the sum of squares of the factorial effects

from the total sum of squares, is 169.333.

(c) Which effects are significant? Test at the 5% level of significance.

TABLE 12-27 ANOVA Table for the Contrasts in the Surface Finish of Wood

Source of Variation Effect Degrees of Freedom Sum of Squares Mean Square F-Statistic

A �2.667 1 42.666 42.667 4.032

B 3.333 1 66.666 66.667 6.299

C 18.833 1 2128.167 2128.167 201.093

AB �8.833 1 468.167 468.167 44.238

AC �3.333 1 66.667 66.667 6.299

BC 1.333 1 10.667 10.667 1.008

ABC �3.500 1 73.500 73.500 6.945

Error 16 169.333 10.583

23 3025.833
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Solution FromTable 12-27, which shows the sumof squares and the degrees of freedom

of the effects, the mean square for each effect is found. The F-statistic for testing the

significance of the factorial effects is given by the ratio of themean square for that effect to the

mean square error. At the 5% level of significance, the critical value of F fromAppendix A-6

is found after interpolation to be F0.05,1,16= 4.497. Comparing the calculated value of the

F-statistic with this critical value, we find that the interactions effects AB, AC, and ABC are

significant. The F-statistics for the main effects B and C also exceed the critical value;

however, because the interaction effectsAB,AC, andABC are significant,we cannotmake any

definite inferences about the main effects.

Confounding in 2k Factorial Experiments

Abasic tenet of experimental design is to group the experimental units into blocks consisting

of homogeneous units. Treatments are then randomly assigned to experimental units within

blocks. The idea behind blocking is to minimize the variation within blocks and thereby

compare the treatments under conditions that are as uniform as possible.

The experimental error variance usually increases as the block size increases. In multi

factor factorial experiments, the number of treatments increases dramaticallywith the number

of factors. For instance, for six factors with two levels each, the number of treatments is

26= 64. Thus, for a complete replication of the treatments in one block, 64 experimental units

are needed. It is often difficult to obtain a large number of homogeneous units per block for

complete replication of all treatments.

To increase the precision of the experiment by blocking, the block size must be kept as

small as possible. Oneway to achieve this is through confounding,where the estimation of

a certain treatment effect is “confounded” (made not distinguishable) with the blocks. In

confounding, not all treatments are replicated in each block. The block contrast is then

equivalent to the treatment contrast that is confounded. Thus, it is not possible to estimate

the effects between blocks because estimating the confounded treatment effect essentially

matches it. Thus, we are not able to conclude whether any observed differences in the

response variable between blocks is solely due to differences in the blocks. Such an effect

cannot be isolated from that of one of the treatments, implying that differences between

blocks could be due to this particular treatment (that is confounded with the blocks), or the

blocks themselves, or both. Although the treatment that is confounded with the blocks

cannot be estimated, this sacrifice is made with the hope of improving the precision of the

experiment through reduced block sizes.We confound the 2k experiment into blocks of size

2p, where p < k.

Let’s consider a 23 factorial experiment. For a complete replication, eight experimental

units are needed, which then influences the block size. Suppose we want to base blocking on

the rawmaterial vendor. Because of the limited supply of rawmaterial from each vendor, we

can only obtain four experimental units from each vendor rather than the eight that we need

for a complete replication. The question is:Howare the eight treatments to be divided into two

blocks of size 4, since only four experimental units can be obtained from a vendor?

For the answer to this, let’s refer to the coefficients for orthogonal contrasts in a 23 factorial

experiment shown inTable 12-25. The confounding contrast is typically selected to be a high-

order interaction. Look atABC, the three-way interaction between factors A, B, andC,whose

coefficients are given in Table 12-25. The contrast for ABC is given by

Contrast�ABC� � a � b � c � abc � �1� � ab � ac � bc
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3FIGURE 12-11 Confounding in a 2 experiment with two blocks.

Wegroup theplus-sign terms inonegroup (a, b, c, abc) and theminus-sign terms in another

group [(1), ab, ac, bc]. Next, we construct two blocks of size 4 each. In block 1, the applied

treatments are a, b, c, and abc. In block 2, the applied treatments are (1), ab, ac, and bc.This is

demonstrated in Figure 12-11.

An estimate of the block effect is obtained by determining the difference in the average

responses obtained from the two blocks. Note that this is identical to estimating the effect of

the treatmentABC. Since the four positive coefficients in the contrast forABC are assigned to

block 1 and the four negative coefficients are assigned to block 2, the block effect and theABC

interaction effects are identical; that is, ABC is confounded with blocks. In other words, the

effect of ABC cannot be distinguished from the block effects. Thus, the contrast ABC is the

confounding contrast.

Now let’s estimate the main effect of factor A as given by the contrast (from Table 12-25):

Contrast�A� � a � ab � ac � abc � �1� � b � c � bc

Note that there are four runs from each block. Also, from each block there is one treatment

whose effect is added and another whose effect is subtracted. For example, from block 1, the

response variable is added for treatments a and abc, and it is subtracted for treatments b and c.

So, any differences between the two blocks cancels out, and estimating the main effect of

factor A is not affected by blocking. The same is true for the remainingmain effects and two-

way interactions. The scheme for blocking previously demonstrated can be used for any

chosen contrast. Usually, the factors chosen to confound with blocks are the higher-order

interactions, which are normally not as important as the main effects and the low-order

interactions.

Fractional Replication in 2k Experiments

The number of runs in a factorial experiment increases exponentially with the number of

factors. Cost concerns often require using fewer experiments than called for by the full

factorial. Fractional replication of factorial experiments achieves this purpose. Let’s consider

a 26 factorial experiment, which requires 64 experimental runs for a full replication. There are

63 degrees of freedom for estimating the treatment effects. There are 6 main effects, 15 two-

way interactions (C6), 20 three-way interactions, 15 four-way interactions, 6 five-way2

interactions, and 1 six-way interaction. If only the main effects and two-way interactions
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(which require 21 degrees of freedom for estimation) are considered important, we might be

able to get by with fewer than 64 experimental runs.

Half-Fraction of the 2kExperimental Ahalf-fraction of the 2k experiment consists of 2k�1

experimental runs. To determine the treatment combinations that will be represented in the

experiment, we make use of a defining contrast, or a generator. This usually represents a

high-order interaction, which may be unimportant or negligible and whose estimation we

might not be interested in. For example, let’s consider the 23 factorial designwith factorsA,B,

andCand the table of coefficients of orthogonal contrasts shown inTable 12-25.We select the

defining contrast I to be associated with the three-way interactionABC; that is, I=ABC. For a

23-1 fractional experiment, we could select only those treatments associatedwith plus signs in

the defining contrast. From Table 12-25, these would be a, b, c, and abc,which involve only

four runs of the experiment. Alternatively, we could have selected the four treatments with

minus signs in the defining contrast. Thesewould have been the treatments (1), ab, ac, and bc,

and the defining contrast would have been I=�ABC. The fraction with the plus sign in the
defining contrast is called the principal fraction, and the other is called the alternate

fraction.

The disadvantage of a fractional replication of a full factorial experiment is that certain

effects cannot be separately estimated. Let’s demonstrate this with an example. Suppose that

we are dealing with a 23–1 experiment with generator I=ABC. With four runs (a, b, c, and

abc), there will be three degrees of freedom to estimate the main effects. Using Table 12-25

and noting that only four of the eight possible treatments are run, it would seem that the

estimates of the main effects are given by

1 1 1
A � �a � abc � b � c�; B � �b � abc � a � c� ; C � �c � abc � a � b� 

2 2 2

where the lowercase letters represent the sum of the responses in the corresponding

treatments. However, we will see that in a fractional factorial experiment, these expressions,

strictly speaking, represent the combined effect of the factor shown and its alias. Also using

Table 12-25 and noting that the treatments run are (a, b, c, and abc), it would seem that the

estimates of the two-factor interactions are given by

AB � 1
2
�c � abc � a � b�; AC � 1

2
�b � abc � a � c�; BC � 1

2
�a � abc � b � c� 

Again, we will see that, strictly speaking, these expressions also represent the combined

effect of the factor shown and its alias.The linear combination of the sum of the treatment

responses that estimates themaineffect A alsoestimates the interaction BC. In this case,Aand

BC are said tobealiases. If the effect of the contrast is significant,we cannot concludewhether

it isdue to themaineffect of A, the interaction BC,oramixtureof both.Similarly,BandACare

aliases, and so areC andAB.To find the aliases of a given contrast, we find its interaction with

the defining contrast as follows. The letters appearing in both contrasts are combined, and any

letter that appears twice is deleted. For example, the alias of A, using the defining contrast as

ABC, is found as follows:

Alias�A� � A ∗ABC � BC

Similarly, the aliases for B and C are alias�B� � B ∗ABC � AC, alias�C� �  
C ∗ABC � AB.
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Since the contrasts A and BC are aliases, if only four treatments a, b, c, and abc are run, the

combined effect of both contrasts is obtained from 1 �a � abc � b � c�. Therefore, using the
2

principal fraction, an estimate of A+BC is obtained from 1 �a � abc � b � c�; an estimate
2

of B+AC is obtained from 1 �b � abc � a � c�; and that of C+AB is obtained from
2

1 �c � abc � a � b�. If the two-factor interactions can be assumed to be negligible, themain
2

effects A, B, and C can be estimated.

Alternatively, ifwe are not surewhether the two-factor interactions are significant, then, by

running the alternate fraction [that is, the treatments (1), ab, ac, and bc], we can estimate the

main effects and the interactions by combining the results of the principal fraction and

the alternate function. If we had selected the defining contrast I=�ABC, the runs would

have consisted of the alternate fraction of treatments (1), ab, ac, and bc. The alias of A

would be A∗�ABC=�BC, the alias of B would be �AC, and the alias of C would be �AB.
Thus, the estimate of A�BC would be obtained from 1 �ab � ac � bc � �1��, the estimate

2

of B � AC would be obtained from 1 �ab � bc � ac � �1��, and that of C�AB would be
2

obtained from 1 �ac � bc � ab � �1��. Upon combining the results of the principal and
2

alternate fractions, the estimate of the main effect of factor A is

1 1
A � �A � BC� �  �A � BC� 

2 2

Similarly, the other two main effects are given by

1 1 1 1
B � �B � AC� �  �B � AC�; C � �C � AB� �  �C � AB� 

2 2 2 2

The interaction effects can also be obtained by combining the results of the two fractions as

follows:

1 1 1 1 1 1
AB� �C � AB��  �C�AB�; AC � �B � AC� �  �B�AC�; BC � �A � BC��  �A�BC� 

2 2 2 2 2 2

This process—combining the results of two fractional factorial experiments to isolate and

estimatemain effects and interactions that ordinarily cannot be estimated from either fraction

separately—creates a very desirable situation. If we cannot run a factorial experiment in a full

replication, we can run sequences of small efficient experiments and then combine the

information as we continue with the process of experimentation. The knowledge that we

accumulate from the ongoing sequence of experiments can be used to update or modify the

experiments that follow. For instance, if a fractional replication suggests the nonsignificance

of certain factors, we can drop those factors in future experiments, which may lead to a full

factorial experiment in the remaining factors.

Design Resolution One method of categorizing fractional factorial experiments is based on

the alias patterns produced. Obviously, we prefer that the main effects not be aliased with each

other so that we can estimate them independently. The degree to which the main effects are

aliased with the interaction terms (two-factor or higher-order) is represented by the resolution

of the corresponding design. In particular, designs of resolutions III, IV, and V are important.

Resolution III Designs Here, main effects are not aliased with each other, but they are

aliased with two-factor interactions. Also, two-factor interactions may be aliased with each

other.The23�1 designwith thedefiningcontrast givenby I=ABC is of resolution III. In sucha

design, the alias structure is given by A=BC, B=AC, and C=AB. The main effects can be

estimated only if the two-factor and higher interactions are not present.
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Resolution IV Designs Here, main effects are not aliased with each other or with any

two factor interactions. Two-factor interactions are aliased with each other. Thus, the main

effects can be estimated regardless of the significance of the two-factor interactions as long

as three-factor and higher-order interactions are not present. An example of a resolution IV

design is a 24�1 design with the defining contrast given by I=ABCD. It can be shown that

the alias structure is A=BCD, B=ACD, C=ABD, D=ABC, AB=CD, AC=BD, and

AD=BC.

Resolution V Designs Here, no main effect or two-factor interaction is aliased with any

othermain effect or two-factor interaction. Two-factor interactions, however, are aliasedwith

three-factor interactions. An example of such a design is the 25�1 design with a defining

contrast given by I=ABCDE.

The 2k− p Fractional Factorial Experiment The 2k�1 fractional factorial experiment is a

half-replicate of the 2k experiment, but it is possible to find experiments of smaller size that

provide almost asmuch information at a greatly reduced cost. The 2k�p experiment is a 1/2p

fractionof the2k factorial experiment.Therefore, a2k�2 experiment employs one-fourth of the

total number of treatments.

Let’s consider a factorial experiment with 6 factors, each at 2 levels. A 26�1 fractional
factorial experiment requires 32 experimental runs, which gives us 31 degrees of freedom

to estimate effects. Here, we have 6 main effects and 15 two-factor interactions. Thus, 22

runs will suffice if only main effects and two-factor interactions are deemed important,

making the 26�1 experiment inefficient because it requires 32 runs. However, a 26�2

fractional factorial experiment needs 16 runs and has 15 degrees of freedom to estimate

effects. We could estimate all 6 of the main effects and some (not more than 9) of the two-

factor interactions. If this meets our needs, the 26�2 experiment will be more cost-efficient

than the 26�1 experiment.

To generate the treatment combinations for a 2k�p fractional factorial experiment, we

use p defining contrasts, or generators. Using the first contrast, we create a 2k�1 fractional
experiment as demonstrated previously. Starting with the treatments selected in the 2k�1

2k�1experiment and using the second contrast, we create a half-replicate of the

experiment yielding a 2k�2 fractional experiment. This procedure continues until the

pth contrast is used on the treatment combinations in the 2k�p+1 experiment to yield the

2k�p fractional experiment. The aliases for the contrasts can be found using the principle

explained previously.

To illustrate, let’s generate a 25�2 fractional factorial. The coefficients for orthogonal

contrasts in a 25 factorial experiment with factors A, B, C, D, and E are obtained in a manner

similar to that used for the coefficients shown in Table 12-25. Table 12-28 shows a portion of

this table for selected contrasts (A, B,C,D, E, AB, and AC). The full factorial experiment has

32 treatment combinations. We choose I=AB as our first defining contrast. From the 32

treatments,we identify fromTable12-28 thosewith aplus sign in thedefining contrastAB.So,

a half-replicate of the 25 experiment is given by the 25�1 fractional factorial, which consists of
the following treatments: (1), ab, c, abc, d, abd, cd, abcd, e, abe, ce, abce, de, abde, cde, and

abcde. Ifwe chooseACof the contrasts in the 25�1 experiment as our seconddefining contrast,

we select those from Table 12-28 that also have a plus sign in the contrast AC. The following

eight treatments are obtained for the 25�2 fractional factorial experiment using the defining

contrasts AB and AC: (1), abc, d, abcd, e, abce, de, and abcde.
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TABLE 12-28 Coefficients for Some Orthogonal Contrasts in a 25 Factorial Experiment

Treatment

Contrast (1) a b ab c ac bc abc d ad bd

A � + � + � + � + � + � 
B � � + + � � + + � � +

C � � � � + + + + � � � 
D � � � � � � � � + + +

E � � � � � � � � � � � 
AB + � � + + � � + + � � 
AC + � + � � + � + + � +

abd cd acd bcd abcd e ae be abe ce ace

A + � + � + � + � + � +

B + � � + + � � + + � � 
C � + + + + � � � � + +

D + + + + + � � � � � � 
E � � � � � + + + + + +

AB + + � � + + � � + + � 
AC � � + � + + � + � � +

bce abce de ade bde abde cde acde bcde abcde

A � + � + � + � + � +

B + + � � + + � � + +

C + + � � � � + + + +

D � � + + + + + + + +

E + + + + + + + + + +

AB � + + � � + + � � +

AC � + + � + � � + � +

Now let’sfind the aliases of the contrasts for this 25�2 fractional factorial experiment using

the defining contrastsAB andAC.Thegeneralized interaction of the two also acts as a defining

contrast (BC). The following alias structure is obtained:

I � AB � AC � BC
A � B � C � ABC
D � ABD � ACD � BCD
E � ABE � ACE � BCE

AD � BD � CD � ABCD
AE � BE � CE � ABCE
DE � ABDE � ACDE � BCDE

ADE � BDE � CDE � ABCDE
Note that three of the five main effects (A, B, and C) are aliases of each other. The main

effectsD andEhave three-factor interactions as aliases.Of the two-factor interactions,AB,AC,

and BC are aliases; AD, BD, and CD are aliases; and so are AE, BE, and CE. The

two-factor interactionDE is an alias of the four-factor interactionsABDE, ACDE, and BCDE.

Thus, if estimating eachmain effect is of interest, selectingAB andACas the defining contrasts

may not be appropriate. We would not be able to isolate the effects of A, B, and C using the

generated 25�2 experiment. Furthermore, if estimating two-factor interactions is desired, we

will encounter difficulty because several two-factor interactions are aliases of each other.
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The choice of defining contrasts, therefore, is influential in determining the alias

structure. The generating contrasts should be selected based on the factors that are of

interest in estimation. Suggestions for choosing defining contrasts for fractional factorial

experiments are found in books on experimental design listed in the references (Box et al.,

2005; Peterson 1985; Raghavarao 1971).

Note that principles of confounding and fractional replications differ. In confounding, the

aim is to reduce the block size in order to increase the precision of the experiment without

necessarily reducing the treatment combinations in the experiment. It is possible to have all

the treatment combinations that occur in a full factorial experiment and still keep theblock size

small. The only sacrificemade is that a factorial contrast is confoundedwith the block contrast

and so cannot be estimated—the remaining factorial contrasts can be estimated. But, if the

confounding contrast is chosen so that it is one in which we have no interest, then we do not

lose anything.On the other hand, in a fractional factorial experiment, the objective is to reduce

the size of the experiment—that is, the number of treatments. Depending on the degree of

fractionalization, contrasts will have aliases. Thus, it will not be possible to estimate all of the

factorial effects separately.

Example 12-8 Refer to Example 12-7 concerning the quality of surface finish of graded

lumber. The three factors, each at two levels, are the type of wood (factor A), the rate of feed

(factor B), and the depth of cut (factor C). The raw data, consisting of three replications for

each treatment combination, are shown in Table 12-26. We decide to use a 23�1 fractional
factorial experiment, with the defining contrast being I=ABC.

FromTable 12-25, for contrastABC, the following treatments have a plus sign: a, b, c, and

abc. These four treatments are included in the 23�1 fractional factorial experiment.

Now we determine the alias structure. The main effects have the following aliases:

A � A ∗ABC � BC

B � B ∗ABC � AC

C � C ∗ABC � AB

Thus, each main effect is an alias of a two-factor interaction. This design is therefore of

resolution III. To estimate the effects of their aliases, we use Tables 12-25 and 12-26:

1
A � BC � �a � abc � b � c� 

3�2� 
1� �41 � 71 � 45 � 75� � �1:333
6

1
B � AC � �b � abc � a � c� 

3�2� 
1� �45 � 71 � 41 � 75� � 0
6

1
C � AB � �c � abc � a � b� 

3�2� 
1� �75 � 71 � 41 � 45� � 10:000
6

We find that the effect of C+AB exceeds that of the others.
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TABLE 12-29 ANOVA Table for the 23–1 Fractional Factorial Experiment for the Surface

Finish of Wood Example

Source

of Variation Effect

Degrees

of Freedom

Sum

of Squares Mean Square F-Statistic

A+BC

B+AC

C+AB

Error

�1.333
0.

10.000

1

1

1

8

5.333

0.

300.000

85.334

5.333

0.

300.000

10.667

0.500

0.

28.124

11 390.667

To determine the sum of squares for the effects, we proceed in the same manner as we did

with factorial experiments. Thus, the sum of squares for A + BC is given by

��8�2
SSA�BC � � 5:333

3�4� 
The sum of squares for the remaining effects are shown in Table 12-29. The total sum of

squares is found fromeq. (12-4); the sumof squares for error is foundby subtractionof the sum

of squares of the treatments from the total sum of squares.

We find from Table 12-29 that the effect of C+AB is highly significant. The calculated

F-statistic value of 28.124 far exceeds the criticalF-value of 5.32 fromAppendixA-6 for a 5%

level of significancewithonenumerator andeight denominator degrees of freedom.To isolate

the effect of C, we would need to perform more experiments using the defining contrast

I=�ABC, which would yield the alternate fraction. Alternatively, if the complete 23

experiment is run using all eight treatment combinations, the effect of Cwould be estimated

separately from that of AB. Example 12-7 deals with this case.

12-5 THE TAGUCHI METHOD

In the following sections we deal with the philosophy and experimental design principles

devised by Genichi Taguchi, a Japanese engineer whose ideas in quality engineering

have been used for many years in Japan. The underlying theme of the neverending cycle

of quality improvement is supported by Taguchi’s work (Taguchi and Wu 1980; Taguchi

1986, 1987). Quality engineering has the objective of designing quality into every

product and corresponding process. It directs quality improvement efforts upstream from

the manufacturing process to the design phase and is therefore referred to as an off-line

quality controlmethod. The techniques of statistical process control discussed in preceding

chapters are known as online quality control methods. Taguchi’s off-line methods are

effective in improving quality and cutting down costs at the same time (Taguchi et al.

1989).Off-linemethods improve productmanufacturability and reduce product development

and lifetime costs.

InTaguchi’smethod, quality ismeasured by the deviation of a characteristic from its target

value. A loss function is developed for this deviation.Uncontrollable factors, known as noise,

cause such deviation and thereby lead to loss. Since the elimination of noise factors is

impractical and often impossible, theTaguchimethod seeks tominimize the effects of noise

and todetermine theoptimal level of the important controllable factors basedon the concept of

robustness (Dehnad2012;Nair 1992).Theobjective is to create aproduct/processdesign that
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is insensitive to all possible combinations of the uncontrollable noise factors and is at the same

time effective and cost-efficient as a result of setting the key controllable factors at certain

levels. Whereas the foundations of Taguchi’s quality engineering seem to be well accepted,

there are criticisms, which we will discuss later, of the statistical aspects of his experimental

designs.

12-6 THE TAGUCHI PHILOSOPHY

According to Taguchi, “Quality is the loss imparted to society from the time a product is

shipped.” Taguchi attaches a monetary value to quality because he feels that this will make

quality improvement understood byall—technical personnel aswell asmanagement. Typical

examples of loss to society include failure to meet the customer’s requirements and

unsatisfactory performance that leads to loss of goodwill and reduced market share. The

Taguchi concept of quality loss has been extended by Kackar (1986) to include the loss to

society while the product is being manufactured. For instance, the raw materials and labor

depleted when making the product or rendering the service may also be considered societal

losses. Similarly, the cost of environmental pollution falls into this category.

The purpose of quality improvement, then, is to discover innovative ways of designing

products and processes that will save societymore than they cost in the long run. All products

ultimately cause loss because they break and then need to be repaired or replaced or because

they wear out after an adequate performance in their functional life. The degree to which the

product or service meets consumers’ expectations affects the magnitude of loss. Taguchi

contends that the loss due to a product’s variation in performance is proportional to the square

of the performance characteristic’s deviation from its target value.

Figure 12-12 shows an example of the quadratic loss function. This function is an example

of the target-is-best condition. If the quality characteristic y is at the target value m, then the

loss L(y) is minimized. As the characteristic deviates from the target (or nominal) value in

FIGURE 12-12 Loss function for a situation in which the target value is best.



THE TAGUCHI PHILOSOPHY 661

either direction, the loss increases in a quadraticmanner. Examples include the dimensions of

a part (length, thickness, diameter, etc.) and the operating pressure in a press.

The quality and cost of a manufactured product are influenced by the engineering

design of the product as well as the process. By concentrating on product and process

designs that are robust, that is, less sensitive, to uncontrollable factors such as tempera

ture, humidity, and manufacturing variation (the noise factors), the Taguchi concept

attempts to reduce the impact of noise rather than eliminate it. Frequently, the elimination

of noise factors is neither practical (because it is very costly) nor feasible. Manufactu

ring variability cannot be totally eliminated; incoming components and raw material

inherently exhibit variation. By dampening the impact of the noise factors and by

selecting the controllable factor levels that force the desirable quality characteristics to

stay close to target values, a robust design of the product, and thereby of the process,

is achieved.

Taguchi advocates a three-stage design operation to determine the target values and

tolerances for relevant parameters in the product and the process: system design, parameter

design, and tolerance design. In system design, scientific and engineering principles and

experience are used to create a prototype of the product that will meet the functional

requirements and also to create the process that will build it.

Parameter design involves finding the optimal settings of the product and process

parameters in order to minimize performance variability. Taguchi defines a performance

measure known as the signal-to-noise (S/N) ratio and tries to select the parameter levels that

maximize this ratio. The term signal represents the square of the mean value of the quality

characteristic, whereas noise is a measure of the variability (as measured by the variance) of

the characteristic.

As mentioned previously, the uncontrollable factors are known as noise factors. They

cause a quality characteristic to deviate from the target value and hence create a loss in quality.

In general, noise arises from two sources: internal and external. Internal sources of noise are

a result of settings of the product and process parameters. Examples include manufacturing

variations and product deterioration over time due to wear and tear. Manufacturing im

perfections occur because of the inevitable uncertainties in a manufacturing process. They

create product-to-product noise, or variability. External sources of noise are those variables

that are external to the product and that affect its performance. Examples include changes in

such environmental conditions as humidity, temperature, and dust.

In the parameter design phase, not all sources of noise can be accounted for because of the

lack of knowledge concerning the various factors that affect the product’s performance.

Moreover, physical restrictions—based on the number of experiments to be performed and

the number of factors that may be included in the analysis—also limit the choice of factors. In

the parameter design phase, only those sources of noise that are included in the study are

termed noise factors. Thus, noise factors should be judiciously chosen to represent those that

most impact the product’s performance.

Suppose we are producing collapsible tubes for which the important quality characteristic

Y is thediameter.Oneof the controllable factorsX found tohave aneffect on thediameter is the

mold pressure. Figure 12-13 shows the relationship between the diameter and the mold

pressure. Our target value of the diameter is y0, which can be achieved by setting the mold

pressure at x0. Any deviation of the mold pressure from x0 causes a large variability in the

diameter. However, if themold pressure is set at x1, the variability in the diameter ismuch less

even if noise factors cause the mold pressure to deviate around x1. One way to achieve the

small variability in the diameter is to use an expensive press that has little variability around
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FIGURE 12-13 Relationship between diameter and mold pressure.

the set value x0. Alternatively, a more economical solution that achieves the same level of

quality involves the following strategy. We would use a less expensive press and keep the

pressure setting at x1, which yields a small variability in the output diameter in the presence of

uncontrollable factors. Since the output diameter y1 is far removed from the target value y0 in

this situation, wewould look for other parameters that have a linear effect on the diameter and

whose setting can be adjusted in a cost-efficient manner.

One such parameter may be the pellet size S, whose effect is shown in Figure 12-14. Since

tubes are extruded frompellets, the pellet size has a linear relationshipwith tube diameter.We

can control thepellet size to adjust themeanvalue from y1 to y0. Suchaparameter is sometimes

called an adjustment factor. By choosing a pellet size of s0,we can achieve the desired target

of y0. Of course, we are assuming that the relationship between pellet size and diameter is

FIGURE 12-14 Relationship between diameter and pellet size.
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linear and no increase in the variability of the diameter will result when the pellet size is set at

s0.

In general, it is much easier to adjust the mean value of a performance characteristic to its

target value than to reduce the performance variability. The preceding example demonstrates

how we can use the nonlinear effects of product and process parameters to reduce the

variability of the output and thereby minimize the impact of the sources of variation. This is

thekey toachieving robust designs in theTaguchimethod.Thismethod is cost-efficient in that

it reduces the performance variability by minimizing the effects of factors we cannot control

instead of trying to control or eliminate them.

Our example also illustrates the fundamental idea of the two-step procedure used in the

parameter design phase. In the first step, we choose parameter levels that minimize the

variability of the output quality characteristic. This step makes use of the nonlinear effects of

the parameters on the response variable and creates a design that is robust with respect to the

uncontrollable sources of variation. In the second step, we identify parameters that have a

linear effect on the average value of the response but do not impact variability. These

parameters, known as adjustment factors, are used to drive the quality characteristic to the

target value without increasing the variability.

After the system design and parameter design stages comes the third stage, tolerance

design. In this step we set tolerances (i.e., a range of admissible values) around the target

values of the control parameters identified in theparameter designphase.Wedo this only if the

performance variation achieved by the settings identified in the parameter design stage is not

acceptable. For instance, in the example concerning the diameter of collapsible tubes,

tolerances for the mold pressure could be x1±Δx1, or those for the pellet size could be

s0±Δs0, where Δx1 and Δs0 represent the permissible variabilities for mold pressure and

pellet size, respectively.

Tolerances that are too rigid or tight will increase manufacturing costs, and tolerances that

are too wide will increase performance variation, which in turn will increase the customer’s

loss. Our objective is to find the optimal trade-off between these two costs. Usually, after the

parameter design stage is completed and the parameter control settings are adjusted,

confirmation (or verification) experiments are conducted. These experiments reaffirm the

degree of improvement realized when the chosen parameter settings are used. It is possible

that the observed degree of variability of the performance characteristic is more thanwhat we

have inmind. If this is the case, tolerance designmay be needed to reduce the variability of the

input parameters, which will thereby reduce output variation.

Typical questions at this stage concern which parameters are to be tightly controlled. Cost

is always a factor here. In most cases, the costs of tightening the variability of control factors

differ. Here, again, a trade-off will be made on the effect of a parameter on the output

characteristic and the cost of tightening it to desirable bounds.

12-7 LOSS FUNCTIONS

As noted earlier, in the Taguchi philosophy, quality is the loss imparted to society from the

time a product is shipped. In the preceding section we extended this definition to include

the loss incurred while the product is being manufactured. The components of loss include

the expense, waste, and lost opportunity that result when a product fails to meet the target

value exactly. During production, costs such as inspection, scrap, and rework contribute to

loss. Although those costs are easy to account for, there are others that aremuchmore difficult
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tomeasure, such as the loss associatedwith customer dissatisfaction that arises fromvariation

in products and services.

Profit-increasing measures such as productivity improvement and waste reduction are

important, but they are bounded by such factors as labor and material costs and technology.

Real growth in market share, however, is very much influenced by society—that is, by

customer satisfaction. Price and quality are critical factors in this context. Any cost incurred

by the customer or any loss resulting frompoor qualitywill have a significant negative impact.

On the other hand, a satisfied customerwho realizes savings fromusing the product or service

will turn it over many times to greatly improve market share. These ideas lead us to conclude

that variability is the key concept that relates product quality to dollars. We can express this

variability through a loss function.

The quality loss function is stated in financial terms, which provides a common language

for various entitieswithin anorganization, such asmanagement, engineering, andproduction.

It can also be related to performancemeasures such as the signal-to-noise ratio, which is used

in the parameter design phase. The loss function is assumed to be proportional to the square of

the deviation of the quality characteristic from the target value. The traditional notion of the

loss function is that as long as the product’s quality characteristic is within certain

specification limits or tolerances, no loss is incurred. Outside these specifications, the loss

takes the form of a step function with a constant value. Figure 2-8 shows this traditional loss

function indicated by L0.

There are drawbacks inherent to this notion of loss function. Obviously, the function

makes no distinction between a product whose characteristic is exactly on target (atm) versus

one whose characteristic is just below the upper specification limit (USL) or just above the

lower specification limit (LSL). There will be performance differences in these products, but

the traditional loss function does not reflect these differences. Furthermore, it is difficult to

justify the sudden step increase in loss as the quality characteristic just exceeds the

specification limits. Is there a great functional difference between a product with a quality

characteristic value of USL� δ and one with a value of USL+ δ, where δ is very small and

approaches zero?Most likely, the answer is no.Additionally, it is unreasonable to say that the

loss remains constant, say at a value L0, for all values of the characteristic beyond the

specification limits. There will obviously be a significant functional difference between

products that are barely above theUSLand those that are far above theUSL.Thesedifferences

would cause a performance variation, so the loss to society would be different.

The Taguchi loss function overcomes these deficiencies, because the loss increases

quadratically with increasing deviation from the target value. In the following subsections

wediscuss expressions for the loss functions based on three situations: target is best, smaller is

better, and larger is better.

Target Is Best

Let’s consider characteristics for which a target (or nominal) value is appropriate. As the

quality characteristic deviates from the target value, the loss increases in a quadratic manner,

as shown in Figure 12-12. Examples of quality characteristics in this category include product

dimensions such as length, thickness, and diameter; a product characteristic such as the

viscosity of anoil; and a service characteristic such as thedegreeofmanagement involvement.

Taguchi’s loss function is given by

2
L�y� � k�y � m� �12-69� 
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FIGURE 12-15 Taguchi loss function indicating the degree of financial importance.

where k is a proportionality constant, m is the target value, and y is the value of the quality

characteristic. Note that when y=m (i.e., when the value of the quality characteristic is on

target), the loss is zero.

The constant k can be evaluated if the loss L(y) is known for any particular value of the

quality characteristic; it is influenced by the financial importance of the quality characteristic.

For instance, if a critical dimension of the brakingmechanism in an automobile deviates from

a target value, the loss may increase dramatically. Figure 12-15 shows three quality loss

functions with different degrees of financial importance. The steeper the slope, the more

important the loss function. In Figure 12-15, loss function A is more important than loss

functions B and C.

To determine the value of the constant k, suppose the functional tolerance range of the

quality characteristic is (m�Δ, m+Δ), as shown in Figure 12-12. This represents the

maximum permissible variation, beyond which the average product does not function

satisfactorily. An average customer viewpoint is represented. Suppose the consumer’s

average loss is A when the quality characteristic is at the limit of the functional tolerance.

This loss represents costs to the consumer for repair or replacement of the product, with the

associated dissatisfaction. Using eq. 12-69, we find the proportionality constant k as

A � kΔ2 or k � 
Δ

A
2

The loss function given by eq. (12-69) can be rewritten as

A 2
L�y� �  �y � m� �12-70� 

Δ2

The expected loss is the mean loss over many instances of the product. The expectation is

taken with respect to the distribution of the quality characteristic Y. We have

E�L�y�� � E�k�y � m�2� 
� k�variance of y � squared bias of y� �12-71� 
� k�Var�y� � �μ � m�2� � k�MSD� 
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FIGURE 12-16 Probability distributions of the quality characteristic.

n

Here, MSD represents the mean square deviation of y and is estimated as

�yi � m�2
i�1

MSD � 
n

over a sample of n items. In this expression,μ andVar(y) represent themean and variance of y,

respectively. Note that MSD(y)=Var(y) + (μ�m)2; that is, the mean square deviation of a

quality characteristic is the sum of the variance of the characteristic and the squared bias.

With theobjectiveofminimizing the expected loss, note that if themeanof the characteristic

is at the target valuem, the mean square deviation is just the variance of the characteristic. As

with parameter design, the variance of the response variable can be minimized by selecting

appropriate levels of the controllable factors to minimize the performance variation. Addi

tionally, the levels of the control factors that have a linear relationship with the response

variable can be changed to move the average of the response variable to the target value.

The form of the distribution of the quality characteristic also influences the expected

loss. Figure 12-16 shows two probability distributions of a quality characteristic.

Distribution A is a normal distribution with most of the product tightly clustered around

the target value. A small fraction of the product lies outside the specification limits.

Distribution B, on the other hand, is close to a uniform distribution. The product is

uniformly distributed over the range of the specification limits, with none of the product

lying outside. According to the traditional view, all of the product related to distribution B

will be considered acceptable. However, if we consider the more appropriate quadratic

loss function, the expected loss for the product from distribution A will be less than that

for distribution B. This is due to the fact that much more of the product from distribution

A is close to the target value, resulting in a lower expected loss.

Determination ofManufacturingTolerances The importance of realistic tolerances based

on customer satisfaction and thereby loss has been stressed previously. In the preceding

subsectionwe computed the proportionality constant k of the loss function in eq. (12-70).Now

suppose the question is, how much should a manufacturer spend to repair a product before
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FIGURE 12-17 Manufacturing tolerance for a situation in which target is best.

shipping it to the customer in order to avoid losses due to the product not meeting customer

tolerances? This amount represents the break-even point, in terms of loss, between the

manufacturer and the customer. Figure 12-17 shows the customer tolerance m±Δ, the

associated loss A, and the manufacturing tolerance m± δ associated with a cost B to the

manufacturer. This cost, B, is the cost of repairing an item, prior to shipping such that the item

will exceed the customer’s tolerance limits. The idea is that fixing a potential problem prior to

shipment reduces loss in the long rundue towear and tear of the product in its usage.Wewould

thus like to determine δ.

Based on the fact that the loss is A for customer tolerances of m±Δ, the value of the

proportionality constant k of the loss function is found to be k=A/Δ2. The loss function is

given by eq. (12-70). Now what happens to the manufacturing tolerance of m± δ and the

associated cost B? Using the loss function from eq. (12-70), we get

1=2
A

δ2
B

B � or δ � Δ �12-72� 
Δ2 A

Themanufacturing tolerances are then found asm± δ. As long as the quality characteristic

is within δ units of the target value m, the manufacturer will not spend any extra money.

When the characteristic is at δunits fromm, themanufacturer spends an amount equal toB,

on average, to repair the product. As the quality characteristic deviates farther from the target

value, the customer’s loss increases beyond acceptable limits. In the long run, the manufac

turer would be wise to spend an amount B in this situation, since the customer’s loss would

otherwise be much more, thereby increasing the societal loss. The manufacturing tolerances

are the limits for shipping the product.

Smaller Is Better

Now let’s consider quality characteristics that are nonnegative and forwhich the ideal value is

zero (i.e., smaller values are better). Characteristics such as the fuel consumption of an aircraft

or automobile, the wear of a bearing, an impurity in water, the shrinkage of a gasket, and

customer waiting time in a bank are examples of smaller is better.
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FIGURE 12-18 Loss function for a situation in which smaller is better.

Figure 12-18 shows the loss function for this case, which is given by

L�y� � ky2 �12-73� 
If the loss caused by exceeding the customer’s tolerance level Δ is A, the value of the

proportionality constant k in eq. (12-73) is k=A/Δ2.

The expected, or average, loss canbe found, asbefore, as the expectationwith respect to the

probability distribution of the quality characteristic. Thus, the expected loss over many

produced items is given by

E�L�y�� � kE�y2�
 
A A �12-74�� Var�y� � μ2 � MSD
Δ2 Δ2

n 2whereMSDrepresents themean square deviation and is estimated as � 1 y �=n for a samplei� i

of n items; Var(y) represents the variance of y, and μ is the mean value of y.

Larger Is Better

Finally,wehave quality characteristics that are nonnegative andhave an ideal target value that

is infinite (i.e., larger values are better). Examples include the weld strength in bridge beams,

the amount of employee involvement in quality improvement, and the customer acceptance

rate of a product. Here, no target value is predetermined.

Figure 12-19 shows the loss function for this case, which is given by

1
L�y� � k �12-75� 

2y

If the loss isAwhen the quality characteristic falls below the customer’s tolerance levelΔ,

the value of the proportionality constant k is given by k=AΔ2. The expected, or average, loss

is given by the expectation with respect to the probability distribution of the quality

characteristic. The expected loss is

1 1
E L�y�� � kE� � AΔ2E �12-76� 

2 2y y

The quantity E(1/y2) can be estimated from a sample of n items as
n

1=y2 =n.i�1 i
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FIGURE 12-19 Loss function for a situation in which larger is better.

Example 12-9 Customer tolerancesfor theheightofasteeringmechanismare1.5± 0.020m.

Foraproduct that justexceeds these limits, thecost to thecustomer forgettingitfixedis$50.Ten

products are randomly selected and yield the following heights (in meters): 1.53, 1.49, 1.50,

1.49, 1.48, 1.52, 1.54, 1.53, 1.51, and 1.52. Find the average loss per product item.

Solution Note that this is a situation in which target is best. The target value m is 1.5m.
2The loss function is given by L�y� � k�y � m� , where y represents the height of the steering

mechanism and k is a proportionality constant. Given the information

A 50
k � � � 125; 000

Δ2 �0:02�2
2The expected loss per item is given by E�L�y�� � 125;000E�y � 1:5� , where E(y� 1.5)2 is

estimated as follows:

10
2� 1:5

2 2 2
i�1

yi ��1:53 � 1:5� � �1:49 � 1:5� � �1:50 � 1:5� � . . .  � �1:52 � 1:5�2� � 
10 10

� 0:0049=10 � 0:00049

Hence, the expected loss per item is 125;000�0:00049� � $61:25:

Example 12-10 Refer to Example 12-9 concerning the height of a steeringmechanism. The

manufacturer is considering changing the production process to reduce the variability in the

output. The additional cost for the new process is estimated to be $5.50/item. The annual

production is 20,000 items. Eight items are randomly selected from the new process, yielding

the following heights: 1.51, 1.50, 1.49, 1.52, 1.52, 1.50, 1.48, 1.51. Is the new process cost-

efficient? If so, what is the annual savings?

2
Solution The loss function fromExample 12-9 is L�y� � 125;000�y � 1:5� . For the new

process, we estimate the mean square deviation around the target value of 1.5:

8
2�yi � 1:5�

2 2 2
i�1 �1:51 � 1:5� � �1:50 � 1:5� � � � � � �1:51 � 1:5�� 

8 8
� 0:0015=8 � 0:0001875
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The expected loss per item for the new process is

�125;000��0:0001875� � $23:44

The expected loss per item for the former process is $61.25, which represents a savings of

$61.25� $23.44= $37.81/item, and the added cost is only $5.50/item. Thus, the net savings

per item by using the new process is $37.81� $5.50= $32.31, making it cost-efficient.

The net annual savings compared to the former process is (20,000)(32.31)= $646,200.

Example 12-11 Refer to Example 12-9 concerning the height of a steeringmechanism. The

manufacturer decides to rework the height, prior to shipping the product, at a cost of $3.00 per

item. What should the manufacturer’s tolerance be?

2
Solution The loss function from Example 12-9 is L�y� � 125;000�y � 1:5� . Let the

manufacturer’s tolerance be given by 1.5± δ. We have

1=2

3
3 � 125;000δ2 or δ � � 0:0049

125;000

Thus, themanufacturer’s tolerance is 1.5± 0.0049m. For productswith heights that equal

or exceed these limits, themanufacturer should rework the items at the added cost of $3.00 per

item to provide cost savings in the long run. Otherwise, these items will incur a loss to the

customer at a rate of $50 per item.

12-8 SIGNAL-TO-NOISE RATIO AND PERFORMANCE MEASURES

To determine the effectiveness of a design, we must develop a measure that can evaluate the

impact of the design parameters on the output quality characteristic. An acceptable perfor

mance measure of the output characteristic should incorporate both the desirable and

undesirable aspects of performance. As noted earlier, the term signal, or average value of

the characteristic, represents the desirable component, which will preferably be close to a

specified target value. The term noise represents the undesirable component and is a measure

of the variability of the output characteristic, which will preferably be as small as possible.

Taguchi has combined these two components into one measure known as the signal-to-noise

(S/N) ratio. Mathematical expressions for the S/N ratio are dependent on the three situations

(target is best, smaller is better, and larger is better). A performance measure should have the

property that when it is maximized, the expected loss will be minimized.

Target Is Best

Equation (12-71) gives the expected loss associated with the output characteristic. It is

preferable for the output characteristic to be on target and at the same time for the variance to

be as small as possible.

Variance not Related to the Mean Note that the response variable Y is influenced by the

settings of the product and process parameters (x1, x2, . . ., xp). In the Taguchi method, we

determine the parameter settings that optimize the performancemeasure associated with Y. In

certain situations, the mean and the variance are functionally independent of each other. This

means that there are certain parameters known as adjustment parameters (noted earlier),

whose levels can be adjusted to change the average output characteristic level without
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influencing the variability in performance. The adjustment parameter can therefore be set to a

value such that the mean output is on target, making the bias equal to zero, without affecting

the variability.

In this situation, our main concern is to reduce the variance of the output characteristic. A

possible performance measure is given by

ξ � �log�variance of y� 

an estimate of which is the performance statistic given by

Z � �log�s2� �12-77� 

where s2 is the sample variance of y.

Note that the larger the performance statistic Z, the smaller the variability. The perfor

mance statistic given by eq. (12-77) is not a Taguchi performance statistic. One advantage of

this performance statistic is that the logarithmic transformation on the data often reduces the

dependence of the sample variance s2 on the sample mean �y, thus satisfying the assumption

that the variance is not related to the mean.

Variance Related to the Mean Here we assume that the standard deviation of the output

characteristic is linearly proportional to the mean and that the bias can be reduced

independently of the coefficient of variation, which is the ratio of the standard deviation

to themean. Thus, knowledge of the standard deviation by itselfmay not provide ameasure of

goodness of performance. For instance, suppose that the standard deviation of a part length is

1mm. Is this a superior process?Wecannot tell. However, ifwe know themean length,we are

in a position to make a judgment. A mean length of 15mmmight not reflect a good process,

whereas amean length of 100mmmight. The ratio of themean to the standard deviation could

be a good performance measure. Actually, the signal-to-noise measure proposed by Taguchi

is proportional to the square of the ratio of the mean to the standard deviation. An objective

would be to maximize this ratio.

Let’s consider an example in which one of three designs must be selected. Figure 12-20

shows the levels of themean and standard deviation of the output quality characteristic for the

FIGURE 12-20 Mean and standard deviation of output characteristic for three designs.
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three designs (indicated by points 1, 2, and 3) as well as the target valuem. Considering only

the standard deviation, we might be tempted to choose design 1, which has the smallest

standard deviation. However, it is offset from the target value of m. So, if an adjustment

parameter is identified, its setting can be changed to alter the mean of the output to the target

value. In the process of changing the mean to the target value, the standard deviation of the

output variable will increase linearly. The point indicated by 1´ in Figure 12-20 represents the
adjusted mean and standard deviation.

Similarly, for design 3, a downward adjustment in the mean value, point 3´ , could be

made, corresponding to a reduction in the standard deviation. For design point 2, whose

mean is at the target value, no adjustment is necessary. Comparing the three design points

whosemeans are at the target value, point 3´ has the smallest standard deviation. Therefore,

design point 3 should be selected because it maximizes the performance measure, which is

the ratio of the mean to the standard deviation. Even after the mean has been adjusted to the

target value, design point 3´ will still have the maximum value for the performance

measure.

The Taguchi method of parameter design involves trying to identify adjustment para

meters and their ranges for which the S/N ratio (which is proportional to the ratio of the mean

to the standard deviation) is constant. Figure 12-21 shows one such parameter where the S/N

ratio is nearly constantwithin the range of (a, b). The effect of a change in themean is linear as

the level of the parameter is varied. Thus, to adjust the mean to the target valuem, we change

the parameter setting to level c, andwe expect that the new standard deviationwill remain at a

minimum if, in fact, it were minimum before adjustment of the mean, since the S/N ratio is

assumed to be constant.

Taguchi’s S/N ratio for this case is given by ξ � μ2=σ2, where μ and σ represent the mean

and standard deviation of the output characteristic y, respectively. A related performance

statistic is

2

z � 10 log y �12-78�
2s

where �y and s denote the sample mean and sample standard deviation of the output

characteristic y, respectively. This statistic is maximized in the parameter design stage, and

the associated parameter levels are determined.

FIGURE 12-21 Effect of a parameter setting on the S/N ratio and themean of the output characteristic.



CRITIQUE OF S/N RATIOS 673

n

Smaller Is Better

The loss function in the case forwhich smaller values are better is givenby eq. (12-73), and the

expected loss is represented by eq. (12-74). Since these characteristics have an ideal target

value of zero, they can be considered as noise themselves. The performance measure is the

mean square deviation from zero, and the performance statistic that should be maximized in

the parameter design stage is given by

2yi
Z � �10 log i�1 �12-79� 

n

In some instances, a characteristic for which a smaller value is better is incorporated into

another characteristic in the experimental design and analysis phase. For instance, the surface

roughness on a bearing is a smaller-is-better characteristic by itself, but it could be treated as a

noise variable in a designwhere the output characteristic is the diameter of the bearing, which

is a target-is-best characteristic.

Larger Is Better

The larger-is-better case ismerely the inverse of the smaller-is-better case. The loss function is

given by eq. (12-75), and the expected loss is represented by eq. (12-76). The performance

statistic is given by
n

1=y2i
Z � �10 log i�1 �12-80� 

n

The goal is to determine the parameter settings that will maximize this performance

statistic.

12-9 CRITIQUE OF S/N RATIOS

To minimize expected loss, a good performance measure incorporates engineering and

statistical knowledge about the product and the process. Taguchi has proposed more than 60

signal-to-noise ratios for particular applications. Three such ratios are given by eqs. (12-78),

(12-79) , and (12-80); Taguchi advocatesmaximizing these ratios in experimental analysis as

a means of minimizing variability. If variability is minimized, the design will be robust, and

one of the major goals of Taguchi’s method will be met.

Taguchi’s S/N ratios have met with criticism, however. Let’s consider the ratio for the

target-is-best case given in eq. (12-78). This can be rewritten as

Z � 10 log�y2� � 10 log�s2� 
Thus, maximizing the performance statistic Z can be achieved through either a large

positive value or a large negative value of the mean�y, by a small value of the sample variance

s2, or by both. Taguchi’s S/N ratio measures the simultaneous effect of factors on the mean

response and the variability. If our objective is to reduce variability (as in the first step of

Taguchi’s two-step parameter design procedure), there is no guarantee that maximizing
2 2�Taguchi’s S/N ratio will achieve it. It is not clear that the transformation 10 log�y =s

separates the dispersion and location effects; hence, Taguchi’s two-step parameter design

approach is not fully justifiable on theoretical grounds.
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Additionally, if Taguchi’s S/N ratio ismaximized, it is assumed that having a unit increase

in log�y2� and having a unit decrease in log(s2) are equally desirable. This assumptionmay not

be justified in all circumstances. In certain situations, a reduction of variability could

overshadow the closeness to the target value.

One recommendation is to minimize log(s2) or to maximize – log(s2) in the first step of

the parameter design procedure. This performance measure is given in eq. (12-77). If the

mean and variability can be isolated, then the performance measure log(s2) can be

minimized in the first step by choosing appropriate parameter settings. In the next step,

the performance measure is the sample mean �y, which is used to determine the settings of

the adjustment factors such that the mean response is close to the target value. This

approach provides us with a better understanding of the process in terms of factors that

influence process variability.
2Hunter (1985) points out that oneway tomaximize theS/N ratio 10 log�y =s2� is to take the

logarithm of the y-values and then identify the factor-level settings that minimize the value of

s
2. Box (1986) argues that this S/N ratio can be justified if a logarithmic transformation is

needed to make the average and variance independent as well as to satisfy other assumptions

such as normality of the error distribution and constancy of the error variance. If s2 [or a

function of it, such as log(s2)] is to be used as a performance statistic in the first step, it is

preferable for the variance to be unrelated to the mean, because the mean is adjusted in the

second step.

The S/N ratios for the smaller-is-better and larger-is-better cases have similar disadvan

tages. It has been demonstrated in several simulation studies (Schmidt andBoudot 1989), that

the S/N ratios given by eqs. (12-79) and (12-80)may not be effective in identifying dispersion

effects; however, they do reveal location effects that are due to the mean. The S/N ratio given

by eq. (12-79) can be shown to be a function of the mean and the variance because

n
2yi n � 1i�1 2 2� y � s

n n

Thus, the location and dispersion effects are confounded in the S/N ratio.

An alternative measure designed to overcome some of the drawbacks of Taguchi’s S/N

ratio has been proposed byLeon et al. (1987). The study recommends a performancemeasure

that is independent of adjustment known as PERMIA. It involves a two-step procedure as

suggested by Taguchi. In the first step, PERMIA is used instead of the S/N ratio to determine

the parameter settings of the nonadjustment factors. The selection of the appropriate response

variable at this stage is important because this response variable should not depend on the

values of the adjustment factors. The second step is similar to Taguchi’s, in that levels of the

adjustment factors are determined in order to drive themean response toward the target value.

12-10 EXPERIMENTAL DESIGN IN THE TAGUCHI METHOD

At the coreofproduct andprocessdesign is theconceptof experimental design.Howwedesign

our experiments guides us in selecting combinations of the various factor levels that enable us

to determine the output characteristic and thereby calculate the performance statistic. The

matrix that designates the settings of the controllable factors (design parameters) for each run,

or experiment, is called an inner arraybyTaguchi; thematrix that designates the setting of the

uncontrollable or noise factors is called an outer array. Each run consists of a setting of the
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design parameters and an associated setting of the noise factors. The inner and outer arrays are

designated as the design and noise matrices, respectively.

For design factors that are quantitative, three levels are necessary to estimate the quadratic

(or nonlinear) effect, if any. If only two levels of a factor are tested, then only its linear effects

on the response variable can be estimated. One disadvantage of selecting three levels for each

design factor is that the number of experiments to be performed increases, which in turn

increases the cost of design.

Orthogonal Arrays and Linear Graphs

Once the design and noise factors and the number of settings have been selected, a series of

experiments is run to determine the optimal settings of the design parameters. Taguchi’s

two-step procedure for the parameter design phase is used here as well. Rather than run

experiments at all possible combinations of design and noise factor levels, Taguchi relies on

running only a portion of the total number of possible experiments using the concept of an

orthogonal array. The intent is to concentrate on the vital few rather than the trivial many

within the confines of engineering and cost constraints.

An orthogonal array represents a matrix of numbers. Each row represents the levels, or

states, of the chosen factors, and each column represents a specific factorwhose effects on the

response variable are of interest. Orthogonal arrays have the property that every factor setting

occurs the same number of times for every test setting of all other factors. This allows us to

make a balanced comparison among factor levels under a variety of conditions. In addition,

any two columns of anorthogonal array form a two-factor complete factorial design.Using an

orthogonal array minimizes the number of runs while retaining the pairwise balancing

property.

Orthogonal arrays are generalized versions of Latin square designs.Wehave seen that, in a

Latin square design, a blockingof two factors is accomplished.AGraeco-Latin square design

blocks in three factors. The concept of blocking in more than three factors may be conducted

through a generalizedGraeco-Latin square design, ofwhich orthogonal arrays are a subset. In

fact, all common fractional factorial designs are orthogonal arrays (see Table 12-28). Several

methods for constructing orthogonal arrays are provided by Raghavarao (1971). Taguchi

(1986, 1987) recommends the use of orthogonal arrays for the inner array (designmatrix) and

the outer array (noise matrix).

Taguchi uses linear graphs with the orthogonal arrays. These graphs show the assignment

of factors to the columns of the orthogonal array and help us visualize interactions between

factors. Table 12-30 shows several orthogonal arrays and their associated linear graphs.

The notation used in Table 12-30 is as follows. The orthogonal array represented by the L4

design is a half-replicate of a 23 full factorial experiment, in which three factors, each at two

levels, are considered. In the L4 design, four experiments are conducted (one-half of 23, the

full factorial experiment). The two levels of each factor are denoted by 1 and 2. Thus, in the

first experiment, each of the three factors is at level 1. In the fourth experiment, factors 1 and 2

are at level 2 and factor 3 is at level 1. The linear graph for the L4 table has two nodes, labeled 1

and 2, and an arc joining them labeled as 3. These numbers correspond to the columns of the

orthogonal array.

If the main effects of two of the factors are to be estimated, they should be placed in

columns 1 and 2 of the orthogonal array. Column 3 represents the interaction effect of the

factors assigned to columns 1 and 2. The implication is that such a design will not be able to

estimate the main effect of a third separate factor independent of the interaction effects
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TABLE 12-30E Orthogonal Arrays and Associated Linear Graphs: L16 (2
15) Series

L16 (2
15) Series

Factor

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1

2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1

7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2

15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

1 2 3 4

Groups

Linear graphs for L16 table:
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TABLE 12-30F Orthogonal Arrays and Associated Linear Graphs: L27 (3
13) Series

L27 (3
13) Series

Factor

Experiment

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

2

1

1

1

2

2

2

3

3

3

1

1

1

2

2

2

3

3

3

1

1

1

2

2

2

3

3

3

3

1

1

1

2

2

2

3

3

3

2

2

2

3

3

3

1

1

1

3

3

3

1

1

1

2

2

2

4

1

1

1

2

2

2

3

3

3

3

3

3

1

1

1

2

2

2

2

2

2

3

3

3

1

1

1

5

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

6

1

2

3

1

2

3

1

2

3

2

3

1

2

3

1

2

3

1

3

1

2

3

1

2

3

1

2

7

1

2

3

1

2

3

1

2

3

3

1

2

3

1

2

3

1

2

2

3

1

2

3

1

2

3

1

8

1

2

3

2

3

1

3

1

2

1

2

3

2

3

1

3

1

2

1

2

3

2

3

1

3

1

2

9

1

2

3

2

3

1

3

1

2

2

3

1

3

1

2

1

2

3

3

1

2

1

2

3

2

3

1

10

1

2

3

2

3

1

3

1

2

3

1

2

1

2

3

2

3

1

2

3

1

3

1

2

1

2

3

11

1

2

3

3

1

2

2

3

1

1

2

3

3

1

2

2

3

1

1

2

3

3

1

2

2

3

1

12

1

2

3

3

1

2

2

3

1

2

3

1

1

2

3

3

1

2

3

1

2

2

3

1

1

2

3

13

1

2

3

3

1

2

2

3

1

3

1

2

2

3

1

1

2

3

2

3

1

1

2

3

3

1

2

1

Linear graphs for L27 table:

2

Groups

3
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TABLE 12-30G Orthogonal Arrays and Associated Linear Graphs: L32 (2
1
× 49) Series

L32 (2
1
× 49) Series

Factor

Experiment 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2 2 2

3 1 1 3 3 3 3 3 3 3 3

4 1 1 4 4 4 4 4 4 4 4

5 1 2 1 1 2 2 3 3 4 4

6 1 2 2 2 1 1 4 4 3 3

7 1 2 3 3 4 4 1 1 2 2

8 1 2 4 4 3 3 2 2 1 1

9 1 3 1 2 3 4 1 2 3 4

10 1 3 2 1 4 3 2 1 4 3

11 1 3 3 4 1 2 3 4 1 2

12 1 3 4 3 2 1 4 3 2 1

13 1 4 1 2 4 3 3 4 2 1

14 1 4 2 1 3 4 4 3 1 2

15 1 4 3 4 2 1 1 2 4 3

16 1 4 4 3 1 2 2 1 3 4

17 2 1 1 4 1 4 2 3 2 3

18 2 1 2 3 2 3 1 4 1 4

19 2 1 3 2 3 2 4 1 4 1

20 2 1 4 1 4 1 3 2 3 2

21 2 2 1 4 2 3 4 1 3 2

22 2 2 2 3 1 4 3 2 4 1

23 2 2 3 2 4 1 2 3 1 4

24 2 2 4 1 3 2 1 4 2 3

25 2 3 1 3 3 1 2 4 4 2

26 2 3 2 4 4 2 1 3 3 1

27 2 3 3 1 1 3 4 2 2 4

28 2 3 4 2 2 4 3 1 1 3

29 2 4 1 3 4 2 4 2 1 3

30 2 4 2 4 3 1 3 1 2 4

31 2 4 3 1 2 4 2 4 3 1

32 2 4 4 2 1 3 1 3 4 2

1 2 3

Groups

Linear graph for L32 table:
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between the first two factors. Alternatively, if we have only two factors and we would like to

estimate their main effects and their interaction, then the two factors should be assigned to

columns 1 and 2, and their interaction should be assigned to column 3.

The linear graphs shown in Table 12-30 have different types of points, such as circles,

double circles, dots with circles, and completely shaded circles. These represent the degree of

difficulty associated with the number of changes that must be made in the level of a factor

assigned to the corresponding column. Table 12-30 shows such groups (groups 1–4) and the

associated difficulty of adjusting the factor levels, ranging from easy to difficult.

Let’s consider a situation where it is either very difficult or expensive to adjust the factor

level, in which case we prefer that the factor level not be changed anymore than is necessary.

An example might be the octane level of a gasoline; it is not feasible to change octane levels

frequently because a certain minimum quantity must be produced. Another example is the

setting of a pneumatic press, where the setup time is high. Frequent adjustments of settings

requires an unusual amount of downtime, making it cost-ineffective.

In thefirst columnof theL4 design, if themost difficult parameter is placed in column1and

the experiments are conducted in the order specified in the orthogonal array, then this factor is

changed only once. The first two experiments are conducted at the first level of the parameter,

and the last two experiments are conducted at the second level of the parameter. On the other

hand, the factor assigned to column 2 requires three changes. Column 1 has been assigned the

“easy” degree of difficulty (group 1) because it corresponds to the fewest number of factor

level changes. Columns 2 and 3 are placed in group 2, where the number of required changes

in levels is not as easy as that for column 1.

Similar interpretations hold for the other orthogonal arrays shown in Table 12-30. The

factor assigned to column 1 changes levels only once for each level at which it is tested.

Factors that are assigned to columns of increasing index need more setting changes to satisfy

the required levels of the orthogonal array. The linear graphs thus provide some guidance to

performing experiments in a cost-effectivemanner. Factorswhose levels are difficult or costly

to change should be placed in columns with low indices. Linear graphs also assist in

estimating interaction effects between factors. Desirable interactions between certain factors

should be assigned to appropriate columns in the orthogonal array, as found from the

associated linear graph.

The L8 (2
7) orthogonal array indicates the factor assignment levels for seven factors, each

at two levels. This is a fractional replicate of the full factorial experiment that requires a total of

27, or 128, experiments. The L8 orthogonal array needs only 8 experiments, making it

cost-effective relative to the full factorial experiment. Note that there are two linear graphs for

the L8 orthogonal array. From either of these graphs, we find that four main effects can be

estimated independently of the others if assigned to columns 1, 2, 4, and 7. If the interaction

effect between factors 1 and 2 is desired, it should be assigned to column 3.

TheL9 (3
4) orthogonal array represents the design forwhich four factors are varied at three

levels each. It is a fractional replicate of the full factorial experiment that needs 34, or 81,

experiments. The linear graph for the L9 orthogonal array shows that the main effects of two

factors can be estimated independently of the others if assigned to columns 1 and 2. Themain

effects of the two other factors cannot be estimated independently of the effects of the

remaining factors. They will be confounded by the interaction effects between the factors

assigned to the first two columns.

Table 12-30 also shows the orthogonal arrays and the associated linear graphs for several

other experiments. The array for the L16 (215) series shows the experimental layout for

estimating 15 factors, each at two levels. It requires 16 experiments. Three linear graphs for the
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L16 array are also shown. TheL18 (2
1
× 37) array shows the design for 1 factor at two levels and

7 factors at three levels each. A total of 8 factors are used, requiring 18 experiments. Themain

effects of two factors can be estimated independently of the others if assigned to columns 1 and

2. Other designs shown are the L27 (3
13) array for estimating 13 factors each at three levels,

requiring 27experiments; theL32 (2
1
× 49) array for estimating10 factors, 1 factor at two levels

and 9 others at four levels each, requiring a total of 32 experiments; and the L16 (4
5) array for

estimating 5 factors at four levels each, requiring 16 experiments.

Note that all possible interactions between factors cannot be estimated from the

orthogonal array; a full factorial experiment would be needed. Taguchi suggests that

interactions be ignored during the initial experiments, his rationale being that it is difficult

to identify significant interactions without some prior knowledge or experience. Unas

signed columns in the orthogonal array can be assigned to the possible interactions after

assigning the factors whose main effects are desirable.

Example 12-12 Aconsumermagazine subscription service has four factors,A,B,C, andD,

each to be analyzed at two levels. Also of interest are the interactions of B×C, B×D, and

C×D. Show the experimental design for this case.

Solution Since we have a total of seven factors (including the interactions, which are

treated like factors), each at two levels, we check the L8 (2
7) orthogonal array to seewhether it

can be used. From the first linear graph for L8 shown in Table 12-30, we assign factors to the

corresponding columns as shown in the linear graph in Table 12-31. Thus, the L8 array is the

appropriate choice.

TABLE 12-31 Allocation of Factors to Columns in an L8 Orthogonal Array

Factor

Experiment B C B×C D B×D C×D A

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Linear graph:
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The linear graphs can also be modified to estimate certain interaction effects. In the L8

orthogonal array, the estimation of seven factor effects is possible. The following example

shows an experimental design inwhichfivemain effects and twodesirable interactions can be

estimated.

Example 12-13 The rapid transit authority in a large metropolitan area has identified five

factors, A, B, C, D, and E, each to be investigated at two levels. Interactions A×C and A×D

will also be estimated. Determine an appropriate experimental design for estimating themain

effects and the two interactions.

Solution With a total of seven factors to estimate, each at two levels, we again consider

the L8 (2
7) orthogonal array and its second linear graph, which is shown in Table 12-30. The

linear graph shows the assignment of three interaction terms. However, we need to estimate

only two interactions. For the interaction that is not used, we remove the associated two

column numbers and treat them as individual points to be assigned to the main effects. The

linear graph shown in Table 12-32 shows our approach.

TABLE 12-32 Modifying L8’s Linear Graph to Estimate Interaction Effects

Factor

Experiment A C A×C D A×D B E

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Modification of linear graph:
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We initially assign factor A to column 1, factor C to column 2, and factor D to column 4.

Then, the interaction A×C is assigned to column 3 and the interaction A×D to column 5.

Since we don’t need to estimate a third interaction, we remove column numbers 6 and 7 from

the original graph and treat them as separate points. We assign the main effects of B and E to

columns 6 and 7, respectively, as shown in the modified graph. Table 12-32 also shows the

final assignment and the experimental design for estimating the required effects.

We must be careful, however, when we assign an interaction column to an independent

main effect. The interaction effect that would have occurred in that column will still be

present and will be confounded with the main effect. For this example, column 6, which

originally corresponded to the interaction between the factors assigned to columns 1 and 7

(i.e., A×E) will be confounded with B, which has been assigned to that column. Only under

the assumption that the interaction between A×E is insignificant can we estimate the

effect of B.

Asmentioned previously, Taguchi recommends verification experiments after the optimal

parameter levels have been identified. If the results associated with a main effect factor

assigned to an interaction column cannot be repeated, it might be a clue to analyze interaction

terms. Thewhole experimentmay have to be reconducted, taking into account the interaction

term in the design.

Another feature of linear graphs is their applicability to the construction of hybrid

orthogonal arrays. The number of levels of each factorwewant to testmay not always be the

same. For instance, an automobile insurance company may be interested in the impact of

several factors—the age of the applicant, the type ofwork performed, and the number ofmiles

commuted to work on a weekly basis—to determine the applicant’s probability of being

involved in an accident. Certainly, each factor need not be considered at the same number of

levels. For instance, the company might select five age classification groups, three work

classification groups, and four mileage classification groups. We would thus need a design

that incorporates a different number of factor levels. The following example demonstrates a

procedure that allows us to do this.

Example 12-14 A commercial bank has identified five factors (A, B, C, D, and E) that have

an impact on its volume of loans. There are four levels for factor A, and each of the other

factors is to be tested at two levels. Determine an appropriate experimental design.

Solution Wefirst calculate the number of degrees of freedomassociatedwith the factors.

The number of degrees of freedom for each factor is 1 less than the number of levels. The total

number of degrees of freedom associatedwith an orthogonal array is 1 less than the number of

experiments. The number required for this study is seven (three forAandone each forB,C,D,

and E). The number of degrees of freedom associated with the L8 orthogonal array is also

seven, one less than the total number of experiments. Thus, we can use the L8 array to select a

suitable hybrid design.

Eachcolumnin theL8arraycanhandlea two-level factor,whichmeans that ithasonedegreeof

freedom. Inourstudy, factorAis tobestudiedat four levels,needing threedegreesof freedom.We

thus allocate three columns to factor A, after they have been combined appropriately. Factors, B,

C,D, andE, eachwith one degree of freedom, are assigned to the remaining four columns.Which

three columns shouldwe allocate toA, and howdowe combine them?Weuse the linear graph to

determine this.Wemust identify a line in the graph that can be removedwithout affecting the rest

of the design (to the extent possible). Let’s consider the line segment joining nodes 1 and 2 in the

first linear graph for L8 shown in Table 12-30 (also shown in Table 12-33). Removing the line

segment and nodes 1 and 2 also removes node 3.
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TABLE 12-33 Creation of a Hybrid Orthogonal Array

Factor
New Assignment

Experiment A B C D E Columns 1,2,3 (Factor A)

1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 1 1 1 1

3 2 1 1 2 2 1 2 2 2

4 2 2 2 1 1 1 2 2 2

5 3 1 2 1 2 2 1 2 3

6 3 2 1 2 1 2 1 2 3

7 4 1 2 2 1 2 2 1 4

8 4 2 1 1 2 2 2 1 4

We then sequentially assign values to each unique combination generated by the removed

columns, 1, 2, and3.A newcolumn is created that combines the effects of these three columns.

For example, the combination (1,1,1) is assigneda level of 1, (1,2,2) is assigneda level of 2, and

so on. Table 12-33 shows the assignment of the levels of this new column, which is now

assigned to factor A. Note that it has four levels. The remaining factors B, C, D, and E

are assigned to columns 4, 5, 6, and 7 of the original L8 orthogonal array. In the hybrid

orthogonal design in Table 12-33, note that factor A has four levels, whereas B, C, D, and E

have two levels each.

Remember that interactioneffects are assumed tobe insignificant in the construction of this

design. Thus, since we have assigned factor C to column 5 of the original L8 array, the

interaction between the factors in columns 1 and 4 (in this case, A×B) is confounded with

the main effect of C. The main effect of factor C can therefore be estimated only under the

assumption that the interaction effect A×B is insignificant. Similar conclusions may be

drawn for the remaining factor assignments.

Estimation of Effects

Once the experimental design is selected, the factors are set at the levels indicated by the

chosen design, and experiments are conducted to observe the value of the response variableY.
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TABLE 12-34 Experimental Layout Using an L9 Inner Array and an L4 Outer Array

E 1 1 2 2

Noise Factors F 1 2 1 2

(L4 Outer Array) G 1 2 2 1

Design Factors

(L9 Inner Array)

Mean S/N

Experiment A B C D Response, y Ratio, Z

1 1 1 1 1 y11 y12 y13 y14 y1 Z1
2 1 2 2 2 y21 y22 y23 y24 y2 Z2
3 1 3 3 3 � � � � � � 
4 2 1 2 3 � � � � � � 
5 2 2 3 1 � � � � � � 
6 2 3 1 2 � � � � � � 
7 3 1 3 2 � � � � � � 
8 3 2 1 3 � � � � � � 
9 3 3 2 1 y91 y92 y93 y94 y9 Z9

The control factors are placed in an inner array (a selected orthogonal array) and the noise

factors in an outer array. The layout of such a design is shown in Table 12-34 in which four

control factors, A, B, C, and D, each at three levels, are placed in an L9 inner array, and three

noise factors, E, F, and G, each at two levels, are placed in an L4 outer array. The purpose of

includingnoise factors in the experiment is todetermine the levels of thedesign factors that are

least sensitive to noise.A robust design,which is oneof the principal objectives of theTaguchi

method, would thus be obtained.

The different combination levels of the noise factors are essentially treated as replications

for a given setting of the design factors. In Table 12-34 there are nine settings of the design

factors, based on theL9 orthogonal array. For each of these settings, there are four replications

corresponding to the setting of the three noise factors, based on anL4orthogonal array. For the

example in Table 12-34 a total of 36 experiments are conducted. For each setting of the design

factors, a measure of the mean and variability of the output characteristic can be calculated.

For instance, for experiment 1, where the design factors A, B, C, and D are each at level 1, let

the observed value of the response variable at the four noise factor settings be denoted by y11,

y12, y13, and y14. Themean of these four values is denotedby y1, and the value of the associated

S/N ratio is denoted by Z1. This computation is then repeated for the remaining runs. The

summary values of the mean response and the S/N ratio are then used in the analysis that

occurs in the parameter design phase.

Taguchi recommends analyzing the means and S/N ratios through simple plots and

summary measures to keep the analysis simple. The ANOVA procedures described previ

ously can also be used to determine significant factor effects (Minitab 2014; Peterson 1985).

However, we will only demonstrate a simple analysis using averages and plots.

First, we calculate themain effect of a factor by determining the average of the response

variable over all replications for a given level of the factor. For instance, the mean response

when factor A is at level 1 can be found for the example in Table 12-34 as follows:

y1 � y2 � y3
A1 � 

3
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Similarly, the mean responses when factor A is at levels 2 and 3, respectively, are

y4 � y5 � y6 y7 � y8 � y9A2 � ; A3 � 
3 3

In the same manner, the main effects of the remaining factors at each level are found. For

example, the mean response when factor B is at level 3 is

y3 � y6 � y9
B3 � 

3

The main effects are then plotted to determine the significance of the factor. In this

case, the values A1, A2, and A3 are plotted versus the three levels of factor A. If the plot is

close to a horizontal line, the implication is that factor A does not have a significant

impact. Figure 12-22 shows various possible effects of factor A on the average response.

Figure 12-22a depicts a situation where factor A’s main effect is not significant. Any level

of the factor produced about the same average response. To aid in selecting the level of

factor A here, additional criteria such as cost could be used.

On the other hand, if the plot resembles a nonlinear function, the regionwhere the curve is

flat is used to select the level of A that producesminimumvariability in the response variable.

Figure 12-22bdemonstrates this situation. To create a design that is robust to the noise factors,

we would choose level 2 of factor A, as it will lead to the smallest variability in the average

response. If factor A has a linear relationship with the average response, as shown in

Figure 12-22c, it could be used as an adjustment factor in the second step of the parameter

FIGURE 12-22 Effect of factor on response variable.
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design procedure. An adjustment factor is used to shift the average response toward a target

value without influencing its variability.

The preceding conclusions relating to the main effect of a factor are based on the

assumption that interaction effects between factors are insignificant. If interaction effects

are significant, it may not make sense to determine the significance of the main effects

independently of each other.

The interaction effectsbetween factorsmay also be estimated using a procedure similar to

that for themain effects of individual factors. The assumption is that the interaction effect has

been assigned an appropriate column using the linear graph and the orthogonal array. Let’s

consider the L9 orthogonal array and its associated linear graph. We assume that factor C in

Table 12-34 represents the interactionbetween factorsAandB.Note thatC,which isA×B, is

assigned to column 3 of the L9 array, which is in agreement with L9’s linear graph. We can

estimate the interaction effect betweenAandBby treatingC like anyother factor. Thus, using

Table 12-34, the average response when A×B is at level 1 is

y1 � y6 � y8�A � B�1 � 3

The average responses at the other levels of A×B are

y2 � y4 � y9 y3 � y5 � y7�A � B�2 � ; �A � B�3 � 3 3

These three averages are plotted against the levels ofA×B. If the plot is a horizontal line, it

implies that the interaction effect between A and B is not significant. In that case, we would

investigate the main effects of A and B to determine the optimal settings of the factor levels.

For significant interaction effects, the optimal level of each factor would be determined based

on the joint effect of both.

Example 12-15 Various components of a drug for lung cancer have positive and negative

effects depending on the amount used. Scientists have identified four independent factors that

seem to affect the performance of the drug. Each factor can be tested at three levels. Testing is

expensive. Determine an experimental design that will test the impact of these factors in a

cost-effective manner.

Solution We have four factors, A, B, C, and D, each at three levels, so the L9(3
4)

orthogonal array is appropriate. This design can test the effects of four factors, each at

three levels, in only nine experiments. However, because we have four independent

factors whose effects are to be estimated, it will be necessary to assume that the

interaction effects between factors are insignificant. For instance, if we consider the

linear graph for the L9 array, the interaction effect between the factors assigned to

columns 1 and 2 will be confounded with the main effects of those factors assigned to

columns 3 and 4. Our experimental design is to assign the following: factor A to column

1, B to column 2, C to column 3, and D to column 4. The interaction effect A×B will then

be confounded with the main effect of C, which is assigned to column 3. Also, interaction

effect A×B will be confounded with the main effect of D, which is assigned to column 4.

Weselect theL9orthogonal array and assign the four factorsA,B,C, andD to columns1, 2,

3, and 4, respectively. The response variable,measuring the impact of the drug, is recorded on

a coded scale for the nine experiments. The target value is zero, with the observed coded

responses being positive and negative. The experimental design and the values of the coded
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TABLE 12-35 Coded Response for Effect of Drug Due to Four Factors

Factor

Experiment A B C D Coded Response

1 1 1 1 1 �3.5
2 1 2 2 2 7.3

3 1 3 3 3 1.8

4 2 1 2 3 �4.4
5 2 2 3 1 9.5

6 2 3 1 2 �6.2
7 3 1 3 2 �4.0
8 3 2 1 3 2.4

9 3 3 2 1 �2.5

responsevariable are shown inTable 12-35.Onlyone replication is conducted for each setting

of the design factors, so the outer array of the noise factors is not shown. Determine the main

effects and plot the average response curves. What are the optimal settings of the design

parameters?

We calculate the main effects of each factor at the three levels, beginning with factor A,

where the average responses at levels 1, 2, and 3 are

A1 � ��3:5 � 7:3 � 1:8�=3 � 1:867

A2 � ��4:4 � 9:5 � 6:2�=3 � �0:367
A3 � ��4:0 � 2:4 � 2:5�=3 � � 1:367

For factors B, C, and D, the average responses are

B1 � �� 3:5 � 4:4 � 4:0�=3 � �3:967
B2 � �7:3 � 9:5 � 2:4�=3 � 6:400
B3 � �1:8 � 6:2 � 2:5�=3 � �2:300
C1 � �� 3:5 � 6:2 � 2:4�=3 � �2:433
C2 � �7:3 � 4:4 � 2:5�=3 � 0:133
C3 � �1:8 � 9:5 � 4:0�=3 � 2:433

D1 � �� 3:5 � 9:5 � 2:5�=3 � 1:167
D2 � �7:3 � 6:2 � 4:0�=3 � � 0:967
D3 � �1:8 � 4:4 � 2:4�=3 � � 0:067

The average response for each factor is then plotted against the factor levels, and the

corresponding graphs are shown in Figure 12-23. First, factors B and D clearly have a

nonlinear impact on the average response. To minimize the variability in the average

response and thus create a robust design, factors B and D are set at level 2. At these levels,

the response curve is approximately flat, making it less sensitive to variations resulting

from noise factors.

In the second step, to move the average response close to the target value of zero, we

manipulate the levels of factors that are linearly related to the average response, thereby not

affecting the variability thatwe attained in thefirst step.Wefind that factorsAandCeachhas a

nearly linear relationship with the average response. To move the average response close to

the target value of zero, adjustment factors A and C are each set at level 2. Hence, the optimal
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FIGURE 12-23 Average response curve for each factor.

settings are factor A at level 2, factor B at level 2, factor C at level 2, and factor D at level 2. In

practice, confirmation experimentswouldbe run at these levels to validate the results and/or to

come up with more refined settings that would reduce variability further.

12-11 PARAMETER DESIGN IN THE TAGUCHI METHOD

The focal point of theTaguchimethod is an economical quality design. Figure12-24 shows the

threephasesof theTaguchimethoddiscussedpreviously. In thesystemdesignphase, thedesign

engineerusespractical experience coupledwith scientific andengineeringprinciples to create a

functional design. Raw materials and components are identified, the sequential steps in the

process through which the product is to be manufactured are proposed and analyzed, tooling

requirements are studied, production constraints related to capacity are investigated, and all

other issues related to the creation and production of a feasible design are dealt with.

The second phase is parameter design, which involves determining influential parameters

and their settings. Usually, a subset of all possible parameters is selected and analyzed in an

experimental framework.The experimentsmaybe conductedphysically or through computer

simulation. The latter is more cost-effective. However, in order to use computer simulation,

we must first establish mathematical models that realistically describe the relationships

between the parameters and the output characteristic. In step 1 of this phase, the levels of the

selected design parameters that maximize a performance statistic such as the signal-to-noise

ratio are determined. The nonlinearity in the relationship between the S/N ratio and the levels

of the design parameters is used to determine the optimal settings. The idea is to reduce the

performance variability and create a design that is robust to noise factors (such as those due to

variation in incoming raw materials and components, manufacturing, and product use). For

example, the settings of design parameters (such as depth of cut, rate of feed of tool, amount of

catalyst, and number of servers in a fast-food restaurant) that maximize the performance

statistic could be determined. When a nonlinear relation exists between the parameter level

and the performance statistic, this approach will minimize the sensitivity of the performance

statistic to input variations.

The second step is to identify parameters that have a linear relationship with the mean

response. Settings for these parameters are chosen to adjust the average response to the
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FIGURE 12-24 The three phases of the Taguchi method.

target value. Such parameters are also known as control, or adjustment, factors. By

exploiting the linearity of the relationship, it is hoped that adjustment of the factor levels

will not affect the variability. Examples include the specific gravity of a liquid, the time that

a hot specimen is immersed in a bath, the concentration of a solution, and so on. The factors

will depend on the product and the process. Following selection of the optimal parameter

and adjustment factor levels, Taguchi recommends running confirmation experiments to

verify the chosen settings. The results can also be used to identify factors that are not very

sensitive to the performance statistic. The settings of these factors can also be chosen to

minimize cost.

The purpose of the third phase, tolerance design, is to determine tolerances, or permissible

ranges, for the parameter and factor settings identified in the parameter design phase. The

phase is utilized only if the variability of the performance statistic exceeds our desirable levels.

Setting such tolerances around the target values helps stabilize the performance measure. The

objective of this phase is to further reduce the variability of the performance measure from

what was achieved in the parameter design phase. Along the same lines, the tolerances of

parameters that have no significant influence on the performance statistic can be relaxed in

order to reduce costs.

The parameter design phase is emphasized in the Taguchi approach. Although many

companies spend more than 60% of their design activity on system design, they ignore
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parameter design. Reducing cost and achieving quality at the same time is more likely

achieved through careful parameter design. System design may come up with a multitude of

designs, but it does not test for the sensitivity of the desired output to the input factors in order

to come up with a cost-effective design.

Let’s consider, for example, a situation in which a transportation company is expected to

meet growing demand and ship goods with as small a deviation from the target date as

possible.An important factor is the typeof truck,whichhas three possible levels.Using anew-

model truck, which costs more than existing ones but is dependable and efficient, becomes

level 1. Downtime of the new trucks is small, and fuel efficiency is high. The existing-model

trucks, level 2, cost less than the new trucks but break down more frequently and get poorer

gas mileage. Subcontracting the major routes, where the level of profit margin is low, is

assigned to level 3. In the parameter design phase, we might find that level 1 maximizes a

chosenperformance characteristic (say, total profit),minimizes its variability, and is also cost-

effective.

Application to Attribute Data

Our discussion of design and analysis using the Taguchi method has dealt with variable data.

Variable data have obvious advantages over attribute data in that they provide a quantitative

measure of the degree to which the response variable comes close to a target value. For

instance, if we aremeasuring the carbonmonoxide concentration in car exhaust, variable data

will show theprecise concentration as anumerical value, say0.25.On the other hand, attribute

data may indicate levels of carbon monoxide concentration grouped into such categories as

poor, acceptable, and highly desirable. The subjective judgment of the experimenter often

influences the category to which the response variable is assigned. For example, consider a

food taster in a restaurant who has to classify a menu item as undesirable, fair, good, or

excellent. Based on the qualitative opinion of the taster, which could be influenced by

personal bias and past experiences, a rating would be assigned. The same food item could get

different ratings from different tasters.

The design and experimental layout when the response variable is an attribute is similar to

when data are variable. The difference is in the observation of the output variable, which is

now classified as an attribute, and its analysis. To keep the analysis simple, the accumulation-

type method to analyze the results is discussed. Using summary statistics from this

accumulationprocedure, the optimal level of the parametersmaybe selected. The following

example illustrates the procedure.

Example 12-16 A financial analyst wishes to investigate the effect of four factors on a

customer’s ability to repay loans. The annual income level (factor A) is represented by three

levels: less than $50,000 (level 1), between $50,000 and $90,000 (level 2), and over $90,000

(level 3). The number of years of job experience (factor B) is represented by three levels: less

than one year (level 1), between one and four years (level 2), and over four years (level 3). The

amount of outstanding debt (factor C) is represented by three levels: less than $20,000

(level 1), between $20,000 and $40,000 (level 2), and over $40,000 (level 3). The number of

dependents (factor D) is represented by three levels: less than three (level 1), between three

and five (level 2), and more than five (level 3). The ability to repay loans is measured by

outcomes classified into three categories: loan repaid (category R), loan payment disrupted

but eventually repaid (category E), and loan defaulted (category F).
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TABLE 12-36 Experimental Layout and Outcomes Classified as Attributes

Outcome

Factor Loan Loan Payment Disrupted Loan

Experiment A B C D Repaid (R) but Eventually Paid (E) Defaulted (F)

1 1 1 1 1 0 1 0

2 1 2 2 2 1 0 0

3 1 3 3 3 0 0 1

4 2 1 2 3 0 1 0

5 2 2 3 1 0 0 1

6 2 3 1 2 1 0 0

7 3 1 3 2 0 1 0

8 3 2 1 3 1 0 0

9 3 3 2 1 1 0 0

Solution Given the four factors at three levels each, anL9 (3
4) orthogonal array is selected

for the parameter design of the controllable factors. Nine experiments are conducted, and the

results of each experiment are shown in Table 12-36. The outcome for each experiment is

denoted by a 1 or 0 under the categories R, E, and F.

An accumulation analysis is conducted as follows. For each factor at each level, we

determine the total number of times the outcomes are in one of the three categories (R, E, and

F) and calculate the percentage of time each of them occurs. Table 12-37 shows the

summarized accumulation results. For example, when A is at level 1, denoted by A1, one

loan was repaid (R), one had payment disrupted but eventually repaid (E), and one had

defaulted (F). For a total of three loans studied at this level, 33.333% occurred in each of the

outcome categories R, E, and F. Similar analyses are conducted for all of the factors at each of

their levels.

The choice of factor levels would be influenced by the degree to which we tolerate the

defaulting loan payments. For example, suppose that borrowerswhodefault are not acceptable

at all,whereas thefinancial analyst is somewhat tolerant of borrowerswhodisrupt payment but

TABLE 12-37 Accumulation Analysis of Observed Attribute Outcomes

Accumulated Outcomes Percentage

Factor Level R E F R E F

A1 1 1 1 33.333 33.333 33.333

A2 1 1 1 33.333 33.333 33.333

A3 2 1 0 66.667 33.333 0.0

B1 0 3 0 0.0 100.0 0.0

B2 2 0 1 66.667 0.0 33.333

B3 2 0 1 66.667 0.0 33.333

C1 2 1 0 66.667 33.333 0.0

C2 2 1 0 66.667 33.333 0.0

C3 0 1 2 0.0 33.333 66.667

D1 1 1 1 33.333 33.333 33.333

D2 2 1 0 66.667 33.333 0.0

D3 1 1 1 33.333 33.333 33.333
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eventually repay their loans. We find that the chosen level of factor A is A3, which yields the

highest percentage of loans that are repaid, and no loan defaults, meeting the specified

requirements. The financial manager would therefore select candidates whose income level

exceeds $90,000 (level A3) for consideration. For factor B we find that 66.667% of loans are

repaid for levels B2 andB3, the highest in that category.However, each of these two levels also

results in 33.333% defaulted loans. If the analyst is intolerant of borrowers who default, the

chosen level of factor BmaybeB1.At this level ofB1, even thoughnone of the loans are repaid

without interruption, none of the loans are defaulted. Based on similar reasoning, for factor C,

either of levels C1 or C2 is preferable; the final choice would be based on other considerations.

Finally, for factor D, level D2 would satisfy the desired requirements. Thus, the factor settings

for each of the four factors are determined.

12-12 CRITIQUE OF EXPERIMENTAL DESIGN AND THE TAGUCHI

METHOD

Several criticisms of the Taguchi method (Montgomery 2013a; Nair 1992; Tsui 1992) are of

interest. As discussed earlier, Taguchi advocates the use of orthogonal arrays, several of

which are shown in Table 12-30, in his experimental design. Examples include two-, three-,

and four-level fractional factorial experiments. For example, the L8 array is really a 27–4

fractional factorial experiment. The disadvantage of an orthogonal array is that the alias

structure is not readily apparent from the design. It can be shown that the alias structure for

this L8 design is such that main effects are confoundedwith two-way interactions. This could

lead to inaccurate conclusions because an inference on the significance of a main effect

depends on the interaction effect. Only if the interaction effect is insignificant will our

conclusions drawn on the main effects hold.

Additionally, the alias structure for orthogonal arrayswith three ormore levels ismessy. In

fact, it is possible to find fractional factorial experiments with more desirable alias structures.

For example, we can find a 24–1 fractional factorial experiment that will have a total of eight

experiments (as in the L8 design) such that the main effects will be confounded with three-

factor interactions. This is preferable to the L8 designwheremain effects are confoundedwith

two-factor interactions.

Three types of interactions are possible in parameter design experiments: among design

parameters, between design parameters and noise parameters, and among noise parameters.

Taguchi, even thoughhe recognizes interactions between design parameters, downplays their

importance relative to the main effects. He proposes the inclusion of as many design

parameters as possible, based on the number of experiments chosen. For example, using

an L9 orthogonal array, for which eight factors can be estimated, Taguchi advocates testing

eight design parameters rather than a few important design parameters and possible two-way

interactions between some of them. This is a potential drawback. Taguchi prefers using three

ormore levels of the factors to estimate curvature (nonlinear effects) rather than investigating

potential interactions.

An alternative procedure could be to identify possible main effects and important

interactions and then to consider curvature in the important variables. This may lead to a

simpler interpretation of the data and better understanding of the process.

Perhaps a more important concern is the inclusion of the correct variables in the

experiment. Out of all possible parameters, which are the key ones? Have they all been

included in the design? In response to these issues, Taguchi’s parameter design procedure is a
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form of screening design. Critiques suggest that other forms of design such as response

surface designs are equally effective (Box and Draper 1986). Response surface methodolo

gy, originally developed by Box and Wilson (1951), attempts to determine the shape of the

response function and its sensitivity to the parameter design factors. It determines points of

maxima and minima and the region in the design parameter space where these occur. The

advantage of these response surface methods is that they help us understand the nature of the

response function and thereby the process. Improved product and process designs are thus

facilitated. Knowledge of themodel, relating the response variable or performance statistic to

the design factors and/or their function, is important.

The Taguchi method attempts to identify the factors that most influence variability of the

performancemeasure. It does not focus on the reasonwhy this happens. InTaguchi’smethod,

the focus is on whether the variability is most influenced by the main effects, by interactions,

or by curvature. On the other hand, alternative designs using fractional factorial experiments

attempt to identify which components cause the variability to happen and the nature in which

they contribute to the variability. The result is that we understand the underlying causes rather

than merely identify the significant factors.

Another criticism of the Taguchi method of experimental design is that the adoption of the

inner- and outer-array structure leads to a larger number of experiments. Furthermore,

sometimes we cannot even estimate the two-factor interactions between the design para

meters. The L9 array allows us to estimate only four factor effects. Alternative experimental

designs using fractional factorials may be found that are superior to the one proposed by

Taguchi.One example is the 27–2 fractional factorial experiment,which accommodates seven

factors, A through G. If the defining contrasts are I=ABCDF=ABDEG, none of the main

effects are aliased with two-factor interactions. Moreover, only 32 runs are required.

Some researchers maintain that, in general, the inner- and outer-array approach is

unnecessary. They prefer a strategy that uses a single array that accommodates both design

and noise factors. If defining contrasts are properly chosen, not only the main effects but also

desirable interactions can be estimated, and at a lower cost because of fewer experiments that

are required.

In the context of experimental design, the linear graphs provided by Taguchi seem to have

been developed heuristically. Their usemay lead to inefficient designs, as we have seen in the

case where main effects are confounded with two-way interactions. A better approach could

be to use a design that specifies the complete alias structure.

The Taguchi method uses marginal averages to determine optimal parameter levels.

However, Taguchi’s procedure for computingmarginal averagesmaynot, in general, identify

the optimal settings because it ignores the interaction effects between the parameters.

However, when interaction effects are not pronounced, Taguchi’s approach allows the

optimal setting to be approximated. The use of marginal averages is analogous to the

one-factor-at-a-time approach, the disadvantages of which we have previously discussed.

Furthermore, marginal averages implicitly assign values for factor-level combinations that

are not included in the orthogonal array. The method of assignment forces the interactions to

be approximately zero, which may not be the case in practice. Obviously, it is difficult to

estimate the value of the response variable for missing factor combinations without knowing

the response surface.

In Taguchi’s parameter design procedure, it is implicitly assumed in using the S/N ratio as a

performance measure that the standard deviation of the response is linearly proportional to its

mean. This may not be valid in all situations. Furthermore, the knowledge gained through

sequential experimentation is not used. In maximizing the S/N ratio, we need to be aware that
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themaximization is occurringonly over the designpoints considered in thedesign andnot over

the entire feasible region defined by the design parameters. In practice, optimizing a nonlinear

function, such as theS/N ratio, subject to constraints on theboundsof the factor levelsmight be

more appropriate, in which case nonlinear programming techniques would be used.

Although these views represent themajor criticisms of the Taguchimethod, there is still an

important place in the field of quality control and improvement for this technique. Taguchi’s

ideas concerning the loss function have changed thewaywe think in terms of the definition of

quality. The challenge of meeting zero defects, whereby all products are within certain stated

specifications, is not enough. Being close to the target value with minimum variability is the

real goal. Quality engineering principles that are based on developing product and process

designs that are insensitive to environmental factors, are on target with minimum variability,

and have the lowest possible cost are enduring ideas.

Taguchi’s ideas have motivated many practitioners to focus on achieving quality through

design by conducting and analyzing experimental results. Creating a loss function in financial

terms that is easily understood by operating personnel and management is a major impact of

his philosophy and design procedure. Everyone relates to a bottom line, for example, expected

loss, when stated in dollars. Taguchi believes in a simplistic and economical design of

experiments where the goal is to identify a combination of design parameters that achieves a

better level of the performance criteria, which may not necessarily be optimal. However, the

added cost of obtaining an optimal design may be prohibitive relative to the gain in the

performance criteria. Thus, what Taguchi offers is a good and close-to-optimal solution at a

reduced cost. Manufacturing and service industries can always view his method in this light

and use it as a stepping stone for subsequent improvement through refined analyses.

SUMMARY

This chapter has examined some fundamental concepts of experimental design. With the

objective of achieving quality at a reduced cost, this chapter has discussed procedures through

which the impact of design factors on the performance of the product or process can be

analyzed. Traditional experimental designs such as the completely randomized design,

randomized block design, and Latin square design have been presented. In an effort to

achieve a desired combination of parameter levels, the purpose of assigning a certain level to

each parameter is to ensure that the process of estimating the effects of these parameters is not

biased.Thenotionofdetermining the significanceof a factor in termsof themean square of the

error component is a central concept in the analysis of variance. The basis for the evaluation

process using ANOVA procedures has been illustrated.

Factorial and fractional factorial experiments have been discussed. A full factorial

experiment represents all possible combinations of the various factors. A fractional factorial

experiment represents a subset of the full factorial experiment, with the experiments selected

in such amanner that desirable effects can be estimated. For factorial experiments, the role of

contrasts in estimating the treatment effects has been discussed. The procedure of blocking to

increase the precision of the experiment, as achieved through the principle of confounding,

has been demonstrated. Procedures for selecting fractional replicates of the full design, in

which it is desirable to reduce the size of the experiment, have also been presented. This

chapter has provided a foundation for product and process design by introducing some

common designs and methods for analyzing data using those designs. Inferences from such

analysis help us determine treatments that can favorably affect the response.
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This chapter has also presented concepts and procedures associated with the Taguchi

method of design and analysis. Taguchi’s philosophy has been described, and his contribu

tions to the area of quality improvement through design have been discussed. The Taguchi

loss function, which is a measure of the deviation of an output characteristic from a target

value, has beenexplained; the three phases of theTaguchimethod—systemdesign, parameter

design, and tolerance designs—have been presented.

Since parameter design is the important phase in this sequence, it has been discussed in

more detail. The objective is to create a design that is robust to the uncontrollable factors

andwill also achieve a desired target valuewith the least variability. Performancemeasures

such as the signal-to-noise ratio have been introduced. Cost is a key consideration in the

Taguchi approach, with the idea of obtaining the best possible design at the lowest possible

cost.
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EXERCISES

Discussion Questions

12-1 Distinguish between factor, treatment, and treatment levels in the context of a health

care facility.

12-2 Explain the importance of experimental design in quality control and improvement

for a financial institution.

12-3 Explain the principles of replication, randomization, and blocking and discuss their

roles in experimental design in a semiconductor manufacturing company.

12-4 Explain the concept of interaction between factors and give some examples in the

entertainment industry.

12-5 What is the difference between qualitative and quantitative variables? Give ex

amples of each in the transportation industry. Which of these two classes permit

interpolation of the response variable?

12-6 What is the difference between a fixed effects model and a random effects model?

Give some examples in the logistics area.

12-7 Explain the difference between the completely randomized design and the random

ized block design. Discuss in the context of a gasoline refining process. Under what

conditions would you prefer to use each design?

12-8 Distinguish between a randomized block design and a Latin square design.What are

the advantages and disadvantages of a Latin square design?

12-9 Explain why it does not make sense to test for the main effects in a factorial experi

ment if the interaction effects are significant.
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12-10 What is the utility of contrasts in experimental design?What are orthogonal contrasts

and how are they helpful?

12-11 What are the features of a 2k factorial experiment? What are the features of a 2k–2

fractional factorial experiment and how is it constructed?

12-12 Clearly distinguish between the principles of confounding and fractionalization.

12-13 What is the role of a defining contrast, or generator, in fractional factorial experi

ments? Distinguish between a principal fraction and an alternate fraction.

12-14 Discuss Taguchi’s philosophy for quality improvement. Discuss his loss function

and its contributions.

12-15 Compare and contrast Taguchi’s loss functions for the situations target is best,

smaller is better, and larger is better. Give examples in the hospitality industry.

12-16 Discuss the signal-to-noise ratio. How is it used in the Taguchi method? What is an

adjustment parameter and how is it used?

Problems

12-17 A large retail company has to deliver its goods to distributors throughout the country.

It has been offered trial-run services by three transportation companies. To test the

efficiency of these three companies, it randomly assigns its outgoing product

shipments to these transporters and determines the degree of lateness as a proportion

of the time allocated for delivery. Table 12-38 shows the degree of lateness of the

three companies for five shipments,

(a) Is there a difference in the mean degree of lateness of the three transportation

companies? Test at the 10% level of significance.

(b) Find a 95% confidence interval for the mean degree of lateness of company 1.

(c) Find a 90% confidence interval for the difference in the mean degree of lateness

of companies 2 and 3. Canwe conclude that there is a difference in theirmeans at

the 10% level of significance?

(d) Which company would you choose? Why?

TABLE 12-38

Transportation

Company Degree of Lateness Values

1

2

3

0.04

0.15

0.06

0.00

0.11

0.03

0.02

0.07

0.04

0.03

0.09

0.04

0.02

0.12

0.05

12-18 An airline is interested in selecting a software package for its reservation system.

Even though the companywould like tomaximize use of its available seats, it prefers

to bump as few passengers as possible. It has four software packages to choose from.

The airline randomly chooses a package and uses it for a month. Over the span of a
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year, the company uses each package three times. The number of passengers

bumped for each month for a given software package is shown in Table 12-39.

(a) Is there a difference in the software packages as measured by the mean number

of passengers bumped? Test at the 5% level of significance.

(b) Find a 90% confidence interval for the mean number of passengers bumped

using software package 2.

(c) Find a 95% confidence interval for the difference in the mean number of

passengers bumped using software packages 1 and 2. Is there a difference in their

means at the 5% level of significance?

(d) Which software package would you choose?

TABLE 12-39

Software Package Passengers Bumped

1 12 14 9

2 2 4 3

3 10 9 6

4 7 6 7

12-19 Three training programs are being considered for auditors in an accounting firm. The

success of the training programs is measured on a rating scale from 0 to 100, with

higher values indicating a desirable program. The company has categorized its

auditors into three groups, depending on their number of years of experience. Three

auditors are selected from each group and are randomly assigned to the training

programs. Table 12-40 shows the ratings assigned to the auditors after they

completed the training program.

(a) Is there a difference in the training programs as indicated by themean evaluation

scores? Test at the 10% level of significance.

(b) Find a 90% confidence interval for the difference in themean evaluation scores of

training programs 1 and 3. Is there a difference between these two programs?

TABLE 12-40

Training Programs

Years of Experience 1 2 3

0–5 70 65 81

5–10 75 80 87

10–15 87 82 94

12-20 A doctor is contemplating four types of diet to reduce the blood sugar levels of

patients. Because of differences in the metabolism of patients, the doctor categorizes

the patients into five age groups. From each age group, four patients are selected and

randomly assigned to the diets. After twomonths on the diet, the reduction in patients’

blood sugar levels is found. The results are shown in Table 12-41.

(a) Is there a difference in the diet types as evidenced by themean reduction in blood

sugar level? Test at the 5% level of significance.
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TABLE 12-41

Diet Type

Patient Age Group 1 2 3 4

20–30

30–40

40–50

50–60

60–70

40

60

65

30

45

70

80

60

50

55

35

65

60

40

50

40

60

50

20

30

(b) Find a 90% confidence interval for the mean reduction in blood sugar level for

diet type 1.

(c) Find a 95% confidence interval for the difference in the mean reduction in blood

sugar levels between diet types 2 and 4. Is there a difference between the two diet

types?

(d) Which diet type would you prefer?

12-21 A consulting firm wishes to evaluate the performance of four software packages (A,

B, C, and D) as measured by the computational time. The experimenter wishes to

control for two variables: the problem type and the operating system configuration

used. Four classes of each of these two variables are identified. Each software

package is used only once on each problem type and only once on each operating

system configuration. Table 12-42 shows the computational times (ms) for the four

software packages under these controlled conditions.

(a) Test at the 5% level of significance for the equality of the mean computational

times of the four software packages.

(b) Find a 95% confidence interval for the mean computational time using software

package C.

(c) Find a 95% confidence interval for the difference in the mean computational

times of software packages A and C. Is there a difference between the two?

(d) Which software package would you choose and why?

(e) Was blocking of the two variables, problem type and operating system

configuration, effective?

(f) If you had to rerun the experiment, what type of design would you use?

TABLE 12-42

Operating System Configuration

Problem Type I II III IV

1 B 14.2 A 37.3 D 24.3 C 22.6

2 D 18.5 C 18.1 B 27.4 A 39.6

3 A 36.1 B 16.8 C 13.2 D 20.3

4 C 17.5 D 24.6 A 36.7 B 19.5

12-22 Two controllable factors, temperature and pressure, are each kept at three levels to

determine their impact on the ductility of an alloy being produced. The temperature

levels are 150, 250, and 300 °C, respectively. Pressure is controlled at 50, 100, and
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150 kg/cm2. Each of the nine treatments is replicated five times. The ductility of the

produced alloy is shown in Table 12-43. The higher the value, the more ductile the

alloy.

(a) Test whether the interaction effects between temperature and pressure are

significant at the 5% level of significance.

(b) What are the desirable settings of the process temperature and pressure if a

ductile alloy is preferred?

(c) Find a 90% confidence interval for the mean ductility when the process

temperature is set at 150 °C and the pressure at 150 kg/cm2.

(d) Find a 95% confidence interval for the difference in mean ductility for a process

temperature of 250 °C and pressure of 150 kg/cm2 versus a process temperature

of 300 °C and pressure of 100 kg/cm2.

TABLE 12-43

Pressure (kg/cm2)

Temperature (C °) 50 100 150

50 44 75

65 49 80

150 70 52 81

73 40 76

68 45 82

40 25 86

45 30 88

250 56 20 82

50 33 81

52 34 76

72 62 60

60 71 62

300 75 65 55

73 68 52

70 72 50

12-23 Consider Example 12-4 concerning the efficiency of synthetic fuel for which the

factors are an additive and a catalyst. The original data are given in Table 12-19. The

experiment is conducted using only five randomly chosen automobiles (A, B, C, D,

andE). Each treatment is used on each automobile. The reason for choosing onlyfive

automobiles and replicating the experiment is to eliminate any variation in the fuel

efficiencies that might arise due to differences in the automobiles. The data in Table

12-19 is interpreted as follows. For additive level I and catalyst level 1, the response

value is 75 for automobile A, 72 for automobile B, and so forth. Similar inter

pretations hold for the other treatments.

(a) What is your conclusion regarding the significance of the factors or their

interactions? Test at the 5% level of significance.

(b) Find a 95% confidence interval for the mean efficiency when the additive is at

level I and the catalyst is at level 2.
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(c) Find a 95% confidence interval for the difference in the treatment means when

the additive is at level I and the catalyst is at level 3 versus when the additive is at

level II and the catalyst is at level 3. What is your conclusion?

(d) What levels of additive and catalyst would you prefer to choose?

(e) Was it beneficial to select only five automobiles and replicate the treatments on

only those automobiles? Test at the 5% level of significance.

12-24 Refer to Exercise 12-17.

(a) Is there a difference between the mean degree of lateness of company 3 and that

of the averages of companies 1 and 2? Test at the 5% level of significance.

(b) Find a 90% confidence interval for the contrast defined in part (a).

12-25 Refer to Exercise 12-18.

(a) Is there a difference in the mean number of passengers bumped using software

packages 1 and 2 from that using software packages 3 and 4? Test at the 10%

level of significance.

(b) Find a 95% confidence interval for the contrast that tests for the difference in the

mean number of passengers bumped using software package 3 and the average

of that using software packages 1 and 2.

12-26 Refer to Exercise 12-19. Find a 90% confidence interval for the difference in the

mean effectiveness of program 1 and the average of that using programs 2 and 3.

12-27 Refer to Exercise 12-19. Consider the following two contrasts of totals: (1) differe

nce between the totals for training programs 1 and 3; (2) difference between the

totals for the sum of training programs 1 and 3 and twice that of training program 2.

(a) Find the sum of squares due to each of these two contrasts.

(b) What null hypothesis is indicated by contrast 2? Test the hypothesis at a level of

significance of 0.05 and explain your conclusions.

12-28 Refer to Exercise 12-20. Consider the following three contrasts: (1) difference

between the sum of the reduction in blood sugar levels using diet types 1 and 3 from

that using diet types 2 and 4; (2) difference between the sumof the reduction in blood

sugar level using diet types 1 and 2 from that using diet types 3 and 4; (3) difference

in the sum of the reduction in blood sugar level using diet types 2 and 3 from that

using diet types 1 and 4.

(a) Find the sum of squares due to each of the contrasts and discuss their

contribution to the treatment sum of squares.

(b) What null hypothesis is indicated by contrast 1? Test the hypothesis at a 5% level

of significance.

(c) What type of hypothesis is indicated by contrast 2? Test the hypothesis at the

10% level of significance.

12-29 Write out the treatment combinations for a 24 factorial experiment.

12-30 In the search for a lower-pollution synthetic fuel, researchers are experimentingwith

three different factors, each controlled at two levels, for the processing of such a fuel.

Factor A is the concentration of corn extract at 5% and 10%, factor B is the

concentration of an ethylene-based compound at 15% and 25%, and factor C is the

distillation temperature at 120 °C and 150 °C. The levels of undesirable emission of

the fuel are shown in Table 12-44 for three replications of each treatment; each level
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TABLE 12-44

Treatment

(1)

a

b

ab

c

ac

bc

abc

30

18

30

43

28

54

58

24

Degree of Undesirable Emission Level (ppm)

24

22

32

47

24

49

48

20

26

24

25

41

22

46

50

22

is randomly assigned to a treatment. The larger the level of emission, the worse the

impact on the environment.

(a) Find all of the main effects and the interaction effects.

(b) Find the sum of squares for each of the effects and the interaction effects.

(c) At the 5% level of significance, which effects are significant? Interpret your

inferences.

12-31 Consider a 24 factorial experiment. Set up a table of the coefficients for orthogonal

contrasts similar to Table 12-25. Write down the contrasts for estimating the main

effects and the two-factor interactions. If the four-way interaction effectABCD is not

significant, use that as a basis to confound the design into two blocks.

12-32 In Exercise12-31, use AB as the confounding factor to divide the experiment into

two blocks. How would you estimate the effect of factor A?

12-33 Consider a 24 factorial experiment. Using BC as the defining contrast, find the

treatment combinations in a 24–1 fractional factorial experiment. Find the aliases of

the contrasts.Howwould it be possible to estimate the effect of the contrastBC? IfAD

is used as a second defining contrast, determine the treatment combinations in a 24�2

fractional factorial experiment. What is the alias structure now?

12-34 In a 25�2 fractional factorial experiment, using CDE and AB as the generators, find

the treatment combinations. Find the aliases of the contrasts.

12-35 Refer to Exercise 12-30. Factor A is the concentration of corn extract, factor B is the

concentration of an ethylene-based compound, and factor C is the distillation

temperature. Each factor will be controlled at two levels. Suppose the experimenter

runs a 23�1 fractional factorial experiment, with the defining contrast being I=ABC.

Using the data in Table 12-44, perform an analysis to determine the significance of

effects.Which effects cannot be estimated?What is the alias structure? Comment on

your inferences if the level of significance is 5%.

12-36 A manufacturer of magnetic tapes is interested in reducing the variability of the

thickness of the coating on the tape. It is estimated that the loss to the consumer is $10

per reel if the thickness exceeds 0.005± 0.0004mm. Each reel has 200m of tape. A

random sample of 10 yields the following thicknesses (in millimeters): 0.0048,

0.0053, 0.0051, 0.0051, 0.0052, 0.0049, 0.0051, 0.0047, 0.0054, 0.0052. Find the

average loss per reel.
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12-37 Refer to Exercise 12-36. The manufacturer is considering adopting a new process to

reduce the variability in the thickness of coating. It is estimated that the additional

cost for this improvement is $0.03 per linear meter. The annual production is 10,000

reels. Each reel has 200 m of tape. A random sample of size 8 from the new process

yielded the following thicknesses (in millimeters): 0.0051, 0.0048, 0.0049, 0.0052,

0.0052, 0.0051, 0.0050, 0.0049. Is it cost-effective to use the new process? What is

the annual savings or loss?

12-38 Refer to Exercise 12-36. Suppose that the manufacturer can rework the thickness

prior to shipping the product at a cost of $2.00 per reel. What should the manufa

cturer’s tolerance be?

12-39 Refer to Exercise 12-36. Suppose the manufacturer has the ability to center the

process such that the average thickness of the coating is at 0.005mm, which is the

target value. In doing so, the manufacturer estimates that the standard deviation of

the process will be 0.018mm. The cost of making this change in the process is

estimated to be $1.50 per reel. Would it be cost-effective to make this change,

compared to the original process? What would the annual savings or loss be if the

annual production is 10,000 reels?

12-40 A restaurant believes that two of the most important factors that help it attract and

retain customers are the price of the item and the time taken to serve the customer.

Based on the price for similar items in other neighboring restaurants, it is estimated

that the customer tolerance limit for price is $8, and the associated customer loss is

estimated to be $50. Similarly, the customer tolerance limit for the service time is 10

minutes for which the associated customer loss is $40. A random sample of size 10

yields the following values of price: 6.50, 8.20, 7.00, 8.50, 5.50, 7.20, 6.40, 5.80,

7.40, 8.30. The sample service times (inminutes) are 5.2, 7.5, 4.8, 11.4, 9.8, 10.5, 8.2,

11.0, 12.0, 8.5. Find the total expected loss per customer. If the restaurant expects

2000 customers monthly, what is the expected monthly loss?

12-41 Refer to Exercise 12-40. The restaurant is thinking of hiring more personnel to

cut down the service time. However, the additional cost of increasing personnel is

estimated to be $0.50 per customer. The results of sampling with the added

personnel yield the following waiting times (in minutes): 8.4, 5.6, 7.8, 6.8, 8.5,

6.2, 6.5, 5.9, 6.4, 7.5. Is it cost-effective to add personnel? What is the total

expected monthly loss?

12-42 The Environmental Protection Agency has identified four factors (A, B, C, and D),

each at two levels, that are significant in their effect on the air pollution level at a

photographic film production facility. The agency also feels that the interaction

effects A× C, A×B, and B×C are important. Show an experimental design that

can estimate these effects using a minimal number of experiments.

12-43 A baseball team manager believes that five factors (A, B, C, D, and E), each at two

levels, are significant in affecting runs batted in. The manager believes that the

interactions B×C and B×E are important. Show an experimental design using an

orthogonal array that can estimate these effects.

12-44 The tourism board of a large metropolitan area is seeking ways to promote tourism.

They have identified five factors (A, B, C, D, and E) that they feel have an impact on
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tourist satisfaction. Factor C has four levels, and each of the other four factors has

two levels. Show an experimental design, using an orthogonal array, that could

estimate the factor effects.

12-45 A city library has established three factors (A, B, and C), each at three levels, that

influence the satisfaction of their patrons. The library governance committee also

believes that the interaction B×C is important. Using an orthogonal array, set up an

appropriate experimental design.

12-46 In a drilling operation, four factors (A, B, C, and D), each at three levels, are thought

to be of importance in influencing the volume of crude oil pumped. Using an L9

orthogonal array, the factors A, B, C, and D are assigned to columns 1, 2, 3, and 4,

respectively. The response variable showing the number of barrels (in thousands)

pumped per day for each of the nine experiments is as follows:

Experiment 1 2 3 4 5 6 7 8 9

Barrels per Day (thousands) 6.8 15.8 10.5 5.2 17.1 3.4 5.9 12.2 8.5

Show the experimental design and the response variable for the corresponding

experiments. Determine themain effects. Plot the average response curves.What are

the optimal settings of the design parameters?

12-47 Consider Exercise 12-46. With the assignment of factors A, B, C, and D to columns

1, 2, 3, and 4, respectively, of an L9 orthogonal array, the output is as follows for

another replication of the nine experiments:

Experiment 1 2 3 4 5 6 7 8 9

Barrels per Day (thousands) 12.2 18.3 13.5 8.3 17.2 7.5 7.9 15.7 14.8

Determine the main effects. Plot the average response curves. What are the optimal

settings of the design parameters?

12-48 In a food processing plant, four design parameters, A, B, C, and D, each at three

levels, have been identified as having an effect on the moisture content in

packaged meat. Three noise factors, E, F, and G, each at two levels, are also to be

investigated in the experiment. In the inner array, an L9 orthogonal array is used

with the factors A, B, C, and D assigned to columns 1, 2, 3, and 4, respectively.

For the outer array, an L4 orthogonal array is used with the noise factors E, F, and

G assigned to columns 1, 2, and 3, respectively. Table 12-45 shows the moisture

content in a coded scale for four replications of each of the nine experiments in the

inner array. It is preferable that the moisture content be around a coded value of 20.

Show the complete parameter design layout using the Taguchi method. Calculate the

mean response and the appropriate signal-to-noise ratio. Plot the average S/N ratios

and the average responses and discuss how the design factor levels are to be selected.

Use the average response plots to determine the existenceof possible interactionsB×

E and C× F. What are the optimal settings of the design parameters using Taguchi’s

parameter design approach?

12-49 Consider Exercise 12-48. The design factors are A, B, C, and D, each at three levels.

These are assigned to an orthogonal array (inner array) with the factors A, B, C, and

D assigned to columns 1, 2, 3, and 4, respectively. Suppose that, in addition to the
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TABLE 12-45

Inner-Array
Outer-Array Experiment

Experiment 1 2 3 4

1 18.5 21.2 20.5 19.3

2 16.8 17.3 20.9 18.5

3 21.1 21,8 20.6 19.4

4 20.2 17.7 19.8 20.8

5 16.2 21.5 21.2 21.4

6 18.3 18.5 17.8 17.2

7 20.6 21.4 16.8 19.5

8 17.5 20.0 21.0 20.4

9 20.4 18.8 19.6 18.3

three main effects of the noise factors E, F, and G, it is felt that the interaction effects

E× F and E×G should be investigated. What type of design would you use for the

outer array?

Suppose the outer array selected is L8, with the assignments as follows: E

to column 1, F to column 2, E× F to column 3, G to column 4, and E×G to

column 5. The remaining two columns are assigned to the experimental error. Table

12-46 shows the moisture content of the eight replications for each of the nine

experiments in the inner array. The coded target value is 20.

Show the complete parameter design layout using the Taguchi method. Calculate

the mean response and the appropriate signal-to-noise ratios. Plot the average S/N

ratios and the average responses and discuss how the design factor levels are to be

selected. Use the average response plots to determine the existence of the interaction

effects A×E, B× F, E× F, and E×G. What are the optimal settings of the design

parameters using Taguchi’s parameter design approach?

TABLE 12-46

Inner-Array
Outer-Array Experiment

Experiment 1 2 3 4 5 6 7 8

1 19.3 20.2 19.1 18.4 21.1 20.6 19.5 18.7

2 20.6 18.5 20.2 19.4 20.1 16.3 17.2 19.4

3 18.3 20.7 19.4 17.6 20.4 17.3 18.2 19.2

4 20.8 21.2 20.2 19.9 21.7 22.2 20.4 20.6

5 18.7 19.8 19.4 17.2 18.5 19.7 18.8 18.4

6 21.1 20.2 22.4 20.5 18.7 21.4 21.8 20.6

7 17.5 18.3 20.0 18.8 20.2 17.7 17.9 18.2

8 20.4 21.2 22.4 21.9 21.5 20.8 22.5 21.7

9 18.0 20.2 17.6 22.4 17.2 21.6 18.5 19.2

12-50 In a textile processing plant the quality of the output fabric is believed to be

influenced by four factors (A, B, C, and D), each of which can be controlled at three

levels. The fabric is classified into three categories: acceptable, second-class, or

reject. AnL9 orthogonal array is selected for the design factors, with the factorsA, B,
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C, and D assigned to columns 1, 2, 3, and 4, respectively. The observations are

shown in Table 12-47. Management wants to eliminate reject product altogether.

Conduct an accumulation analysis, and determine the optimal settings of the design

factors.

TABLE 12-47

Factor Quality of Fabric

Experiment A B C D Acceptable Second Class Reject

1 1 1 1 1 0 1 0

2 1 2 2 2 1 0 0

3 1 3 3 3 0 1 0

4 2 1 2 3 0 1 0

5 2 2 3 1 0 0 1

6 2 3 1 2 1 0 0

7 3 1 3 2 0 0 1

8 3 2 1 3 0 1 0

9 3 3 2 1 1 0 0

12-51 Consider Exercise 12-50. Four factors (A, B, C, and D), each at three levels, are

controlled in an experiment using an L9 orthogonal array. The output quality is

classified as acceptable or unacceptable; unacceptable includes both the second-class

and reject classes. Consider the data shown inTable 12-47. Combine the second-class

and reject categories intooneclassand label it asunacceptable andaccumulate thedata

accordingly. From the accumulation analysis, determine the optimal settings of the

design factors.
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13
PROCESS� MODELING� THROUGH
REGRESSION� ANALYSIS

13-1 Introduction and chapter objectives

13-2 Deterministic and probabilistic models

13-3 Model assumptions

13-4 Least squares method for parameter estimation

13-5 Model validation and remedial measures

13-6 Estimation and inferences from a regression model

13-7 Qualitative independent variables

13-8 Issues in multiple regression

13-9 Logistic regression

Summary

Symbols

Xi Independent variable R2 Adjusted coefficient of determinationa

Y Dependent variable ei Residual

βi Parameters of regression model D Durbin–Watson statistic

2 
^

^
Yi

βi

Random error component W Working–Hotelling coeffi cient

Predicted value S Scheffé coeffi cient

Estimated model coef ficient σ2 Variance of error component

n Number of observations s�

2 Estimated variance of error component

p Number of independent variables + 1 hi Leverage coef ficient

R�

2 Coef ficient of determination Di Cook’ s distance

13-1� INTRO�DUC�TION� AND� CHAPT�ER� OBJ�ECTIVE�S

It is often of interest to determine the nature of the impact of process variables on some output

quality characteristic. Such analyses will allow us to determine which process variables have a

signifi cant impact and, thereby, should be closely monitored. Further, it will enable us to

estimate or predict the mean value of a quality characteristic or an individual value of a quality

Fundamentals of Quality Control and Improvement, Fourth Edition. Amitava Mitra
 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com\go\mitra\QualityControl4e
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characteristic, respectively, for some selected settings of the process variables. For most

processes, there are some desirable goal values of the output quality characteristic. Modeling

of a process through regression analysis will indicate the degree of impact on the process

outcome asmeasured by themean value of the response or output quality characteristic when

the input process variables aremaintained at certain levels. A special type ofmodel, known as

a logistic regressionmodel, is also studiedwhere the response or output variable is qualitative

in nature. Suchmodels are abundant in the health care field where, for example, one attempts

to model the outbreak of a certain disease based on certain predictors that may influence the

occurrence of the disease. The response variable, which is qualitative, is of the type that there

is or is not anoutbreakof thedisease and themodelmayestimate theprobabilityof anoutbreak

of the disease. Similar applications of logistic regression models exist in other service

industries. In marketing, for instance, under selected levels of product price and warranty

time, it might be of interest to know the probability of customer acceptance of the product,

which will convey a sense of the degree of market share.

13-2 DETERMINISTIC AND PROBABILISTIC MODELS

The goal of modeling a response or outcome variable Y, based on a set of predictors or

independent variables, Xi, i= 1, 2, . . ., p� 1, is the objective. A good model should

utilize the appropriate functional form, f(X1, X2, . . ., Xp�1), of the independent variables
that best describes the process. When the relationship between Y and Xi, i= 1, 2, . . .,

p� 1, is of the type

Y � f �X1;X2; . . .;Xp�1� �13-1� 
the model is said to be deterministic. Equation (13-1) indicates that, depending on the

functional form f(X1, X2, . . ., Xp�1), for given values of the independent variables, the

value of the response variable is known exactly.

However, for all manufacturing and service systems that is not the case. There is always

some degree of uncertainty in predicting the response variable, even for known values of the

independent variables. This is because there are someunknown independent variables thatwe

have not modeled or are not aware of that influence the response variable. Hence, a model of

the type

Y � f �X1;X2; . . .;Xp�1� � 2  �13-2� 
where 2 denotes a random and unknown component, usually depicted as the error compo

nent, is used to describe response variables from manufacturing or service systems.

The nature of the function f(X1, X2, . . ., Xp�1) is chosen based on the hypothesized

relationship between the independent variables andY. Suppose that we have one independent

variable, X, which is the quantity of a product ordered by a customer, based on which we are

trying to determine the lead time (Y) for the customer to receive the shipment. Lead time,

obviously, influences customer satisfaction and so is an important response or output

variable. Assume that we have some historical information on values of (X, Y) for several

customers as shown in Figure 13-1a. Based on the scatterplot, an appropriate linear

relationship between X and Y may be represented by

f �X� � β0 � β1X �13-3� 
Note that the observed Y-values do not all fall on the line represented by eq. (13-3). However,

if we assume that the error component (2) has amean value of zero, that is, E�2� � 0, for any
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FIGURE 13-1 Functional forms of simple regression models.

^^^

value ofX, eq. (13-3) then represents the true line of themeanvalues ofY,E(Y), as a function of

X. Thus, we have

E�Y� � β0 � β1X �13-4� 
as the deterministic part of the model, while the probabilistic model is

Y � E�Y� � 2  �13-5�� β0 � β1X � 2  
Our objective, therefore, is to estimate the deterministic part of the relationship that represents

the mean value of Y. Hence, the estimated regression model is given by

Y � β0 β1X� 13-6��
where ^β̂0 and β1 are estimates of the parameters β0 and β1.

A linear regressionmodel is one that is linear in the parameters as representedby eq. (13-4),

while a simple linear regression model is one that has only one independent variable as

given by eq. (13-4). Let us consider a few other functional forms as shown in Figure 13-1. In

Figure 13-1b, the rate of increase in E(Y) is decreasing as a function of X, as opposed to a

constant increasing rate of β1 in Figure 13-1a. For Figure 13-1b, a logarithmic relationship for

E(Y) could be given by

E�Y� � β0 log�β1X� �13-7� 
Note that the model given by eq. (13-7) is not a linear model. Alternatively, a quadratic

function of the type

E�Y� � β0 � β1X � β2X
2 �13-8� 
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where β2< 0, could also model the situation. While eq. (13-8) is linear in the model

parameters, it is a quadratic function of the independent variable X. For the relationship

indicated in Figure 13-1c, where the rate of change in E(Y) is decreasing at a decreasing

rate, a functional form could be

E�Y� � β0 � β1�1=X� �13-9� 
Obviously, this could indicate the relationship for some other defined variables Y and X.

For instance, Y could measure the satisfaction level, on a 100-point scale, of an employee

and X could represent the number of hours worked on a weekly basis.

An exponentially decreasing function, such as

�β1XE�Y� � β0e �13-10� 
could also be used to model this situation. However, the model given by eq. (13-10) is not a

linear model in the parameters. Lastly, the situation depicted in Figure 13-1d may be

represented by

E�Y� � β0 � β1X � β2X
2 �13-11� 

where β2> 0. This model is linear in the parameters but a quadratic function of X. Such a

situation could also be given by

E�Y� � β0 e
β1X �13-12� 

demonstrating an exponential function of the parameter.

Since a simple regressionmodel is one that involves only one independent variable, sayX,

a multiple regression model contains two or more independent variables. No causality is

usually implied from regression models—knowledge of the process/product characteristic

that is being modeled sheds light on such issues.

13-3 MODEL ASSUMPTIONS

The assumptions pertaining to probabilistic regression models apply to both the simple

and multiple cases. For ease of understanding, we will explain them in the context of

simple regression models. The multiple linear regression model with (p� 1) independent

variables is

Y � β0 � β1X1 � β2X2 � ∙ ∙ ∙ � βp�1Xp�1 � 2  �13-13� 
from which the simple linear regression model, given by eq. (13-5), is obtained. The

assumptions pertain to the random error component,2, which creates a probabilisticmodel.

For the simple regression case, let Y denote the lead time and X the order quantity as in the

previous discussion.

Assumption 1 The mean of the probability distribution of the error component is zero, that

is, E�2� � 0, for each and every level of the independent variable.

This implies that for the order quantityX= a (say) the lead times for individual orders may

not be the same. Some will be above the true mean value, E(Y)= β0 + β1a, some at that level

and some will be below. On average, however, the error component representing the
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FIGURE 13-2 Assumptions for a regression model.

deviationbetween theobserved lead time and the average lead time for that level ofXwill have

a mean value of zero. Thus, from eq. (13-5), we have

E�Y� �  β0 � β1X �13-14� 
where E�2� � 0. Figure 13-2 illustrates this assumption.

Assumption 2 The variance of the probability distribution of the error component is

constant for all levels of the independent variable. The constant variance will be denoted

by σ2 and this is often referred to as the homoscedasticity assumption.

In Figure 13-2, observe that the variability or spread of the distributions of2 for each level

of order quantity, say,X= a, orX= b, orX= c, is the same. In the context of the example, this

means that the variation in lead time when the order quantity is, say, 5000 units, will be the

same as that when the order quantity is at some other level, say, 10,000 units.

Assumption 3 The probability distribution of the error component is normal for each level

of the independent variable.

In Figure 13-2, note that when the order quantity is a or b or c, the error component has a

normal distribution with mean 0 and variance σ2. This also implies that the distribution of the

lead time, Y, is normal for each level of X, the order quantity.

Assumption 4 The error components for any two different observations are independent of

each other.

This holds true for different observations at the same level of the order quantity, say, atX= a,

or at different levels of the order quantity, say, forX= a andX= b. Thus, the observed lead times

for Y are independent of each other. Figure 13-2 shows the true (but unknown) line of means

depicting the relationship between average lead time and order quantity. It demonstrates that the
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average value of the error component is zero,which implies eq. (13-4). Further, the variability in

lead time remains constant, regardless of the order quantity level.

Similar assumptions hold for the error component, 2, in the case of a multiple linear

regression model given by eq. (13-13). Now, for any given set of values of the independent

variables, that is,X1= x1,X2= x2, . . .,Xp�1= xp�1, the probability distribution of2 is normal

with mean equal to 0, that is, E�2� � 0, and variance σ2, that is constant at all combination

levels of the independent variables. Lastly, the error components are independent of each

other.

In the context of regression analysis, the independent variable values are treated as fixed,

not random variables. These values are assumed to be measured without error. On the

contrary, the dependent variable,Y, is probabilistic or random innature due to the randomness

in2. For a simple linear regression model [eq. (13-14)], β0 represents the mean value of Y, or

lead time in the example,when the valueof the independent variableX, thequantity ordered, is

zero. This is similar to a fixed amount of time necessary to prepare and deliver any order. The

parameter β1 represents the change in the mean value of Y, the lead time, for a unit increase in

the order quantity. For amultiple linear regressionmodel, the parameters are often referred to

as partial regression coefficients, implying the presence of other independent variables in the

model.Hence, the parameter βi, i= 1, 2, . . .,p� 1, nowdenotes the change in themean value

of Y for a unit increase in the value of the independent variable Xi when all the other

independent variables Xj, j�6 i, are held constant.

Another point to bemade in regression analysis is that the independent variable values are

not controlled but rather observational. So, the data on order quantity and lead time used to

build a regressionmodel are accumulated from historical observations. No attempt ismade to

hold the order quantity at a certain level and determine the lead time for that batch. Thiswould

rather be the approach to follow in a designed experiment. Experimental design and

associated concepts have been discussed in Chapter 12. As pointed out in Chapter 12,

designed experiments, inwhich the values of theX’s are controlled at somechosen levels,may

have some desirable properties, especially when it is of interest to partition the impact of

independent variables that are not of interest. Designed experiments may also assist in

estimating the interaction effects between two or more independent variables, which is of

much importance in realistic situations. It is the joint impact of two (or more) independent

variables that affects the dependent or response variable, which the decision maker wishes to

estimate. Further, estimation of the pure error component, which is possible only through

replication of the observations at chosen levels of the independent variables, is feasible only

for designed experiments.

13-4 LEAST SQUARES METHOD FOR PARAMETER ESTIMATION

Determination of the “bestfitting”model through some observational data pointsmakes use of

the concept of the least squares method. In this method, the best fitting model minimizes the

sumof squares of the deviations between the observed andfitted values. Figure 13-3 illustrates

this concept in the context of a simple linear regression model. The difference between the

observed and fitted values of the dependent variable is defined as a residual and is given by

^ei � �Yi � Yi�; i � 1; 2; . . .; n �13-15� 
where Yi denotes the observed value of Y for the ith observation, Ŷ i denotes the fitted or

predicted value of Y for the ith observation, and n represents the number of observations.
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FIGURE 13-3 Method of least squares.

^

The sum of squares for error (SSE) is defined as

Yi�2
n

i�1
SSE � �Yi � �13-16� 

β̂β̂^

The “least squares” model is that given by

Y � 0 β̂2X2 � p�1Xp�1

and the estimated model coefficients are obtained by minimizing SSE. Denoting the ith

observation as (Yi, Xi1, Xi2, . . ., Xi(p�1)), we have

β̂� 1X1 � ∙ ∙ ∙ � �13-17� 

n

i�1
p�1Xi�p�1���2β̂β̂�Yi � � 1Xi1 �0

Tofind thevaluesof the estimates thatminimizeSSE, thepartial derivatives of the function, given

β̂ β̂SSE � � 2Xi2 � ∙ ∙ ∙ � �13-18� 

by eq. (13-18), with respect to β̂0, β̂1, . . ., β̂p�1are found, set equal to zero, and then solved

simultaneously. The result is a set of p equations known as the normal equations, given below:

β̂� n
�

β̂1 β̂ β̂p�1

Xi1Xi2 � ∙ ∙ ∙ �
Yi � Xi1 � Xi2 � ∙ ∙ ∙ � Xi�p�1�0 2

β̂ β̂ β̂ β̂X2
i1 Xi1Xi�p�1�p�1Xi1 � �Xi1Yi 0 1 2

β̂ β̂ β̂ β̂X2
i2 Xi2Xi�p�1�p�1� Xi2 � Xi2Xi1 � � ∙ ∙ ∙ �Xi2Yi 0 1 2

...

β̂ β̂ β̂ Xi�p�1�Xi2 � ∙ ∙ ∙ � β̂ X2
i�p�1� � Xi�p�1� � Xi�p�1�Xi1 �Xi�p�1�Yi 0 1 2 p�1
�13-19� 
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While it is tedious to solve simultaneously the p equations given by eq. (13-19) for the

estimates p�1, software programs are used to obtain these results. We will

β1
^

β0, β1, β2, . . ., β

demonstrate use of the software program Minitab for computational purposes.

For a simple linear regression, the estimates of the slope and y-intercept are given by

^^^^

� XiYi � Xi Yi =n

X � Xi =n2
i

2
�13-20� 

β0 β1X
^^ � Y � 13-21��

The estimate of σ2, the constant variance of the error component is obtained from

where MSE denotes the mean square error. Note that the degrees of freedom of s is (n� p),

s2 � SSE

n � ��p � 1� � 1� � 
SSE

n � p
� MSE �13-22� 

2

sincepparameters have been estimated from theobservations. In the context of a simple linear

regression model, the degrees of freedom of s2 is n� 2.

The least squares estimates have some desirable properties. First, the estimators are

unbiased, implying that E�βi^ � � βi; i � 0; 1; 2; . . .; p � 1. Second, the estimators have mini

mum variance in the class of all linear unbiased estimators and are therefore classified as the

best linear unbiased estimator (BLUE).

In multiple regression, βi represents the mean change in Y, when Xi increases by a unit,

when all other independent variables are held constant. The concept of interaction

between independent variables and their joint effect on the dependent variable Y was

discussed in Chapter 12. In regression modeling, interaction effects between variables Xi

and Xj may be incorporated by creating a new independent variable, Xi Xj, the product of

the two independent variables, and considering this in the list of independent variables for

consideration in the model. In case of a polynomial or other functional relationship

between Y and Xi, the appropriate terms depicting the functional form may be included in

the model. This concept was described in Section 13-2. Hence, with three independent

variables X1, X2, and X3, suppose we wish to consider the interaction effects between X1

and X2 and also between X1 and X3. Further, it is suspected that Y is related to X1 as a

quadratic function while it is related to X3 as a reciprocal function. A model for

consideration could be

2Y � β0 � β1X1 � β2X � β3X2 � β4�1=X3� � β5X1X2 � β6X1X3 � 2  �13-23�1

Sometimes, a transformation of the dependent variable may be necessary. Such could be

motivated by the lack of satisfaction of the assumptions, typically normality and/or

homoscedasticity, or the lack of modeling the appropriate functional relationship with the

independent variables. For example, consider Figure 13-1d and eq. (13-12); a natural

logarithmic transformation onYmight beused to express its relationshipwith the independent

variable X in the form of a linear model. Additionally, if the spread in the Y-values increases

with X, the natural logarithmic transformation on Y may also alleviate the lack of the

homoscedasticity assumption. Aword of caution on consideration of a transformation on the

dependent variable Y. Whenever Y is transformed and a model created with the transformed

variables, the assumptions have to be checked again for the new model. Even if some of the
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FIGURE 13-4 Partitioning of total sum of squares.

^^

assumptionswerevalidatedwhenusingY, there is noguarantee that those assumptionswill be

valid when ln(Y) is the dependent variable, for instance.

Performances Measures of a Regression Model

To assist in the conceptual understanding of the decomposition of the total sum of squares

of Y, we consider the simple linear regression model as shown in Figure 13-4. The

concepts apply to a multiple regression model as well. In the absence of utilizing the

information that depicts the relationship between the independent variables and the

dependent variable, Y, the mean value of Y, denoted by Y , is the predicted value. From

Figure 13-4, observe that the deviation of an observation Yi from the mean Y may be

expressed as

Yi� � �Yi � Y�Yi � Y � �Yi � �13-24� 
Here, (Yi �

^
Ŷ i) represents an estimate of the error component or the residual for that

observation, while Yi � Y represents the deviation of the fitted value, using the regression

^

relationship between Y and X, and the mean value Y . It can be shown algebraically that the

sum of squares of Y for the total deviation from themean, Y , is equal to the sum of squares of

the residuals plus the sum of squares of the deviations of the fitted values (using the

regression model) from Y . Thus, we have

Yi�2 � 2 � 2
Yi � Y� Yi � ^�Yi � Y� �13-25�� �

or

SST � SSE � SSR

2

^
Ŷ i � Y�

represents the regression sum of squares, utilizing the model, and SSE � �Yi � Yi�
where SST � �Yi � Y� represents the total sum of squares of Y, SSR � � 

represents the error sum of squares. The better the regression model, the large is SSR and

smaller is SSE. For a given data set of observations, SST is fixed. If a chosen set of

independent variables collectively is good in explaining the variation in Y, the regression

model sumof squares (SSR)will be large and the unexplained variation (SSE)will be small.

2

2
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Coefficient of Determination Ameasure of the goodness of a regressionmodel is given by

its coefficient of determination, sometimes known as multiple R-squared, expressed as

follows:

R2 � SSR � 1 � SSE �13-26� 
SST SST

2The value of R is always between zero and unity. The closer it is to unity, the better the fit of

themodel to the observations in the data set. Obviously,R2
= 1only if SSE equals zero,which

implies that all of the observations lie exactly on the fitted model. In practice, this is unlikely

for multiple regression models since it is not feasible to include as independent variables all

possible sources of variation that have an influence on the dependent variable. Often, all

independent variables that impact Y are not even known. Hence, the impact of all such

unknown sources of variation is accounted for, in the regression model, by the “error

component.”

An objective of building a regression model is to use it in the future for the purpose of

estimation and prediction. In other words, we desire the model to be a good fit to all the data

points in the population. Themodel was developed using only a sample of observations from

the population. When the number of independent variables is very large and close to the

number of observations, the model R2 will be high. For instance, if n= 3 and there are two

independent variables (sayX1 andX
2), themodelR2

= 1, sincewe can always find a quadratic1

function to fit three data points exactly. This does not mean that this particular model is the

“best”model for modeling all the data points in the population. Hence, the standard error of

the model coefficients, which represents their variability, may have an impact on estimation

and inferences based on the model.

Adjusted Coefficient of Determination As independent variables are added to a regression

model, assuming n > p (the number of model parameters), R2 stays the same or increases. It

never decreases. It increases if the added independent variable, in the presence of the other

independent variables that exist in the model, has some utility in explaining some of the

variability inY thatwaspreviouslyunexplained.Hence,SSEwill reduce,whichwill lead to an

increase in R
2. The question then becomes if the additional contribution of the new

independent variable is significant. As an alternative to R2, a measure called the adjusted

R2 (R2) is defined that takes into account both the sample size and the number of independenta

variables. It is defined as

SSE=�n � p� 
R2 � 1 � a SST=�n � 1� �13-27� �n � 1� SSE� 1 � �n � p� SST

From eq. (13-27), it is observed that R2 � R2. Only when p= 1, that is, no independenta

variables are in themodel andY is used as the predictor, willR2 andR2 be equal. Further, as ana

independent variable is added to an existingmodel, SSEwill reduce or stay the same and n� p

will reduce. Hence, one is not sure of the net impact of the termSSE/(n� p). If the drop in SSE

outweighs the drop in (n� p), the error degrees of freedom, R2 will increase, which may bea

used to conclude that the added independent variable might be useful in the presence of the

others. It should alsobenoted that themodel thatmaximizesR2 will alsominimizeMSE, sincea

MSE= SSE/(n� p).
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Testing the Utility of the Model The utility of the full model with (p� 1) independent

variables is tested using the concept of analysis of variance as discussed in Chapter 12.

Basically, there are two sources of variation in Y, as measured by SST. These are the model

itself, whose explained variability inY is given bySSR, the regression sumof squares, and the

unexplained variation in Y, given by SSE, the error sum of squares. The model degrees of

freedom is (p� 1), while the error degrees of freedom is (n� p). The mean square for

regression (MSR) andmean square error (MSE) are found by dividing the corresponding sum

of squares by the degrees of freedom, respectively. The hypothesis being tested is

H0 : β1 � β2 � ∙ ∙ ∙ � β � 0p�1
Ha : At least one of the βi parameters ≠ 0

Finally, the test statistic is given by

MSR SSR=�p � 1� 
F0 � � �13-28� 

MSE SSE=�n � p� 
When H0 is true, the test statistic has an F-distribution with (p� 1) degrees of freedom in

the numerator and (n� p) degrees of freedom in the denominator. Thus, if the test statistic

exceeds the critical value,Fα,p�1,n�p, for a chosen level of significanceα, the null hypothesis is
rejected. Rejecting the null hypothesis implies that at least one of the independent variables is

significant in the presenceof others in explaining the variation in the dependent variable.Most

software packages report the p-value, the probability of Fp�1,n�p>F0, where F0 is the

observed test statistic. Comparing the p-value with the chosen level of significance, if the

p-value< α, the null hypothesis is rejected. A schematic of the analysis-of-variance table, as

output by software packages, is shown in Table 13-1.

Testing the Significance of Individual Independent Variables Once the utility of the

model has been established, itmay be of interest to determinewhich independent variables, in

the presence of the other independent variables, are significant. Since formulas for the

computation of the estimated coefficients (β̂i, i= 1, 2, . . ., p� 1) and their corresponding
^standards errors [SE�βi�, i= 1, 2, . . ., p� 1] in multiple regression analysis involves matrix

algebra, we purposely omit them.Alternatively, wewill make use of the softwareMinitab for

computations. For testing the significance of an individual independent variable, in the

presence of the others, the hypotheses are

H0 : βi � 0; i � 1; 2; . . .; p � 1

Ha : βi ≠ 0

The test statistic is given by

t0 � β̂i

SE� ̂βi� 
�13-29� 

TABLE 13-1 ANOVA Table for Testing Model Utility

Source of Degrees of

Variation Freedom Sum of Squares Mean Square F-Statistic p-Value

Model p� 1 SSR MSR=SSR/(p� 1) F0 =MSR/MSE P[Fp�1,n�p>F0]

Error n� p SSE MSE= SSE/(n� p)
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Critical values for the two-tailed test may be found from the t-tables with (n� p) degrees of

freedomand a tail area ofα/2 on each tail. Rejection of the null hypothesiswill occur if the test

statistic exceeds the critical value in either direction. Alternatively, a software package may

output thep-value,P(tn�p> j t0 j),which if smaller than the chosen level of significance,α,will

lead to rejection of the null hypothesis. An independent variable, Xi, is considered to be

significant, in the presence of others, if H0: βi= 0 is rejected.

An equivalent procedure is to find a confidence interval for βi. A 100(1� α)% confidence

interval for βi is given by

βi SE�βi^^ � tα=2;n�p � �13-30� 
If the confidence interval for βi does not include zero, the null hypothesis, H0: βi= 0, is

rejected.

13-5 MODEL VALIDATION AND REMEDIAL MEASURES

Validation of the model assumptions is conducted through an analysis of the residuals. The

residuals (ei) are estimates of the error components (2i). Since all of the assumptions

essentially relate to the error component, aptness of the model can be checked through

appropriate plots and/or statistical analysis of the residuals. When the assumptions are

violated, we discuss appropriate remedial measures where feasible.

Linearity of Regression Function

While the assumedmodel given by eq. (13-13) is linear in the parameters (βi), it may not be so

in terms of the functional form of the independent variables. This concept was discussed in

Section 13-2. For simple linear regression analysis, scatterplots of Y versus X will assist in

selecting the appropriate functional form of X, which could be X2, 1/X, X, or ln(X), among

others. In multiple regression, appropriate plots are residuals versus each of the independent

variables or residuals versus the fitted value (Ŷ).

If the functional form of the regressionmodel is adequate, the residuals when plotted against

the predicted values (Ŷ) should not show any identifiable pattern. The residuals should be

distributed along a rectangular band around the mean value of the residuals of zero, as in Figure

13-5a. A plot of the residuals versus each independent variable should also show a similar

pattern, as in Figure 13-5b. If, on the other hand, a plot of the residuals versus an independent

variable (X) shows a pattern, as in Figure 13-5c, this indicates that one should consider the

independent variables X1 and X
2 in the regression model, representing a quadratic function. A1

defined functional form where the residuals first decrease at a decreasing rate and then start to

increase at an increasing rate is observed in Figure 13-5c. The shape of the plotted pattern will

serve as a guide to the appropriate functional form to select. In Figure 13-5d, again, a defined

pattern is observed. In this case the residuals increase at an increasing rate as a function ofX1. So,

an appropriate functional formmight be an independent variable of the form eX1 . Alternatively,

sometimes transformations on the dependent variable, Y, could also address this issue. For

example, developing a model that predicts log(Y) or ln(Y), the natural logarithm of Y, based on

the independent variable X1 could have residuals that do not have an identifiable pattern.

As stated previously, when Y is transformed, all of the assumptions will have to be

validated again, using residuals from the transformedmodel. Hence, if it is possible tomake a

transformation on the independent variable, in order to validate an assumption, it would be
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FIGURE 13-5 Residual plot for functional forms.

desirable to do so if the other assumptions have been validated. Transformations on Y often

impact the normality and the homoscedasticity assumptions. Sometimes, a given transfor

mation helps to satisfy both of these assumptions.

When the method of least squares is used in regression, the mean of the residuals will

always be zero. In fact, this indicates that the residuals are not all independent. Validation of

the assumption that the mean of the error component is zero is thus not appropriate using the

mean of the residuals.

Constancy of Error Variance

Aplot of the residuals versus thefitted values is a graphical aid to validation of the assumption

of homoscedasticity. If the assumption is satisfied, the spread of the residuals should be fairly

constant across a rectangular band, as shown in Figure 13-6a, as a function of Ŷ .

Alternatively, Figure 13-6b demonstrates a situation where the variability in Y, that is,

variability in the error component, increases as a function of Ŷ .When the response variable Y

represents count data that has a Poisson distribution, this is typically the form of the plot.

Count data may represent the number of occurrences of an event over a specified period of

time, area, or volume. The variance of a Poisson random variable is equal to its mean. A

variance stabilizing transformation in this situation is given by
p

Y∗ � Y �13-31� 
When the response variable is the proportion of successes as in a binomial experiment,

the residuals plot as a function of Ŷ could be football shaped, similar to that shown in

Figure 13-7a. Examples could be a model for the proportion of nonconforming parts (p)

produced by a process or the proportion of dissatisfied customers per month (p) for a service
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FIGURE 13-6 Residual plots for homoscedasticity assumption.

organization. We know that the variance of p̂ is given by {(p)(1� p)}/n=E(Y)[1�E(Y)]/n,

wheren is the sample size.Thevariance ismaximumatporE(Y) equal to 0.5 anddiminishes as

wemove away from this value. An appropriate variance stabilizing transformation is given by

p p
Y∗ � arcsin Y � arcsin p �13-32� 

or

p
Y∗ � ln �13-33� 

1 � p

In another type of model, associated with exponential growth or decay of the dependent

variable, the variability of the dependent variable increases proportionally to the square of the

mean value. For example, sales in a growing economymight describe this situation. Here, the

form of the model is of the multiplicative type, shown as

Y � �E�Y��2 �13-34� 
The previously discussed form of the model has been of the additive type as given by

eq. (13-2) or (13-5). From eq. (13-34), we have

σ2Var�Y� � �E�Y��2 Var�2� � �E�Y��2 �13-35� 
^A residuals plot as a function of Y will show a cone-shaped pattern as depicted in

Figure 13-7b. The appropriate variance stabilizing transformation is given by

Y∗ � log�Y� �13-36� 

FIGURE 13-7 Residual plots for non-constant-error variability.
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where log represents the logarithmic transformation. The natural logarithmic transfor

mation (ln) could have been used as well.

Normality of Error Component

Visually, the normality assumption may be validated through a histogram or a box plot (see

Chapter 5) of the residuals. Is the distribution symmetric? In a box plot, the median will be

in themiddleof thebox,whoseboundaries represent the lower quartile (Q1) andupper quartile

(Q3), respectively, if the distribution is symmetric. Further, if the lengths of the whiskers are

about equal, this will also provide some substantiation on the tail lengths of the distribution

being equal. Additionally, for the assumption to be satisfied, there should not be any outliers

that are more than 1.5 (IQR) away from the edges of the box.

The normal probability plot, also described in Chapter 5, is another visual method for

checking the normality assumption. As demonstrated previously, software packages output a

test statistic, based on a goodness-of-fit test, and a p-value associated with the test. So, for a

chosen level of significance, α, if the p-value< α, the null hypothesis of normality is rejected.

In the event that the distribution of residuals does not pass the test for normality,

appropriate transformations on Y should be considered. Chapter 5 has a good discussion of

such transformations,which are influencedby the type anddegree of skewness in the data.We

also note from Chapter 5 and the earlier discussion in this chapter on non-constant error

variance that the transformation for Poisson data to achieve normality as well as constantp
variance is Y∗ � Y . Similarly, for binomial data modeling the proportion of successes,

the transformations given by eq. (13-32) or (13-33) will accomplish both objectives. The

logarithmic transformation for themultiplicativemodel given by eq. (13-36)will also achieve

homoscedasticity and normality. In Chapter 5, two general types of transformations are also

discussed, namely the power transformation and the Johnson transformation. Guidelines for

using these transformations are indicated.

Independence of Error Components

Usually, in time series data, where the dependent variable Y is observed over time (T), an

independent variable, this assumption may not be satisfied. Business and economic data,

when chosen in time sequence, are examples. Hence, product sales at a certain period, t, in a

growing economy could be related to sales at the previous period, t� 1. A simplistic model

may be given by

Yt � β0 � β1T � 2t; 2t � ρ2t�1 � ut �13-37� 
where jρj< 1 represents the degree of autocorrelation and ut are independent and identically

distributed (i.i.d.) as N(0, σ2) random variables.

A model given by eq. (13-37) is known as a first-order autoregressive model. A test for

autocorrelationbetween successive residuals is foundusing theDurbin–Watson test statistic

(Durbin and Watson 1951; Kutner et al. 2005)

n 2
t�2 �et � et�1�

D � �13-38�n 2
t�1 et

where n represents the number of observations.

The Durbin–Watson test statistic (D) lies between the bounds of 0 and 4. Lower (dL) and

upper (dU) bounds are obtained for a chosen level of significance (α) from developed tables.
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Small values ofD lead to the conclusion thatHa: ρ> 0.Alternatively, large values ofD lead to

the conclusion that Ha: ρ< 0. A decision rule is given as follows: In testing for positive

autocorrelation using H0: ρ� 0 versus Ha: ρ> 0:

If D > dU ; concludeH0

If D < dL; concludeHa �13-39� 
If dL � D � dU ; the test is inconclusive

Testing for negative autocorrelation usingH0: ρ� 0 versusHa: ρ< 0may be accomplished by

using the test statistic of (4-D) and the rules given by eq. (13-39). Software packages often

output the test statistic and a p-value. Thus, a decisionmay bemade by comparing the p-value

with α.

Some remedial measures may be taken when autocorrelation exists between successive

error terms.Often the cause of autocorrelation is the omission of one ormore key independent

variables from the model. Therefore, a search for and the inclusion of these key independent

variables in the model may alleviate the issue.

Alternatively, an approach that uses transformed variables is a possibility. First, an

estimate of the degree of autocorrelation (ρ) is obtained by using the residuals from an

ordinary least squares model and is given by

n
t�2 et�1etr � n 2

�13-40� 
t�2 et�1

Next, the transformed variables, are obtained as

´ ´ Y � Yt � rYt�1; X � Xt � rXt�1 �13-41�t t

and the ordinary least squares method is used to find the regression model. The Durbin–

Watson testmay be performed to determine if the autocorrelation is different from zero. If not,

the procedure terminates. Otherwise, an estimate of the autocorrelation coefficient is

determined again, and new transformed variables are found using this new value of r. This

approach, known as theCochrane–Orcutt procedure (Cochrane and Orcutt 1949; Box and

Jenkins 1976; Theil and Nagar 1961), may involve several iterations.

When the autocorrelationcoefficient is fairly large, that is,ρ is close to1, transformations in

the dependent and independent variable usingfirst differences is a possibility. In this case, the

transformed variables are
´ Y � Yt � Yt�1; X´ � Xt � Xt�1 �13-42�t t

and the ordinary least squaresmethod is used to obtain the regressionmodel. This approach is

much simpler than the Cochrane–Orcutt method and is effective in many situations.

13-6 ESTIMATION AND INFERENCES FROM A REGRESSION MODEL

Consider the general linear model with (p� 1) independent variables given by eq. (13-13)

and the estimated least squares regression model given by eq. (13-17). There are p model

parameters (β0, β1, . . ., βp�1) and the error variance, σ2, that are unknown. Estimators
2 2of these parameters are (β̂0; β̂1; . . .; β̂p�1) and σ̂ , typically estimated by s given by

eq. (13-22). In this section we find confidence intervals and test hypothesis on the parameters

βi, i= 1, 2, . . ., p� 1. We also use the fitted regression model to estimate the mean value of

Y and an associated confidence interval for some chosen levels of the independent variables,
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Xi, i= 1, 2, . . ., p� 1. Additionally, we find prediction intervals for a particular value of Y for

some chosen levels of the independent variables.

Inferences on Individual βi Parameters

In Section 13-4 we presented hypothesis testing on the individual parameters βi, i =1, 2, . . .,

p� 1, and also demonstrated how to obtain confidence intervals for βi, i =1, 2, . . ., p� 1.We

test H0: βi= 0 to determine if the independent variable Xi is significant in the presence of the

other independent variables.Rejection ofH0 leads to concluding the significanceofXi. Since β̂i
is the estimator of βi, it is interpreted as the estimated mean change in Y, as Xi increases by a

unit, when all the other independent variables are held constant.

Inferences on All βi, i= 1, 2, . . ., p − 1 Parameters

To test the collective impact of all the independent variables, in Section 13-4, themodel utility

was tested utilizing H0: β1 � β2 � ∙ ∙ ∙ � βp�1 � 0. A test statistic given by F0=MSR/MSE

[Eq. (13-28)] is used to test the above hypothesis. Rejection of H0 leads to concluding the

significance of the model, implying that at least one or more of the independent variables are

significant.

Simultaneous Inferences on Some βi, i= 1, 2, . . ., p − 1

Such inferences are conducted through the construction of joint confidence intervals for the

selected parameters.A family confidence coefficient is usedwhich represents the probability

that the family of confidence intervals will be correct, that is, contain the respective true

parameter values. One common procedure is to use the Bonferroni method (Kutner et al.

2005; Miller 1981) of joint estimation.

Let us explain the joint confidence intervals concept using two parameters, say, β1 and β2.

We define two events as follows:

fA1g : fConfidence interval does not cover β1g
fA2g : fConfidence interval does not cover β2g 

Suppose each confidence interval is constructed using a confidence coefficient of (1� α). So,

P(A1)= α and P(A2)= α. Now, the probability of both confidence intervals containing the

respective parameters is given by

PfAc
∩Acg � 1 � PfA1∪A2g � 1 � P�A1� � P�A2� � P�A1∩A2�1 2 �13-43� 

� 1 � P�A1� � P�A2� � 1 � α � α � 1 � 2α

Hence, if we desire a family level of confidence of at least (1� α), each individual level of

confidence has to be (1� α/2). In general, if we have a family of g confidence intervals for the

associated parameters, for which the desired family (or experiment-wise) level of confidence

is (1� α), each confidence interval should be constructed at a level of confidence of (1� α/g).

Note that for a two-sided confidence interval for βi the corresponding t-value will have to be

found for a tail areaofα/(2g).Hence, theBonferroni joint confidence intervals at a family level

of (1� α) are as follows:

^ ^βi � tα=2g;n�p SE�βi�; i � 1; 2; . . .; g �13-44� 
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For multiple regression, we will rely on computer software packages to obtain the parameter

βi βi
^^ �estimates and their standard errors SE� .

Hypothesis Tests on a Subset of βi Parameters

Sometimes, it is of interest to determine the significance of a subset of the independent

variables in the presence of all other independent variables. For example, if quadratic and

cubic terms of an independent variable are used or if interaction terms between two or more

variables are used, one may wish to identify their significance. Hypothesis tests in this

situation are conducted by creating two models: a full model with all the independent

variables and a reducedmodel that excludes the independent variableswhose significancewe

wish to test. The test statistic is an F-statistic that measures the incremental mean square

regression contributed by the independent variables in question relative to the mean square

error for the full model.

If the hypotheses in question are

H0 : β � β � ∙ ∙ ∙ � β � 0g�1 g�2 p�1
Ha : At least one of the βi parameters tested ≠ 0

^

^

^

^

^

^

the full (F) and reduced (R) models are

^

� � � � � � � �F E Y β β X β X β X β X: ∙ ∙ ∙ ∙ ∙ ∙� � �1 1 1� �0 1 1 1g g pg g p

^

�13-45� 
R : E�Y� � β0 � β1X1 � ∙ ∙ ∙ � β Xgg

^

Let SSEF and SSER represent the sum of squares for error in the full and reduced model,

respectively. The test statistic is

�SSER � SSEF�=�p � g � 1� 
F0 � �13-46� 

SSEF=�n � p� 
The degrees of freedom of F0 in the numerator is (p� g� 1), which is the number of β

parameters being tested as equal to zero in H0, while the denominator degrees of freedom is

(n� p), the error degrees of freedom in the full model. Then H0 is rejected if the test statistic

F0>Fα, the table value for a chosen level of significance α and degrees of freedom of

(p� g� 1) and (n� p) in the numerator and denominator, respectively. Alternatively if the

p-value< α, H0 is rejected.

Estimation of Mean Response

Apoint estimate of themean value of Y for certain chosen levels of the independent variables,

Xi, is found from the estimated regression model. Denoting the chosen levels of Xi, by X1v,

Yv

Yv β0 β1X1v β2X2v β

Yv

Yv Yv

X2v, . . ., Xp�1,v, the estimated mean value of Y, denoted by , is

� � � � ∙ ∙ ∙ � 13-47�1Xp�1;v �p�

Ŷv

interval for E(Yv) is obtained from

If the standard error of for the selected levels of Xi is denoted by SE� �, a confidence

� tα=2;n�p SE� � �13-48� 
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Simultaneous Confidence Intervals for Several Mean Responses

Using theBonferroni concept described previously, simultaneous confidence intervals for the

mean response at g chosen levels of the independent variables are given by

^ ^Yi � tα=2g;n�p SE�Yi�; i � 1; 2; . . .; g �13-49� 
where the family level of confidence is (1� α).

When it is desirable to obtain simultaneous confidence intervals for the mean response for

all possible levels of Xi, this is equivalent to obtaining a confidence region for the regression

surface. An approach recommended by Working–Hotelling (Working and Hotelling 1929;

Kutner et al. 2005) defines the intervals as

^ ^Yi �W∗SE�Yi� �13-50� 
whereW2

= pF(1� α; p, n� p) and the family level of confidence is (1� α). In practice, since

confidence intervalsmaynot be constructed for all possible levels ofXi, the actual family level

of confidence may be greater than (1� α.) A comparison could be made of the confidence

intervals found using the Bonferroni approach [eq. (13-49)] and those using the Working–

Hotelling approach [eq. (13-50)] and selecting the one that has a narrower width.

Prediction of Individual Observations

A point estimate of an individual observation Y for some chosen levels of the independent

variables, Xi, is found from the estimated regression model and is the same as predicting the

mean value and represented by Yv in eq. (13-47). However, a prediction interval for an^

individual observation will be wider than the corresponding confidence interval for the mean

value of Y since there exists an additional component of variation of the individual

observations around the mean value. Hence, the prediction variance of a new observation

Yv (new) is given by

2s2�Yv�new�� � SE2�Ŷv� �  s �13-51� 
where s2 is the estimated value of σ2 and is given by eq. (13-22).

A (1� α)% prediction interval for a new observation Yv(new) is obtained as

Ŷv � tα=2;n�p s�Yv�new�� �13-52� 

Simultaneous Prediction Intervals for Several New Observations

If the objective is to develop simultaneous prediction intervals for g new observations at a

family level of confidence of (1� α) using the Bonferroni concept, such prediction intervals

are given by

Ŷ i � tα=2g;n�p s�Yi�new��; i � 1; 2; . . .; g �13-53� 
where s2[Yi(new)] is obtained using eq. (13-51) for the ith new observation.

Alternatively, a procedure suggested by Scheffé (Kutner et al. 2005) could be used at a

family level of confidence of (1� α) and is given by

Ŷ i � S s�Yi�new��; i � 1; 2; . . .; g �13-54� 
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where S2= gF(1� α; g, n� p) and F(1� α; g, n� p) represents the upper-tail F-value,

corresponding to a tail area of α, and degrees of freedom of g and (n� p) in the numerator and

denominator, respectively. As previously discussed, of the intervals given by eqs. (13-53)

and (13-54), the one that provides the narrower limits may be selected.

Example 13-1 Consider the data shown in Table 3-15 on the parameters of temperature,

pressure, proportion of catalyst (PC), and acidity ofmixture in a chemical process.Wewish to

determine the impact of these parameters on the acceptability of the batch as measured by

proportion of nonconforming product (PNP).

(i) Develop a regression model to predict the proportion of nonconforming product.

Comment on which process parameters are significant and the goodness of the

model. Use α= 0.05.

(ii) Find a 95% prediction interval for the proportion nonconforming when temperature

is 420°C, pressure is 65 kg/cm2, proportion of catalyst is 0.045, and acidity (pH) is 17.

(iii) Find a 95% confidence interval for themean proportion nonconforming for the same

values of the process parameters as in part (ii). Interpret the difference in the two

intervals.

(iv) Does the inclusion of two-way interaction terms between temperature and pressure

and pressure and PC improve the model significantly? Use α= 0.05.

Solution UsingMinitab, the commands are as follows:Stat>Regression>Regression>

Fit Regression Model. Under Responses, input the dependent variable name, Proportion

Nonconforming, or the column number where its values are input. Under Continuous

predictors, input the variable names Temperature, Pressure, Proportion of Catalyst, and

Acidity.Click onModel and inputTerms in themodel asTemperature,Pressure,Proportion

of Catalyst, and Acidity. Click OK.

(i) Parts of a sample output are shown in Table 13-2. An analysis-of-variance table

shows the model significance (p-value= 0.001< α= 0.05). The model coefficient

of determination, R2, is 67.64%, indicating the proportion of variation in Y that

is explained by the independent variables. The value of R2 is 59.01%, whicha

incorporates the number of independent variables in the model. The estimated

model equation is

PNP � 0:0451 � 0:000014 �Temperature� � 0:000222 �Pressure� 
� 0:584 �PC� � 0:000999 �Acidity� 

In testing the significance of the individual independent variables, in the presence of

the other independent variables, none is significant since each p-value> α= 0.05.

(ii) Tofinda95%prediction interval forPNPwhen temperature= 420°C,pressure= 65kg/

cm2, PC= 0.045, and acidity= 17, the following Minitab commands are utilized:

Stat>Regression>Regression>Predict. Under Response, input Proportion

Nonconforming. Enter values as specified above for each of the independent

variables. Click OK.

The output shows the predicted value (Ŷ) or PNP as 0.056, with the standard

error of Ŷ as 0.00228. A 95% prediction interval for Y is shown as (0.035, 0.077),

implying that when the above-specified process parameter settings are used, the

proportion nonconforming for a batch will be contained within the specified

interval with a probability of 0.95.
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TABLE 13-2 Sample Output of Multiple Regression Analysis

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 4 0.002930 0.000732 7.84 0.001

Temperature 1 0.000009 0.000009 0.10 0.758

Pressure 1 0.000238 0.000238 2.55 0.131

Proportion of Catalyst 1 0.000330 0.000330 3.54 0.080

Acidity 1 0.000209 0.000209 2.23 0.156

Error 15 0.001401 0.000093

Model Summary

S R-sq R-sq(adj) R-sq(pred)

0.0096657 67.64% 59.01% 29.42%

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 0.0451 0.0255 1.76 0.098

Temperature 0.000014 0.000046 0.31 0.758 3.06

Pressure 0.000222 0.000139 1.60 0.131 2.33

Proportion of Catalyst -0.584 0.311 -1.88 0.080 2.16

Acidity 0.000999 0.000668 1.49 0.156 1.82

Variable Setting

Temperature 420

Pressure 65

Proportion of Catalyst 0.045

Acidity 17

Fit SE Fit 95% CI 95% PI

0.0562250 0.0022808 (0.0513636, 0.0610864) (0.0350573, 0.0773928)

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 6 0.003022 0.000504 5.00 0.007

Temperature 1 0.000053 0.000053 0.53 0.479

Pressure 1 0.000026 0.000026 0.26 0.621

Proportion of Catalyst 1 0.000008 0.000008 0.08 0.784

Acidity 1 0.000128 0.000128 1.27 0.281

Temp*Pressure 1 0.000077 0.000077 0.76 0.399

Pressure*PC 1 0.000010 0.000010 0.10 0.762

Error 13 0.001309 0.000101

Model Summary

S R-sq R-sq(adj) R-sq(pred)

0.0100335 69.78% 55.84% 0.00%
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(iii) To find a 95% confidence interval for the mean value of Y, for the same values of the

process parameters as inpart (ii), the same sequence ofMinitab commands are utilized.

Note thatMinitaboutputsbotha confidence interval for themeanvalueofY aswell as a

prediction interval for an individual value of Y. From the output, a 95% confidence

interval for themean value of Y is (0.051, 0.061). Observe that the confidence interval

for the mean value of Y is narrower, as expected, than the corresponding prediction

interval. This is because the prediction interval has an additional component of

variation, that being the variability of individual values around the mean value of Y.

(iv) Using an expanded model by including the interaction terms

temperature ∗ pressure and pressure ∗ proportion of catalyst, Minitab output

shows a model R2
= 69.78% and R2 � 55:84%. It is observed that R2 actuallya	 a

decreases from 59.01% to 55.84%, while the incremental gain in R2 is about 2.14%.

The addition of the two interaction terms does not seem to significantly improve the

model. One could test a hypothesis on a subset of the parameters using eq. (13-46).

Let β5 and β6 denote the parameters associatedwith the two interaction terms.We test

H0: β5= β6= 0 and obtain the test statistic as

�0:001401 � 0:001309�=2
F0 �	 � 0:457

0:001309=13

Since F0<F.05,2,13, we do not reject H0. Hence, we conclude that the addition of the two

interaction terms do not significantly improve the model.

13-7 QUALITATIVE INDEPENDENT VARIABLES

Independent variables in regression analysis are not always quantitative, that is, defined on a

measurable scale. There could be categorical or qualitative variables that have an impact on the

dependent variable. Consider the examplewhereY is the lead time to deliver an order andX1 is

the order quantity. Suppose that there are three vendors that the company has contracted with

for the orders. The independent variable that represents the vendor is a qualitative variable.

Modeling of qualitative independent variables is accomplished through the use of indicator or

dummy variables, which take on the values of unity or zero, depending on the presence or

absence of the particular level of the qualitative variable.We define two indicator variablesX2

and X3 to represent the vendor that is supplying the order according to the following scheme:

1 if vendor 2
X2 � 

0 otherwise

1 if vendor 3
X3 � 

0 otherwise

Note that when X2= 0 and X3= 0, vendor 1 is automatically implied. So, there is no need to

include another indicator variable (X4). If included, it will cause the independent variables X2,

X3, and X4 to be perfectly related to each other, which creates problems in computations.

Software packageswill report an error. In general, the number of indicator variables necessary

is one less the number of levels of the qualitative variable.

Additive Model

The regression model depicting the average lead time to order quantity and the vendor

supplying the order is given by

E�Y� � β0 � β1X1 � β2X2 � β3X3 �13-55� 
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FIGURE 13-8 Additive model for average lead time as a function of order quantity and vendor.

Figure 13-8 displays the additive model for average lead time as a function of order quantity

and vendor.

From eq. (13-55), for vendor 1 (X2= 0, X3= 0) we have

E�Y� � β0 � β1X1

represented by the lineV1 in Figure 13-8. Hence β1 represents the change in average lead time

for a unit increase in the order quantity, while β0 is the average lead time when the order

quantity is zero, that is, equivalent to afixed amount of time for order processing for vendor 1.

For vendor 2 (X2= 1, X3= 0), we have

E�Y� � β0 � β1X1 � β2 � �β0 � β2� � β1X1

representedby the lineV2 inFigure 13-8.Note that the slope is stillβ1, the sameas for vendor 1.

However, the Y intercept is now β0 + β2. Hence, β2 represents the change in average lead time

for vendor 2 compared to vendor 1 for the same order quantity.

Similarly, for vendor 3 (X2= 0, X3= 1), we have

E�Y� � β0 � β1X1 � β3 � �β0 � β3� � β1X1

represented by the line V3 in Figure 13-8. The slope of the line is still β1, the same as for

vendor 1 or vendor 2, while the Y intercept is β0 + β3. So, β3 represents the change in average

lead time for vendor 3 compared to vendor 1 for the same order quantity. The interpretation of

the coefficients of the indicator variables β2 and β3 is with respect to the base model, in this

case vendor 1. They represent the incremental effect, on average, of vendors 2 and 3 relative

to vendor 1 for the same order quantity.

Interaction Model

Wenow consider the situationwhen there is an interaction between the order quantity and the

vendor. In the additive model, shown in Figure 13-8, there was no interaction between the
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FIGURE 13-9 Interaction model for average lead time as a function of order quantity and vendor.

order quantity and the vendor, implying that the change in average lead time for a unit increase

in the order quantity was the same for each vendor. In general, that need not be the case. The

ability of a vendor to meet a change in the order quantity may depend on the efficiency of

the vendor’s process. The average lead time due to an increase in the order quantity may be

influenced by other factors such as the vendor’s inherent capacity, agility, and resource

availability. So, a unit increase in the order quantity may have varying degrees of impact on

the average lead time, depending on the vendor. This implies a possible interaction between

order quantity and the vendor.

Using the qualitative variables previously defined, the interaction model is

E�Y� � β0 � β1X1 � β2X2 � β3X3 � β4X1X2 � β5X1X3 �13-56� 
Note that two interaction terms, X1X2 and X1X3, have been added to the model given by

eq. (13-55). These two terms assist in modeling the interaction effect between order quantity

and vendor. In general, a common approach to model interaction between two independent

variables is to create a product term of those variables in the model. Interaction between three

or more variables could be modeled along similar lines by including corresponding product

terms of the associated variables. Let us examine the specifics of how such inclusion of the

terms account for interaction between two variables. Figure 13-9 shows the interactionmodel

for average lead time as a function of order quantity and vendor.

From eq. (13-56), the model for vendor 1 (X2= 0, X3= 0) becomes

E�Y� � β0 � β1X1

represented by the line V1 in Figure 13-9. For vendor 2 (X2= 1, X3= 0), the model is

E�Y� � β0 � β1X1 � β2 � β4X1 � �β0 � β2� � �β1 � β4�X1
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represented by the lineV2 in Figure 13-9.Observe that the slope of this line is β1 + β4, different

from that of vendor 1.Hence, β4 represents the change in the average lead for a unit increase in

order quantity for vendor 2 compared to vendor 1.

Similarly, for vendor 3 (X2= 0, X3= 1), the model is

E�Y� � β0 � β1X1 � β3 � β5X1 � �β0 � β3� � �β1 � β5�X1

represented by the line V3 in Figure 13-9. The slope of this line is not necessarily the same as

that for vendors 1 and 2. The parameter β5 may be interpreted as the change in average lead

time for a unit change in order quantity for vendor 3 relative to vendor 1. Hence,

responsiveness or agility of the vendor to changes in order quantity may be modeled through

the interaction terms.

It should be noted that any of the parameters in the model given by eq. (13-56) could be

positive or negative (or zero). Interpretation of the parameterswill be influenced by their sign.

In the additive model, if β3< 0, it implies that the average lead time for vendor 3 is less than

that for vendor 1 for the same order quantity by amagnitude of β3. In the interactionmodel, if

β4< 0, it means the rate of change in average lead time for a unit increase in order quantity is

smaller for vendor 2 compared to vendor 1 by a magnitude of β4.

Example13-2 Consider thedata fromaconsulting companyshown inTable13-3onproject

completion time (in days), expenditures (in $1000), project complexity [two levels denoted

by L (low) and H (high)], and the vendor to whom that project was subcontracted. The three

possible vendors are designated by A, B, and C, respectively.

(i) Construct a regression model to predict project completion time based on

expenditures and project complexity and comment on the goodness of the model.

TABLE 13-3 Data on Project Completion Time, Expenditures, Project Complexity,

and Vendor

Completion Project

Time Expenditures Complexity Vendor

36 21

122 78

98 62

67 44

83 38

64 29

78 47

64 36

105 66

136 84

108 62

42 24

126 80

60 35

75 44

89 42

58 30

134 88

L B

H C

H A

L C

H B

L A

H B

L A

H A

H C

H A

L B

H C

L A

L C

H B

L A

H C

Completion Project

Time Expenditures Complexity Vendor

59

78

132

63

128

77

98

74

40

115

146

79

108

86

56

140

109

42

33

46

85

28

79

50

60

43

23

63

87

40

63

45

30

81

64

18

L A

H B

H C

L A

H C

H B

H A

L C

L B

H A

H C

L C

H A

H B

L A

H C

H A

L B
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(ii) Is complexity a significant predictor in the presence of expenditures? Test using

α= 0.05.

(iii) Is the rate of change in average project completion time as a function of expenditures

influenced by the complexity of the project? Test using α= 0.05. Comment on

model performance.

Solution Using Minitab, the following commands are executed: Stat>Regression>

Regression>Fit RegressionModel. UnderResponses, input the dependent variable name,

Time, or the column numberwhere its values are input. UnderContinuous predictors, input

Expenditures. UnderCategorical predictors, inputComplexity. Click onModel and input

Terms in the model as Expenditures and Complexity. Click OK. Click on Coding and

select the default coding as (1, 0). For eachCategorical predictor, select theReference level.

In this case, selectH for complexity, representing the high level. Alternatively the low level

(L) could have been selected, in which case the reference model would correspond to the

selected level of complexity. Click OK and OK.

(i) Parts of the output from Minitab are shown in Table 13-4. The model equation is:

Time � 22:65 � 1:3287 �Expenditures� � 6:39 �Complexity L� 

TABLE 13-4 Sample Output of Regression Analysis with Qualitative Independent

Variables

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 2 33526.4 16763.2 406.98 0.000

Expenditures 1 11005.0 11005.0 267.18 0.000

Complexity 1 139.5 139.5 3.39 0.075

Error 33 1359.2 41.2

Model Summary

S R-sq R-sq(adj) R-sq(pred)

6.41785 96.10% 95.87% 95.26%

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 22.65 5.48 4.13 0.000

Expenditures 1.3287 0.0813 16.35 0.000 2.56

Complexity

L -6.39 3.47 -1.84 0.075 2.56

Regression Equation

Complexity

H Time = 22.65 + 1.3287 Expenditures

L Time = 16.26 + 1.3287 Expenditures



QUALITATIVE INDEPENDENT VARIABLES 737

Note that the base model, when complexity level is high and the coefficient for

complexity is zero, will consist of the first two terms only in the above equation.We

interpret the coefficient of�6.39 as follows: For the same level of expenditures, the

average project completion time for a project of low complexity level will be less by

6.39 days, relative to a similar project of high complexity level. TheR2 for themodel

is 96.10%, indicating that a good bit of the variation in project completion times is

explained by the two selected predictors of expenditures and complexity level. The

adjusted R2 (R2) is 95.87%, which is a similar measure but also accounts for thea

number of observations and number of independent variables in the model.

(ii) To test whether complexity is a significant predictor in the presence of expenditures,

we first utilize the analysis-of-variance table in the output. Observe that the

p-value in testing H0: β2= 0, where the model is E(Y)= β0 + β1 (Expenditures) + β2
(Complexity), is 0.075. For a chosen α= 0.05, we fail to reject the null hypothesis,

implying that complexity is not a significant predictor in the presence of Expenditures

in the model for predicting the mean completion time.

Here, since complexity has only two levels, high and low, only one dummy variable

is required to model it. Hence, the parameter β2, as indicated above, is sufficient to

model the two levels of complexity. By utilizing the estimated value of β2 given by
^β2 β2

utilized to test H0: β2= 0. Here, the test statistic is t=�1.84, with a p-value of 0.075.
So, we come to the same conclusion as before and fail to reject the null hypothesis at

α= 0.05.

(iii) We now add an interaction term between expenditures and complexity to the

existing model. Using Minitab and following similar commands as before, under

Model and Terms in the model, we now include the two-way interaction term

Expenditures∗Complexity, in addition to the independent variables ofExpenditures

andComplexity. Portions of aMinitab output are shown inTable 13-5. Themodelmay

^

now be expressed as:

E�Y� � β0 � β1 �Expenditures� � β2 �Complexity� � β3 �Expenditures ∗Complexity� 

The complete model is still significant as before (p-value= 0.000). This tests H0: β1=

β2= β3= 0. From the analysis-of-variance portion of the output, the independent variables

Complexity and Expenditures ∗Complexity are not significant in the presence of the other

independent variable,with the p-values being 0.260 and 0.636, respectively.Hence,we fail to

reject H0: β3= 0 at α= 0.05. The model equation is

� �6:39 and its standard error given by SE� � � 3:47, a t-test could also be

Time � 23:77 � 1:3116 �Expenditures� � 10:39 �Complexity� 
� 0:108 �Expenditures ∗ Complexity� 

We could have tested H0: β3= 0 using the coefficients table output as well. The estimates
^β̂3 � 0:108andSE�β3

As before, we fail to reject the null hypothesis. Had there been more than two levels of

complexity and we are interested in testing for interactions between expenditures and

complexity, the results associated with t-tests from the coefficients table may be utilized

to draw conclusions.

The model R2 has increased very slightly from the model in part(i) and is now 96.13%,

while adjusted R
2 has actually decreased.

� � 0:225 lead to a test statistic valueof t= 0.48,with ap-valueof0.636.
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TABLE 13-5 Sample Output of Regression Analysis with Interaction Terms

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 3 33536.1 11178.7 265.06 0.000

Expenditures 1 9013.5 9013.5 213.72 0.000

Complexity 1 55.4 55.4 1.31 0.260

Expenditures*Complexity 1 9.7 9.7 0.23 0.636

Error 32 1349.6 42.2

Model Summary

S R-sq R-sq(adj) R-sq(pred)

6.49416 96.13% 95.77% 94.99%

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 23.77 6.02 3.95 0.000

Expenditures 1.3116 0.0897 14.62 0.000 3.05

Complexity

L -10.39 9.06 -1.15 0.260 17.05

Expenditures*Complexity

L 0.108 0.225 0.48 0.636 11.83

Regression Equation

Complexity

H Time = 23.77 + 1.3116 Expenditures

L Time = 13.38 + 1.419 Expenditures

13-8 ISSUES IN MULTIPLE REGRESSION

In developing a regression model, several issues may arise such as the minimal number of

observations, the number of levels of an independent variable in a designed experiment,

estimation of the error component variance, unusual observations and their impact on the

regression line, and the high degree of relationship between the independent variables. This

section addresses such concerns and remedial measures, where appropriate.

Data from a Retrospective Versus Designed Experiment

When data are observational and obtained from a retrospective context, there are no restrictions

on the chosen levels of the independent variables. For example, in modeling lead time based on

order quantity and vendor, whatever the values of the order quantity and the associated vendor

were for an observation are what constitute the data. On the contrary, in a designed experiment,

one may pre-select some levels of the order quantity, say, 2000 and 5000, and obtain lead time

under those circumstances. Obviously, the values of the independent variables may not be

controllable in all situations. In adesigned experiment, if a polynomial functionof an independent

variable is considered, the number of levels of that independent variablemust be at least onemore
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than the order of the polynomial. For instance, if lead time is modeled as a quadratic function of

the order quantity, at least three levels of order quantity must be represented in the data.

A regression model with (p� 1) independent variables requires the estimation of pmodel

parameters (including the constant term). Hence, the sample size (n)must be greater than p. In

this context, let us emphasize the effect of n on estimation of the variance of the error

component.When estimatingσ2 by s2, the degrees of freedomof the error component isn� p.

Large values of n relative to p will ensure a better precision in estimating σ2. Such precision

also affects other related inferences such as confidence interval for the mean response,

prediction interval for an individual response, confidence interval for the model parameters,

and model utility as obtained from the F-test.

Outliers in the Space of the Independent Variables

Observations may be “unusual” or different from the majority of the other observations, in

relationship to the values of the independent variables. One reason for identifying such

observations is the degree of influence theymay have on thefitted regressionmodel.Consider

Figure 13-10, which shows observations for predicting lead time, the dependent variable,

using order quantity, the independent variable, in a simple linear regression model. Note that

for the observation labeled 1 the magnitude of quantity ordered (the X-variable) is quite high

compared to the majority of the other observations. Such an observation, whose X-value

differs much from the average of the X-values, is said to have high leverage. Similarly, the

observation labeled 2 could have a high leverage. For a simple linear regression, it is easy to

determine high leverage points from a scatterplot. Since this is not feasible for multiple

regression, an algebraic measure needs to be used for determining high leverage points.

Themeasure of leverage is influenced by only the values of the independent variables. For

a multiple regression model, the leverage value for the ith observation involves matrix

computation and is given by

´ ´ hii � Xi�X X��1Xi; i � 1; 2; . . .; n �13-57� 

FIGURE 13-10 Unusual observations.
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where X´ denotes the ith row of the predictor matrix (X). Software programs may output thei

leverage value associated with each observation. In the case of a simple linear regression

model (p� 1= 1) the leverage coefficient is found as

21 �Xi � X�
hii � � ; i � 1; 2; . . .; n �13-58� nn 2�Xj � X�

The leverage coefficients have the following properties:

hii � p �13-59� 
i�1

0 � hii � 1;

The average of the leverage values is

p
h � �13-60� 

n

A rule of thumb for determining an observation with high leverage is if its leverage value

exceeds twice the average value, that is,

2p
hii > ; i � 1; 2; . . .; n �13-61� 

n

An observation with high leverage may impact the fitted regression model. This implies

that the estimated parameter values may be quite different from those when the particular

observation is included versus those when it is not. As will be mentioned later, the leverage

values impact the standard deviation of the residuals. Observations that have high leverage

have a significant impact on the regression line and tend to pull the regression line toward

them. The residuals for these observations, therefore, vary less and have a smaller standard

deviation.

Outliers for the Dependent Variable

We now consider observations whose predicted values differ significantly from the observed

values, that is, have large residuals in magnitude. Consider Figure 13-10, which shows

observations for predicting lead time, the dependent variable, using order quantity, the

independent variable, in a simple linear regression model. Note that for the observation

labeled 2 the predicted value of Ymay be quite different from the observed value, leading to a

j�1

n

^

^

large absolute value of the residual e2, where e2 � Y2 � Y

labeled 3 the residual, e3 � Y3 � Y3, could be large in magnitude. Such observations, whose

residuals are large in magnitude, are classified as outliers.

A rule of thumb for classifying an outlier is if the standardized residual, in magnitude,

exceeds 3, based on the concept of using the standard normal distribution. The standardized

residual is found as

2. Similarly, for the observation

ei ei∗e � � p ; i � 1; 2; . . .; n �13-62�i s MSE

It is known that the residuals do not each have the same variance. Rather, the variance of

each residual is influenced by the values of the independent variables for the particular

observation, that is, their leverage. In particular, the standard deviation of the ith residual is
p

sfeig �  MSE�1 � hii�; i � 1; 2; . . .; n �13-63� 
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where hii is the leverage of the ith observation. A refinedmeasure for determining an outlier is

the studentized residual given by

ri � ei
; i � 1; 2; . . .; n �13-64� 

sfeig 
Hence, critical values of the t-distribution with (n� p) degrees of freedom may be used to

determine an outlier. If jri j> tn�p(α/2), for a chosen level of α, say 0.05, the ith observation

may be classified as an outlier.

What should one do with an outlier? Should it be deleted from the data and the fitted

regressionmodel be foundwithout using it?The answer is no.Thedata point shouldbeclosely

examined. For instance, if the observed value ofY is due to ameasurement error or a recording

error, there is a justifiable reason to delete it. Any special causes that can be identifiedwith the

observationwill assist in the decision-makingprocess of deleting it. The same concept applies

when investigating points of high leverage. If, on the other hand, no special causes are found

and the observation is believed to be part of the common-cause system that prevails in the

process, it should not be deleted.

Influential Observations

An observation is considered to be influential if it has a major impact on the fitted regression

model. In other words, the exclusion or inclusion of the observation causes a significant

change in the model. Consider the observation labeled 2 in Figure 13-10. Imagine fitting a

regression model without this observation. The slope of such a regression line would follow

the cluster of the majority of the other observations and the fitted line would pass close to the

point labeled 1. Now consider inclusion of the observation labeled 2. The fitted model would

likely have a flatter slope and would be pulled toward the observation labeled 2. The model

coefficients could be quite different from those when the observation is excluded.

Ameasure of the degree of influenceof anobservation ion thefittedmodel is the difference

between the fitted values when using versus not using that observation in building the model.

Hence, in predicting the jth value, we have

� ^ ^�DF�j Y j � Yj�i� �13-65� 
where Ŷ j�i� denotes the predicted value for observation jwhen the ith observation is excluded
from building the model. The term Ŷ j is the usual predicted value for observation j when all

observations (including observation i) are used to build the model. Large values of (DF)j, in

magnitude, imply an influence of observation i.

One measure of influence of observation i considers the aggregate impact on the fitted

values of all observations from the inclusion or exclusion of the observation. Such a

standardized measure, called Cook’s distance, is given by

n ^ ^
j�1 �Yj � Yj�i��2

; i � 1; 2; . . .; n �13-66�Di � 
pMSE

An alternative form of the expression for Cook’s distance found from the residual and

leverage values for that observation when all observations are used is given by

2e hiii �13-67�Di � 
pMSE �1 � hii�2



742 PROCESS MODELING THROUGH REGRESSION ANALYSIS

It is noted that a large residual or a high leverage value or both will cause the Cook’s distance

to be large.While the distribution ofDi is, strictly speaking, not anF-distribution, percentiles

of theF-distribution are used to identify the degree of influence of an observation. IfDi is less

than the 10th or 20th percentile of Fp,n�p (F-distribution with p degrees of freedom in the

numerator and n� p degrees of freedom in the denominator), observation i is not considered

to be influential. On the other hand, if Di>Fp,n�p (0.50), the 50th percentile of the

corresponding F-distribution, the observation is considered to be influential.

Determination of the regression models, with or without use of an observation, may be

accomplished through the use of indicator variables. For instance, a dummyvariable could be

chosen to have a value of unity for the particular observation and zero elsewhere. Building a

regression model with such a dummy variable will give us the precise model when that

particular observation is used or not. Such a procedure could also be used to consider the joint

impact of two or more observations that are considered to be influential.

13-9 LOGISTIC REGRESSION

In linear regression analysis the dependent variable is assumed to be quantitative or continuous,

while the independent variables could be quantitative and/or qualitative as described previously.

What if the dependent variable is qualitative or categorical?A special type of regression analysis

known as logistic regression is appropriate for this situation. Threedifferent types of a dependent

variable may bemodeled using logistic regression analysis. The first is a binary type of variable

that has two levels, for example, success or failure. Suppose that we wish to predict whether a

company will be profitable (Y= 1) or not (Y= 0) based on the number of product units sold

monthly (X1) and the company location (X2, X3). We assume that there are three locations such

that two (0, 1) dummy variables (X2 and X3) are sufficient to model location. In this case, X1 is a

quantitative independent variable while X2 and X3 are qualitative independent variables.

The second type of response variable could be an ordinal variable with, say, three or more

levels. For instance, in determining customer preference for a product, the response variable

could be on a Likert scale, such as Y� 1 (representing strong disliking); Y= 2 (representing

moderate disliking); Y= 3 (representing neutral); Y= 4 (representing moderate liking); and

Y= 5 (representing strongpreference).Asbefore, independent variables couldbequantitative

and/or qualitative.

The third type of response variable could be one that is nominal with three or more levels

and no natural ordering of the levels. Suppose that we wish to model the choice of a subject

area for electives for undergraduate students. The response variable could be science,

information systems, marketing, accounting, or supply chain management. Even though a

numerical value could be specified for each distinct subject area, it is only for the purpose of

classification and there is no natural ordering of the levels (say, a 1 assigned to science and a

5 assigned to supply chain management).

Binary Response Variable

For a binary response variable, Y takes on only two possible values, say zero or unity. The

logistic regression functionmodels themean value ofY,E(Y), which is equivalent toP(Y= 1).

A natural constraint, therefore, that must be followed is

0 � E�Y� � P�Y � 1� � 1 �13-68� 
Hence, the regression functionmust be selected such that it lies between zero and unity for all

possible combination levels of the independent variables. One such function is the logistic
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function given by

exp �β0 � β1X1 � β2X2 � ∙ ∙ ∙ � βp�1Xp�1� 
E�Y� � �13-69� 

1 � exp �β0 � β1X1 � ∙ ∙ ∙ � βp�1Xp�1� 
Suppose that we have only one independent variable,X1, the number of years that a person

has had hypertension, based on which it is desired to predict the chance of a coronary heart

disease for persons in a similar risk category based on gender, age, weight, and so on. The

response variable,Y, takes on the values of, say, zero (person does not develop coronary heart

disease) or unity (person develops coronary heart disease). The logistic response function in

this case with one quantitative independent variable becomes

exp �β0 � β1X1� 
E�Y� �  �13-70� 

1 � exp �β0 � β1X1� 
Figure 13-11 shows the graph of such a logistic functionwith the ordinate beingE(Y) orP(Y= 1),

which represents the probability of developing coronary heart disease. Note that for a sample of

observations the values of Y are either zero or unity for an individual and the clustering of

observationsmay be as shown in the figure. It is quite apparent that a linear modelmight not be a

goodfit to theobservations.Alternatively,anS-shapedfunctionwithasymptotesatzeroandunity,

suchas the logistic functiongivenbyeq. (13-70),mightdoamuchbetter job.AsX1 increases,E(Y)

or P(Y= 1) increases and approaches unity, while as X1 decreases, E(Y) approaches zero.

From eq. (13-70), if we denote E(Y)=P(Y= 1)= π, then

π � exp �β0 � β1X1� �13-71� 
1 � π

Taking natural logarithm on both sides, we have

π
π´ � ln � β0 � β1X1 �13-72� 

1 � π

Equation (13-72) is of a linear regression form that represents π´ in terms of X1. Once π
´ is

estimated, one can untransform to obtain an estimate of π that represents the probability of

developing coronary heart disease.

FIGURE 13-11 Logistic response function for a model with one quantitative independent variable.
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The expression π/(1� π) is known as the odds ratio. It represents the ratio of the

probability of the event, in this case the probability of a heart attack, P(Y= 1), to the

probability of no heart attack, P(Y= 0). The logistic equation essentially models the

logarithm of the odds ratio to the selected factors and covariates.

Assumptions in Regression

Some of the usual assumptions made in linear regression analysis do not hold in logistic

regression. Thefirst violation is that of normality of distributionof the error component. Since

Y can take only two values, say zero or unity, the error component can also take on only two

values for a given value of X1. Hence, the assumption of normality is not appropriate for any

given level of X1. The equal variance assumption of the error component, across all levels of

the independent variable, is also not satisfied. It can be shown that the variance of the error

component is given byE(Y)[1�E(Y)], which is influenced by the value ofE(Y) and does not,

therefore, remain constant.

Example 13-3 Table 13-6 shows a random sample of 30 observations where the response

variable indicates whether the person has had a heart attack (1) or not (0). The independent

variables are the gender of the person (male or female) and the person’sweight (in kilograms).

Develop a logistic regression model and interpret the coefficients using α= 0.05. Predict the

probability of a heart attack of a male who weighs 105 kg.

Solution Minitab is used executing the following commands: Stat>Regression>

Binary Logistic Regression>Fit Binary Logistic Model. Select Response in binary

response/frequency format. Under Response, input the variable name (Heart Attack) or

column number. The Response event is shown as 1 (person has a heart attack). Under

Continuous predictors, inputWeight. UnderCategorical predictors, inputGender. Under

Model, input the variables Weight and Gender. Click OK.

Parts of a sample output are shown inTable 13-7.Thefirst segment indicates a summary on

the response variable. Here, there are 11 cases with Y= 1 and 19 cases with Y= 0. The next

TABLE 13-6 Data on Obesity, Gender, and Occurrence of a Heart Attack

Observation Gender Weight (kg) Heart Attack

1 M 6.15 No

2 M 110.9 Yes

3 F 44.2 No

4 M 81.4 No

5 F 59.6 Yes

6 F 81.5 Yes

7 F 60.7 No

8 M 77.1 No

9 M 81.5 Yes

10 M 70.2 No

11 F 49.8 No

12 M 106.4 Yes

13 F 60.7 No

14 F 65.3 Yes

15 F 62.5 No

Observation Gender Weight (kg) Heart Attack

16 F 71.5 No

17 M 95.1 Yes

18 M 99.7 No

19 F 58.6 No

20 M 65.7 No

21 M 71.3 Yes

22 F 64.3 Yes

23 F 56.5 No

24 M 65.7 Yes

25 F 85.1 No

26 F 84.3 Yes

27 F 58.6 No

28 M 68.3 No

29 M 52.1 No

30 F 48.9 No
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TABLE 13-7 Sample Output of Logistic Regression Analysis

Response Information

Variable Value Count

Heart Attack 1 11 (Event)

0 19

Total 30

Deviance Table

Source DF Adj Dev Adj Mean Chi-Square P-Value

Regression 2 6.9650 3.4825 6.97 0.031

Weight 1 6.5318 6.5318 6.53 0.011

Gender 1 0.3978 0.3978 0.40 0.528

Error 27 32.4644 1.2024

Total 29 39.4295

Model Summary

Deviance Deviance

R-Sq R-Sq(adj) AIC

17.66% 12.59% 38.46

Coefficients

Term Coef SE Coef VIF

Constant -5.62 2.25

Weight 0.0746 0.0331 1.26

Gender

M -0.600 0.968 1.26

Odds Ratios for Continuous Predictors

Odds Ratio 95% CI

Weight 1.0774 (1.0098, 1.1496)

Odds Ratios for Categorical Predictors

Level A Level B Odds Ratio 95% CI

Gender

M F 0.5487 (0.0822, 3.6615)

Odds ratio for level A relative to level B

Variable Setting

Weight 105

Gender M

Fitted

Probability SE Fit 95% CI

0.833434 0.147946 (0.382577, 0.975848)



746 PROCESS MODELING THROUGH REGRESSION ANALYSIS

segment represents the significance of the model terms. The overall model, with the terms of

weight and gender, is significant with a p-value of 0.031< α= 0.05. However, the factor

gender is not significant in the presence of others, with a p-value of 0.528. The following

segment depicts the coefficients of the model, their standard errors, and the variance inflation

factor (VIF) associated with the independent variable. The coefficient of 0.0746 associated

with weight indicates the estimated change in the logarithm of the odds ratio with a unit

increase inweight assuming gender remains constant. The coefficient of�0.6 associatedwith
gender being a male indicates that the logarithm of the odds ratio decreases by 0.6 for males

relative to females for the same value of weight. The odds ratio for the predictor weight is

shown to be 1.0774, indicating that for a unit increase inweight,when gender is keptfixed, the

odds of a heart attack to none is 1.0774. The closer the value of the odds ratio to unity or,

equivalently, the closer the model coefficient is to zero, it implies that the associated factor/

covariate has minimal impact. Note that the odds ratio for males relative to females for the

sameweight is 0.5487,which is less than unity. This implies the probability of a heart attack is

smaller for males than for females when they are of the same weight.

The estimated logistic regression function is

´ π̂ � �5:62 � 0:0746 �Weight� � 0:6 �Gender� 
where gender� 1 for males and 0 for females. To predict the probability of a heart attack of a

´ male who weighs 105 kg, we first estimate π̂ as

´ � �5:62 � 0:0746�105� � 0:6�1� � 1:613π̂

´ π̂ � � exp�1:613�, from which, the estimated probability of a heart1 � π̂� � exp�Hence, π̂=�
attack is

exp�1:613� � � 0:834π̂
1 � exp�1:613� 

UsingMinitab the commands are Stat>Regression>BinaryLogistic Regression>Predict.

Under Response, input the dependent variable name, Heart Attack. In the window, enter the

values of the independent variables. For this example, input the value 105 forWeight andM for

Gender. The output shows the estimated probability as 0.8334 and gives a standard error of Ŷ as

0.148 and a 95% CI for the mean probability of a heart attack as (0.383, 0.976).

SUMMARY

Usingproduct orprocess knowledge tomake inferences or predictions onadependent variable is

often of interest to decisionmakers. Model building using regression analysis is a powerful tool

to serve this purpose. Inmost realistic problems, there ismore than one independent variable that

has an impact on the dependent variable and, consequently, the concepts of multiple regression

models are incorporated. Once a model is developed, some performance measures such as

coefficient of determination and standard deviation of the residuals may be used to gage model

utility. When comparisons are to be made between models having a different number of

independent variables, the adjusted coefficient of determination and standard deviation of the

residualsmaybe used as possiblemeasures. The chapter has presented somemethods for testing

the utility of the complete model, subsets of the complete model, and individual independent

variables, as well, in the presence of the other independent variables. Modeling qualitative

independent variables, where a numerical value or a textual designation assigned to them may
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indicate their categorical level, is an important concept. Such models are developed by using

dummy variables, whose values taken on are either zero or unity, and the number of dummy

variables necessary is one less the number of levels of the qualitative variable. Another useful

concept is that of interaction between two independent variables, where the nature of the

relationship of one of the independent variables with the dependent variable is influenced by

the level of the second independent variable. A variant of the usual regressionmodels,where the

dependent variable is quantitative in nature, is where the dependent variable is qualitative.

Logistic regressionmodels have been introduced in the chapter to address this situation. Finally,

for all regressionmodels, the identification of outliers has been discussed. It should be noted that

deletion of outliers from the data set for further analysis is justifiable only on subsequent cause

analysis. If a special cause, not part of theprocess that is beingmodeled, canbe identifiedwith the

outlier, it may influence the deletion of the particular observation.

KEY TERMS
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EXERCISES

Discussion Questions

13-1 An information technology company that specializes in website development is

interested in modeling development time as a function of the contract cost, number

of available developers, and number of projects undertaken.

(a) Write down the equation of the model and explain the meaning of the model

parameters in the context of the problem.

(b) What signs do you expect of the model parameters? Explain.

(c) Do you suspect multicollinearity (strong relationship) among the independent

variables? If so, among which variables? What measures might you take to

reduce the impact of multicollinearity?

(d) Suppose you had built a model to predict development time based only on the

contract cost. What might be some disadvantages of this model?

13-2 Refer to Exercise 13-1.What null hypothesis would you test to determine if contract

cost is significant in the presence of the other independent variables? What null

hypothesiswould you test to determine if the number of projects undertaken could be

dropped from the model?

13-3 (a) Refer to Exercise 13-1. Based on historical information, the company believes

that the type of industry that the customer belongs to influences web develop

ment time. Suppose that there are four industry types: manufacturing, banking,

airlines, and health care. Discuss model formulation in this context and define

the variables.

(b) What is thepossible utility of thismodel relative to that formulated inExercise 13-1?

(c) Explain what the coefficient of the variable associated with the banking industry

means.

(d) Can you comment on the value ofR2 for themodel here versus that formulated ina

Exercise 13-1? What about comments on R2?

13-4 Refer to Exercises 13-1 and 13-2. Suppose you believe that the impact of contract

cost on web development time is dependent on the type of industry that the company

is from.

(a) What is the model equation in this context?

(b) What null hypothesis would you test to determine that the nature of the

impact of contract cost on web development time does not depend on the type

of industry?

(c) Based on historical data, you believe that web development time increases at

a faster rate as the contract cost increases. Write down the equation of the

model.

13-5 A financial institution wants to explore the relationship between a loan application

approval time and the independent variables of annual salary of the applicant and

years of employment.

(a) What is the equation of a regression model?

(b) In order to satisfy governmental regulations, the institution wishes to determine

if gender has an impact on approval time. What is the model now? What

hypothesis would you test to establish no impact of gender?
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(c) The institution has three branches and the CEO is interested in determining if

there are differences in efficiency as determined by the mean approval time.

Write down the model equation. What null hypothesis would you test to address

the CEO’s concern?

13-6 Amarketing company wants to determine if the combined years of experience of its

staff who worked on a proposal have an impact on the chance of winning a contract.

What is the equation of an appropriate model?

13-7 A health care facility is exploring the relationship between annual costs based on the

number of patients seen and the number of emergency cases.

(a) Explain what an outlier means in this context. How would you statistically test

for the presence of an outlier?

(b) In this context, what do you do if you find some outliers?

(c) What would an influential observation be in this context?

(d) How would you test for the presence of influential observations?

13-8 You are interested in developing a regression model to predict monthly sales of a

departmental store. Discuss the independent variables that you might select. How

would you select the functional form for these independent variables?

Problems

13-9 A retail company has information on the time taken (in days) to fulfill an order, the

value of the order (in $10,000), the number of different types of products in the order,

and the store location. The data are shown in Table 13-8.

(a) Find a simple regression model that predicts time to fulfill an order based on

value of the order. Interpret the estimated model coefficients.

(b) What is the estimated standard deviation of the error component? Interpret it.

TABLE 13-8 Data on Time to Fulfill Order

Number of Number of

Time Value Products Location Time Value Products Location

12 42 35 C 13 45 38 A

14 51 58 A 8 43 42 C

10 40 30 C 15 46 46 C

16 54 65 A 19 65 80 A

21 85 88 B 22 80 65 B

18 50 70 C 16 55 60 A

26 93 88 B 20 70 80 C

22 96 90 B 24 92 75 B

10 35 30 C 21 88 80 A

17 55 62 A 23 90 70 B

15 48 65 A 21 92 85 B

14 45 40 C 17 52 55 C

16 50 62 A 13 38 46 C

24 85 95 B 18 54 64 A

20 91 84 B 24 90 80 A
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(c) What are the values of R2 and R2? Interpret them.a

(d) Is there evidence to conclude that value of the order is a useful predictor? Test

using α= 0.01.

(e) Interpret the p-value associated with the test in part (d).

13-10 Refer to Exercise 13-9 and the regression model of time to fulfill an order based on

order value.

(a) Find a 95% confidence interval for the mean time to fulfill orders that have an

order value of $75,000.

(b) Find a 95%prediction interval for the time to fulfill an order for an order of value

$75,000. Interpret the difference in the intervals found in parts (a) and (b).

(c) The leverage value for observation 8 is found to be 0.114. Would you consider

this observation to have high leverage? Explain.

(d) The studentized residual for observation 17 is found to be �2.840. Using
α= 0.05, what can you conclude?

(e) TheCook’sdistanceforobservation17isfoundtobe0.295.Whatcanyouconclude?

13-11 Refer to Exercise 13-9 and the corresponding data shown in Table 13-8.

(a) Based on a scatterplot of order fulfillment time versus order value, you decide to

fit a quadratic model in order value. What is the model equation?

(b) What are values of R2 and R2?a
(c) Test if adding a quadratic term in value is useful. Use α= 0.05.

(d) Find a 95% confidence interval for the mean fulfillment time if the order value is

$75,000.Howdoes this compare to the interval obtained inExercise 13-10, part (a)?

13-12 Refer to the data in Table 13-8 on order fulfillment time.

(a) You decide to develop a regression model using order value and the number of

products in the order as predictors. Find the model equation. Is it significant at

α= 0.05?

(b) Find R2 and R2 and comment relative to the model in Exercise 13-9.a

(c) Is the predictor, number of products, significant in the presence of the other

predictor? Test using α= 0.05.

(d) Find a 95% confidence interval for the mean fulfillment time for an order value

of $75,000 and number of products being 65.

13-13 Refer to the data in Table 13-8 on order fulfillment time.

(a) You decide to develop a regression model using order value, number of

products, and location of the retailer as predictors. Find the model equation.

Is it significant at α= 0.05?

(b) What is R2 and interpret its value relative to that in Exercise 13-12, part (b).

(c) Are all the predictors significant in the presence of others? Use α= 0.05.

(d) What can you comment regarding the models for locations A and C?

(e) Interpret the model coefficients of that for location B.

13-14 Refer to the data in Table 13-8 on order fulfillment time.

(a) You believe that there are differences, in general, in the value of orders by

location of the store. Consequently, its impact on order fulfillment time may be

influenced as such. Find the model equation based on order value, number of

products, store location, and interaction between order value and location. Is the

model significant at α= 0.05? What hypotheses are tested in this case?
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(b) Are all the predictors significant in the presence of others? Use α= 0.05.

(c) Based on the tests in part (b), what terms would you recommend for inclusion in

the model?

13-15 Refer to the data in Table 13-6 on obesity, gender, and occurrence of a heart attack.

(a) Develop a regression model to predict the chance of a heart attack based on

weight. Interpret the model coefficients.

(b) Is the model significant using α= 0.05?

(c) Find a 95% confidence interval for the mean probability of a heart attack for

individuals who weigh 90 kg.

13-16 Table 13-9 shows data on diabetic patients and the development of retinopathy. The

gender of the person, number of years that the person has been diagnosed with

diabetes (labeled as Years), and whether the person has developed retinopathy

(Y=Yes; N=No) are shown in the table.

(a) Fit an appropriate regression model to predict the probability of development of

retinopathy based on years of diabetes. Is the model significant at α= 0.05.

(b) Interpret the model coefficients.

(c) What is the odds ratio? Interpret it.

(d) Find a 95% confidence interval for the mean probability of developing reino

pathy for persons who have had diabetes for 15 years.

TABLE 13-9 Data on Retinopathy in Diabetic Patients

Gender Years Retinopathy Gender Years Retinopathy

M 12 Y F 14 N

F 25 Y M 22 Y

F 16 Y F 9 N

M 10 N M 9 N

M 20 Y M 19 Y

M 18 N F 22 Y

F 24 Y M 7 N

F 10 N F 20 Y

M 15 Y F 15 Y

F 15 N M 12 Y

M 25 Y M 23 N

13-17 Refer to the data in Table 13-9 on diabetic patients and the development of

retinopathy.

(a) Develop a regression model to predict the probability of development of

retinopathy based on years of diabetes and gender of person. Is the model

significant at α= 0.05?

(b) Is the model developed in part (a) better than that developed in Exercise 13-16?

Comment.

(c) Interpret the odds ratio associated with the predictors.

(d) Find a 95% confidence interval for the mean probability of developing

retinopathy for males who have had diabetes for 15 years. What is the

corresponding 95% confidence interval for females?
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Appendix A-1 Cumulative binomial distribution

Appendix A-2 Cumulative Poisson distribution

Appendix A-3 Cumulative standard normal distribution

Appendix A-4 Values of t� for a specified right-tail area

Appendix A-5 Chi-squared values for a specified right-tail area

Appendix A-6 Values of F� for a specifi ed right-tail area

Appendix A-7 Factors for computing centerline and three-sigma control limits

Appendix A-8 Uniform random numbers

APPENDIX A-1 Cumulative Binomial Distribution

p=Probability of Occurrence

n X 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

2 0

1

0.903

0.998

0.810

0.990

0.723

0.978

0.640

0.960

0.563

0.938

0.490

0.910

0.423

0.878

0.360

0.840

0.303

0.798

0.250

0.750

3 0

1

2

0.857

0.993

1.000

0.729

0.972

0.999

0.614

0.939

0.997

0.512

0.896

0.992

0.422

0.844

0.984

0.343

0.784

0.973

0.275

0.718

0.957

0.216

0.648

0.936

0.166

0.575

0.909

0.125

0.500

0.875

4 0

1

2

3

0.815

0.986

1.000

0.656

0.948

0.996

1.000

0.522

0.890

0.988

0.999

0.410

0.819

0.973

0.998

0.316

0.738

0.949

0.996

0.240

0.652

0.916

0.992

0.179

0.563

0.874

0.985

0.130

0.475

0.821

0.974

0.092

0.391

0.759

0.959

0.063

0.313

0.688

0.938

5 0

1

2

3

4

0.774

0.977

0.999

1.000

0.590

0.919

0.991

1.000

0.444

0.835

0.973

0.998

1.000

0.328

0.737

0.942

0.993

1.000

0.237

0.633

0.896

0.984

0.999

0.168

0.528

0.837

0.969

0.998

0.116

0.428

0.765

0.946

0.995

0.078

0.337

0.683

0.913

0.990

0.050

0.256

0.593

0.869

0.982

0.031

0.188

0.500

0.813

0.969

6 0

1

2

3

4

5

0.735

0.967

0.998

1.000

0.531

0.886

0.984

0.999

1.000

0.377

0.776

0.953

0.994

1.000

0.262

0.655

0.901

0.983

0.998

1.000

0.178

0.534

0.831

0.962

0.995

1.000

0.118

0.420

0.744

0.930

0.989

0.999

0.075

0.319

0.647

0.883

0.978

0.998

0.047

0.233

0.544

0.821

0.959

0.996

0.028

0.164

0.442

0.745

0.931

0.992

0.016

0.109

0.344

0.656

0.891

0.984

(continued)
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APPENDIX A-1 (continued)

p=Probability of Occurrence

n X 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

7 0

1

2

3

4

5

6

0.698

0.956

0.996

1.000

0.478

0.850

0.974

0.997

1.000

0.321

0.717

0.926

0.988

0.999

1.000

0.210

0.577

0.852

0.967

0.995

1.000

0.133

0.445

0.756

0.929

0.987

0.999

1.000

0.082

0.329

0.647

0.874

0.971

0.996

1.000

0.049

0.234

0.532

0.800

0.944

0.991

0.999

0.028

0.159

0.420

0.710

0.904

0.981

0.998

0.015

0.102

0.316

0.608

0.847

0.964

0.996

0.008

0.063

0.227

0.500

0.773

0.938

0.992

8 0

1

2

3

4

5

6

7

0.663

0.943

0.994

1.000

0.430

0.813

0.962

0.995

1.000

0.272

0.657

0.895

0.979

0.997

1.000

0.168

0.503

0.797

0.944

0.990

0.999

1.000

0.100

0.367

0.679

0.886

0.973

0.996

1.000

0.058

0.255

0.552

0.806

0.942

0.989

0.999

1.000

0.032

0.169

0.428

0.706

0.894

0.975

0.996

1.000

0.017

0.106

0.315

0.594

0.826

0.950

0.991

0.999

0.008

0.063

0.220

0.477

0.740

0.912

0.982

0.998

0.004

0.035

0.145

0.363

0.637

0.855

0.965

0.996

9 0

1

2

3

4

5

6

7

8

0.630

0.929

0.992

0.999

1.000

0.387

0.775

0.947

0.992

0.999

1.000

0.232

0.599

0.859

0.966

0.994

0.999

1.000

0.134

0.436

0.738

0.914

0.980

0.997

1.000

0.075

0.300

0.601

0.834

0.951

0.990

0.999

1.000

0.040

0.196

0.463

0.730

0.901

0.975

0.996

1.000

0.021

0.121

0.337

0.609

0.828

0.946

0.989

0.999

1.000

0.010

0.071

0.232

0.483

0.733

0.901

0.975

0.996

1.000

0.005

0.039

0.150

0.361

0.621

0.834

0.950

0.991

0.999

0.002

0.020

0.090

0.254

0.500

0.746

0.910

0.980

0.998

10 0

1

2

3

4

5

6

7

8

9

0.599

0.914

0.988

0.999

1.000

0.349

0.736

0.930

0.987

0.998

1.000

0.197

0.544

0.820

0.950

0.990

0.999

1.000

0.107

0.376

0.678

0.879

0.967

0.994

0.999

1.000

0.056

0.244

0.526

0.776

0.922

0.980

0.996

1.000

0.028

0.149

0.383

0.650

0.850

0.953

0.989

0.998

1.000

0.013

0.086

0.262

0.514

0.751

0.905

0.974

0.995

0.999

1.000

0.006

0.046

0.167

0.382

0.633

0.834

0.945

0.988

0.998

1.000

0.003

0.023

0.100

0.266

0.504

0.738

0.898

0.973

0.995

1.000

0.001

0.011

0.055

0.172

0.377

0.623

0.828

0.945

0.989

0.999

11 0

1

2

3

4

5

6

7

8

9

10

0.569

0.898

0.985

0.998

1.000

0.314

0.697

0.910

0.981

0.997

1.000

0.167

0.492

0.779

0.931

0.984

0.997

1.000

0.086

0.322

0.617

0.839

0.950

0.988

0.998

1.000

0.042

0.197

0.455

0.713

0.885

0.966

0.992

0.999

1.000

0.020

0.113

0.313

0.570

0.790

0.922

0.978

0.996

0.999

1.000

0.009

0.061

0.200

0.426

0.668

0.851

0.950

0.988

0.998

1.000

0.004

0.030

0.119

0.296

0.533

0.753

0.901

0.971

0.994

0.999

1.000

0.001

0.014

0.065

0.191

0.397

0.633

0.826

0.939

0.985

0.998

1.000

0.000

0.006

0.033

0.113

0.274

0.500

0.726

0.887

0.967

0.994

1.000

12 0

1

2

3

0.540

0.882

0.980

0.998

0.282

0.659

0.889

0.974

0.142

0.443

0.736

0.908

0.069

0.275

0.558

0.795

0.032

0.158

0.391

0.649

0.014

0.085

0.253

0.493

0.006

0.042

0.151

0.347

0.002

0.020

0.083

0.225

0.001

0.008

0.042

0.134

0.000

0.003

0.019

0.073

(continued)
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APPENDIX A-1 (continued)

p= Probability of Occurrence

n X 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

4

5

6

7

8

9

10

11

1.000 0.996

0.999

1.000

0.976

0.995

0.999

1.000

0.927

0.981

0.996

0.999

1.000

0.842

0.946

0.986

0.997

1.000

0.724

0.882

0.961

0.991

0.998

1.000

0.583

0.787

0.915

0.974

0.994

0.999

1.000

0.438

0.665

0.842

0.943

0.985

0.997

1.000

0.304

0.527

0.739

0.888

0.964

0.992

0.999

1.000

0.194

0.387

0.613

0.806

0.927

0.981

0.997

1.000

13 0

1

2

3

4

5

6

7

8

9

10

11

12

0.513

0.865

0.975

0.997

1.000

0.254

0.621

0.866

0.966

0.994

0.999

1.000

0.121

0.398

0.692

0.882

0.966

0.992

0.999

1.000

0.055

0.234

0.502

0.747

0.901

0.970

0.993

0.999

1.000

0.024

0.127

0.333

0.584

0.794

0.920

0.976

0.994

0.999

1.000

0.010

0.064

0.202

0.421

0.654

0.835

0.938

0.982

0.996

0.999

1.000

0.004

0.030

0.113

0.278

0.501

0.716

0.871

0.954

0.987

0.997

1.000

0.001

0.013

0.058

0.169

0.353

0.574

0.771

0.902

0.968

0.992

0.999

1.000

0.000

0.005

0.027

0.093

0.228

0.427

0.644

0.821

0.930

0.980

0.996

0.999

1.000

0.000

0.002

0.011

0.046

0.133

0.291

0.500

0.709

0.867

0.954

0.989

0.998

1.000

14 0

1

2

3

4

5

6

7

8

9

10

11

12

13

0.488

0.847

0.970

0.996

1.000

0.229

0.585

0.842

0.956

0.991

0.999

1.000

0.103

0.357

0.648

0.853

0.953

0.988

0.998

1.000

0.044

0.198

0.448

0.698

0.870

0.956

0.988

0.998

1.000

0.018

0.101

0.281

0.521

0.742

0.888

0.962

0.990

0.998

1.000

0.007

0.047

0.161

0.355

0.584

0.781

0.907

0.969

0.992

0.998

1.000

0.002

0.021

0.084

0.220

0.423

0.641

0.816

0.925

0.976

0.994

0.999

1.000

0.001

0.008

0.040

0.124

0.279

0.486

0.692

0.850

0.942

0.982

0.996

0.999

1.000

0.000

0.003

0.017

0.063

0.167

0.337

0.546

0.741

0.881

0.957

0.989

0.998

1.000

0.000

0.001

0.006

0.029

0.090

0.212

0.395

0.605

0.788

0.910

0.971

0.994

0.999

1.000

15 0

1

2

3

4

5

6

7

8

9

10

11

12

13

0.463

0.829

0.964

0.995

0.999

1.000

0.206

0.549

0.816

0.944

0.987

0.998

1.000

0.087

0.319

0.604

0.823

0.938

0.983

0.996

0.999

1.000

0.035

0.167

0.398

0.648

0.836

0.939

0.982

0.996

0.999

1.000

0.013

0.080

0.236

0.461

0.686

0.852

0.943

0.983

0.996

0.999

1.000

0.005

0.035

0.127

0.297

0.515

0.722

0.869

0.950

0.985

0.996

0.999

1.000

0.002

0.014

0.062

0.173

0.352

0.564

0.755

0.887

0.958

0.988

0.997

1.000

0.000

0.005

0.027

0.091

0.217

0.403

0.610

0.787

0.905

0.966

0.991

0.998

1.000

0.000

0.002

0.011

0.042

0.120

0.261

0.452

0.654

0.818

0.923

0.975

0.994

0.999

1.000

0.000

0.000

0.004

0.018

0.059

0.151

0.304

0.500

0.696

0.849

0.941

0.982

0.996

1.000

(continued)
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APPENDIX A-1 (continued)

p=Probability of Occurrence

n X 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

16 0 0.440 0.185 0.074 0.028 0.010 0.003 0.001 0.000 0.000 0.000

1 0.811 0.515 0.284 0.141 0.063 0.026 0.010 0.003 0.001 0.000

2 0.957 0.789 0.561 0.352 0.197 0.099 0.045 0.018 0.007 0.002

3 0.993 0.932 0.790 0.598 0.405 0.246 0.134 0.065 0.028 0.011

4 0.999 0.983 0.921 0.798 0.630 0.450 0.289 0.167 0.085 0.038

5 1.000 0.997 0.976 0.918 0.810 0.660 0.490 0.329 0.198 0.105

6 0.999 0.994 0.973 0.920 0.825 0.688 0.527 0.366 0.227

7 1.000 0.999 0.993 0.973 0.926 0.841 0.716 0.563 0.402

8 1.000 0.999 0.993 0.974 0.933 0.858 0.744 0.598

9 1.000 0.998 0.993 0.977 0.942 0.876 0.773

10 1.000 0.998 0.994 0.981 0.951 0.895

11 1.000 0.999 0.995 0.985 0.962

12 1.000 0.999 0.997 0.989

13 1.000 0.999 0.998

14 1.000 1.000

17 0 0.418 0.167 0.063 0.023 0.008 0.002 0.001 0.000 0.000 0.000

1 0.792 0.482 0.252 0.118 0.050 0.019 0.007 0.002 0.001 0.000

2 0.950 0.762 0.520 0.310 0.164 0.077 0.033 0.012 0.004 0.001

3 0.991 0.917 0.756 0.549 0.353 0.202 0.103 0.046 0.018 0.006

4 0.999 0.978 0.901 0.758 0.574 0.389 0.235 0.126 0.060 0.025

5 1.000 0.995 0.968 0.894 0.765 0.597 0.420 0.264 0.147 0.072

6 0.999 0.992 0.962 0.893 0.775 0.619 0.448 0.290 0.166

7 1.000 0.998 0.989 0.960 0.895 0.787 0.641 0.474 0.315

8 1.000 0.997 0.988 0.960 0.901 0.801 0.663 0.500

9 1.000 0.997 0.987 0.962 0.908 0.817 0.685

10 0.999 0.997 0.988 0.965 0.917 0.834

11 1.000 0.999 0.997 0.989 0.970 0.928

12 1.000 0.999 0.997 0.991 0.975

13 1.000 1.000 0.998 0.994

14 1.000 0.999

15 1.000

18 0 0.397 0.150 0.054 0.018 0.006 0.002 0.000 0.000 0.000 0.000

1 0.774 0.450 0.224 0.099 0.039 0.014 0.005 0.001 0.000 0.000

2 0.942 0.734 0.480 0.271 0.135 0.060 0.024 0.008 0.003 0.001

3 0.989 0.902 0.720 0.501 0.306 0.165 0.078 0.033 0.012 0.004

4 0.998 0.972 0.879 0.716 0.519 0.333 0.189 0.094 0.041 0.015

5 1.000 0.994 0.958 0.867 0.717 0.534 0.355 0.209 0.108 0.048

6 0.999 0.988 0.949 0.861 0.722 0.549 0.374 0.226 0.119

7 1.000 0.997 0.984 0.943 0.859 0.728 0.563 0.391 0.240

8 0.999 0.996 0.981 0.940 0.861 0.737 0.578 0.407

9 1.000 0.999 0.995 0.979 0.940 0.865 0.747 0.593

10 1.000 0.999 0.994 0.979 0.942 0.872 0.760

11 1.000 0.999 0.994 0.980 0.946 0.881

12 1.000 0.999 0.994 0.982 0.952

13 1.000 0.999 0.995 0.985

14 1.000 0.999 0.996

15 1.000 0.999

16 1.000

(continued)
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APPENDIX A-1 (continued)

p= Probability of Occurrence

n X 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

19 0 0.377 0.135 0.046 0.014 0.004 0.001 0.000 0.000 0.000 0.000

1 0.755 0.420 0.198 0.083 0.031 0.010 0.003 0.001 0.000 0.000

2 0.933 0.705 0.441 0.237 0.111 0.046 0.017 0.005 0.002 0.000

3 0.987 0.885 0.684 0.455 0.263 0.133 0.059 0.023 0.008 0.002

4 0.998 0.965 0.856 0.673 0.465 0.282 0.150 0.070 0.028 0.010

5 1.000 0.991 0.946 0.837 0.668 0.474 0.297 0.163 0.078 0.032

6 0.998 0.984 0.932 0.825 0.666 0.481 0.308 0.173 0.084

7 1.000 0.996 0.977 0.923 0.818 0.666 0.488 0.317 0.180

8 0.999 0.993 0.971 0.916 0.815 0.667 0.494 0.324

9 1.000 0.998 0.991 0.967 0.913 0.814 0.671 0.500

10 1.000 0.998 0.989 0.965 0.912 0.816 0.676

11 1.000 0.997 0.989 0.965 0.913 0.820

12 0.999 0.997 0.988 0.966 0.916

13 1.000 0.999 0.997 0.989 0.968

14 1.000 0.999 0.997 0.990

15 1.000 0.999 0.998

16 1.000 1.000

20 0 0.358 0.122 0.039 0.012 0.003 0.001 0.000 0.000 0.000 0.000

1 0.736 0.392 0.176 0.069 0.024 0.008 0.002 0.001 0.000 0.000

2 0.925 0.677 0.405 0.206 0.091 0.035 0.012 0.004 0.001 0.000

3 0.984 0.867 0.648 0.411 0.225 0.107 0.044 0.016 0.005 0.001

4 0.997 0.957 0.830 0.630 0.415 0.238 0.118 0.051 0.019 0.006

5 1.000 0.989 0.933 0.804 0.617 0.416 0.245 0.126 0.055 0.021

6 0.998 0.978 0.913 0.786 0.608 0.417 0.250 0.130 0.058

7 1.000 0.994 0.968 0.898 0.772 0.601 0.416 0.252 0.132

8 0.999 0.990 0.959 0.887 0.762 0.596 0.414 0.252

9 1.000 0.997 0.986 0.952 0.878 0.755 0.591 0.412

10 0.999 0.996 0.983 0.947 0.872 0.751 0.588

11 1.000 0.999 0.995 0.980 0.943 0.869 0.748

12 1.000 0.999 0.994 0.979 0.942 0.868

13 1.000 0.998 0.994 0.979 0.942

14 1.000 0.998 0.994 0.979

15 1.000 0.998 0.994

16 1.000 0.999

17 1.000
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APPENDIX A-2 Cumulative Poisson Distribution

=Mean

X 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0 0.990 0.951 0.905 0.819 0.741 0.670 0.607 0.549 0.497 0.449 0.407

1 1.000 0.999 0.995 0.982 0.963 0.938 0.910 0.878 0.844 0.809 0.772

2 1.000 1.000 0.999 0.996 0.992 0.986 0.977 0.966 0.953 0.937

3 1.000 1.000 0.999 0.998 0.997 0.994 0.991 0.987

4 1.000 1.000 1.000 0.999 0.999 0.998

5 1.000 1.000 1.000

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 0.368 0.333 0.301 0.273 0.247 0.223 0.202 0.183 0.165 0.150 0.135

1 0.736 0.699 0.663 0.627 0.592 0.558 0.525 0.493 0.463 0.434 0.406

2 0.920 0.900 0.879 0.857 0.833 0.809 0.783 0.757 0.731 0.704 0.677

3 0.981 0.974 0.966 0.957 0.946 0.934 0.921 0.907 0.891 0.875 0.857

4 0.996 0.995 0.992 0.989 0.986 0.981 0.976 0.970 0.964 0.956 0.947

5 0.999 0.999 0.998 0.998 0.997 0.996 0.994 0.992 0.990 0.987 0.983

6 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.997 0.995

7 1.000 1.000 1.000 1.000 0.999 0.999 0.999

8 1.000 1.000 1.000

2.2 2.4 2.6 2.8 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0 0.111 0.091 0.074 0.061 0.050 0.030 0.018 0.011 0.007 0.004 0.002

1 0.355 0.308 0.267 0.231 0.199 0.136 0.092 0.061 0.040 0.027 0.017

2 0.623 0.570 0.518 0.469 0.423 0.321 0.238 0.174 0.125 0.088 0.062

3 0.819 0.779 0.736 0.692 0.647 0.537 0.433 0.342 0.265 0.202 0.151

4 0.928 0.904 0.877 0.848 0.815 0.725 0.629 0.532 0.440 0.358 0.285

5 0.975 0.964 0.951 0.935 0.916 0.858 0.785 0.703 0.616 0.529 0.446

6 0.993 0.988 0.983 0.976 0.966 0.935 0.889 0.831 0.762 0.686 0.606

7 0.998 0.997 0.995 0.992 0.988 0.973 0.949 0.913 0.867 0.809 0.744

8 1.000 0.999 0.999 0.998 0.996 0.990 0.979 0.960 0.932 0.894 0.847

9 1.000 1.000 0.999 0.999 0.997 0.992 0.983 0.968 0.946 0.916

10 1.000 1.000 0.999 0.997 0.993 0.986 0.975 0.957

11 1.000 0.999 0.998 0.995 0.989 0.980

12 1.000 0.999 0.998 0.996 0.991

13 1.000 0.999 0.998 0.996

14 1.000 0.999 0.999

15 1.000 0.999

16 1.000

6.5 7.0 7.5 8.0 9.0 10.0 12.0 14.0 16.0 18.0 20.0

0 0.002 0.001 0.001 0.000 0.000

1 0.011 0.007 0.005 0.003 0.001 0.000 0.000

2 0.043 0.030 0.020 0.014 0.006 0.003 0.001

3 0.112 0.082 0.059 0.042 0.021 0.010 0.002 0.000

4 0.224 0.173 0.132 0.100 0.055 0.029 0.008 0.002 0.000

5 0.369 0.301 0.241 0.191 0.116 0.067 0.020 0.006 0.001 0.000

6 0.527 0.450 0.378 0.313 0.207 0.130 0.046 0.014 0.004 0.001 0.000

7 0.673 0.599 0.525 0.453 0.324 0.220 0.090 0.032 0.010 0.003 0.001

8 0.792 0.729 0.662 0.593 0.456 0.333 0.155 0.062 0.022 0.007 0.002

9 0.877 0.830 0.776 0.717 0.587 0.458 0.242 0.109 0.043 0.015 0.005

10 0.933 0.901 0.862 0.816 0.706 0.583 0.347 0.176 0.077 0.030 0.011

11 0.966 0.947 0.921 0.888 0.803 0.697 0.462 0.260 0.127 0.055 0.021

(continued)
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APPENDIX A-2 (continued)

=Mean

6.5 7.0 7.5 8.0 9.0 10.0 12.0 14.0 16.0 18.0 20.0

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

0.984

0.993

0.997

0.999

1.000

0.973

0.987

0.994

0.998

0.999

1.000

0.957

0.978

0.990

0.995

0.998

0.999

1.000

0.936

0.966

0.983

0.992

0.996

0.998

0.999

1.000

0.876

0.926

0.959

0.978

0.989

0.995

0.998

0.999

1.000

0.792

0.864

0.917

0.951

0.973

0.986

0.993

0.997

0.998

0.999

1.000

0.576

0.682

0.772

0.844

0.899

0.937

0.963

0.979

0.988

0.994

0.997

0.999

0.999

1.000

0.358

0.464

0.570

0.669

0.756

0.827

0.883

0.923

0.952

0.971

0.983

0.991

0.995

0.997

0.999

0.999

1.000

0.193

0.275

0.368

0.467

0.566

0.659

0.742

0.812

0.868

0.911

0.942

0.963

0.978

0.987

0.993

0.996

0.998

0.999

0.999

1.000

0.092

0.143

0.208

0.287

0.375

0.469

0.562

0.651

0.731

0.799

0.855

0.899

0.932

0.955

0.972

0.983

0.990

0.994

0.997

0.998

0.999

1.000

0.039

0.066

0.105

0.157

0.221

0.297

0.381

0.470

0.559

0.644

0.721

0.787

0.843

0.888

0.922

0.948

0.966

0.978

0.987

0.992

0.995

0.997

0.999

0.999

1.000
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APPENDIX A-3 Cumulative Standard Normal Distribution

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�3.40
�3.30
�3.20
�3.10
�3.00

0.0003

0.0005

0.0007

0.0010

0.0013

0.0003

0.0005

0.0007

0.0009

0.0013

0.0003

0.0005

0.0006

0.0009

0.0013

0.0003

0.0004

0.0006

0.0009

0.0012

0.0003

0.0004

0.0006

0.0008

0.0012

0.0003

0.0004

0.0006

0.0008

0.0011

0.0003

0.0004

0.0006

0.0008

0.0011

0.0003

0.0004

0.0005

0.0008

0.0011

0.0003

0.0004

0.0005

0.0007

0.0010

0.0002

0.0003

0.0005

0.0007

0.0010

�2.90
�2.80
�2.70
�2.60
�2.50

0.0019

0.0026

0.0035

0.0047

0.0062

0.0018

0.0025

0.0034

0.0045

0.0060

0.0018

0.0024

0.0033

0.0044

0.0059

0.0017

0.0023

0.0032

0.0043

0.0057

0.0016

0.0023

0.0031

0.0041

0.0055

0.0016

0.0022

0.0030

0.0040

0.0054

0.0015

0.0021

0.0029

0.0039

0.0052

0.0015

0.0021

0.0028

0.0038

0.0051

0.0014

0.0020

0.0027

0.0037

0.0049

0.0014

0.0019

0.0026

0.0036

0.0048

�2.40
�2.30
�2.20
�2.10
�2.00

0.0082

0.0107

0.0139

0.0179

0.0228

0.0080

0.0104

0.0136

0.0174

0.0222

0.0078

0.0102

0.0132

0.0170

0.0217

0.0075

0.0099

0.0129

0.0166

0.0212

0.0073

0.0096

0.0125

0.0162

0.0207

0.0071

0.0094

0.0122

0.0158

0.0202

0.0069

0.0091

0.0119

0.0154

0.0197

0.0068

0.0089

0.0116

0.0150

0.0192

0.0066

0.0087

0.0113

0.0146

0.0188

0.0064

0.0084

0.0110

0.0143

0.0183

�1.90
�1.80
�1.70
�1.60
�1.50

0.0287

0.0359

0.0446

0.0548

0.0668

0.0281

0.0351

0.0436

0.0537

0.0655

0.0274

0.0344

0.0427

0.0526

0.0643

0.0268

0.0336

0.0418

0.0516

0.0630

0.0262

0.0329

0.0409

0.0505

0.0618

0.0256

0.0322

0.0401

0.0495

0.0606

0.0250

0.0314

0.0392

0.0485

0.0594

0.0244

0.0307

0.0384

0.0475

0.0582

0.0239

0.0301

0.0375

0.0465

0.0571

0.0233

0.0294

0.0367

0.0455

0.0559

�1.40
�1.30
�1.20
�1.10
�1.00

0.0808

0.0968

0.1151

0.1357

0.1587

0.0793

0.0951

0.1131

0.1335

0.1562

0.0778

0.0934

0.1112

0.1314

0.1539

0.0764

0.0918

0.1093

0.1292

0.1515

0.0749

0.0901

0.1075

0.1271

0.1492

0.0735

0.0885

0.1056

0.1251

0.1469

0.0721

0.0869

0.1038

0.1230

0.1446

0.0708

0.0853

0.1020

0.1210

0.1423

0.0694

0.0838

0.1003

0.1190

0.1401

0.0681

0.0823

0.0985

0.1170

0.1379

�0.90
�0.80
�0.70
�0.60
�0.50

0.1841

0.2119

0.2420

0.2743

0.3085

0.1814

0.2090

0.2389

0.2709

0.3050

0.1788

0.2061

0.2358

0.2676

0.3015

0.1762

0.2033

0.2327

0.2643

0.2981

0.1736

0.2005

0.2296

0.2611

0.2946

0.1711

0.1977

0.2266

0.2578

0.2912

0.1685

0.1949

0.2236

0.2546

0.2877

0.1660

0.1922

0.2206

0.2514

0.2843

0.1635

0.1894

0.2177

0.2483

0.2810

0.1611

0.1867

0.2148

0.2451

0.2776

�0.40
�0.30
�0.20

0.3446

0.3821

0.4207

0.3409

0.3783

0.4168

0.3372

0.3745

0.4129

0.3336

0.3707

0.4090

0.3300

0.3669

0.4052

0.3264

0.3632

0.4013

0.3228

0.3594

0.3974

0.3192

0.3557

0.3936

0.3156

0.3520

0.3897

0.3121

0.3483

0.3859
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APPENDIX A-3 (continued)

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�0.10 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

�0.00 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.00 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.10 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.20 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.30 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.40 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.50 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.60 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.70 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.80 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.90 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.00 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.10 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.20 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.30 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.40 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.50 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.60 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.70 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.80 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.90 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.00 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.10 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.20 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.30 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.40 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.50 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.60 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.70 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.80 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.90 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.00 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.10 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.20 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.30 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.40 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Z F(z) Z F(z) Z F(z)

3.50 0.99976 73709 4.35 0.99999 31931 5.20 0.99999 99003

3.55 0.99980 73844 4.40 0.99999 45875 5.25 0.99999 99239

3.60 0.99984 08914 4.45 0.99999 57065 5.30 0.99999 99420

3.65 0.99986 88798 4.50 0.99999 66023 5.35 0.99999 99560

3.70 0.99989 22003 4.55 0.99999 73177 5.40 0.99999 99666

3.75 0.99991 15827 4.60 0.99999 78875 5.45 0.99999 99748

3.80 0.99992 76520 4.65 0.99999 83403 5.50 0.99999 99810

3.85 0.99994 09411 4.70 0.99999 86992 5.55 0.99999 99857

3.90 0.99995 19037 4.75 0.99999 89829 5.60 0.99999 99892

(Continued)
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APPENDIX A-3 (continued)

Z F(z) Z F(z) Z F(z)

3.95 0.99996 09244 4.80 0.99999 92067 5.65 0.99999 99919

4.00 0.99996 83288 4.85 0.99999 93827 5.70 0.99999 99940

4.05 0.99997 43912 4.90 0.99999 95208 5.75 0.99999 99955

4.10 0.99997 93425 4.95 0.99999 96289 5.80 0.99999 99966

4.15 0.99998 33762 5.00 0.99999 97133 5.85 0.99999 99975

4.20 0.99998 66543 5.05 0.99999 97790 5.90 0.99999 99981

4.25 0.99998 93115 5.10 0.99999 98301 5.95 0.99999 99986

4.30 0.99999 14601 5.15 0.99999 98697 6.00 0.99999 99990
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APPENDIX A-4 Values of t for a Specified Right-Tail Area

α=Right-Tail Area
df

ν 0.250 0.200 0.100 0.050 0.025 0.010 0.005 0.001

1 1.000 1.376 3.078 6.314 12.706 31.821 63.657 318.309

2 0.816 1.061 1.886 2.920 4.303 6.965 9.925 22.327

3 0.765 0.978 1.638 2.353 3.182 4.541 5.841 10.215

4 0.741 0.941 1.533 2.132 2.776 3.747 4.604 7.173

5 0.727 0.920 1.476 2.015 2.571 3.365 4.032 5.893

6 0.718 0.906 1.440 1.943 2.447 3.143 3.707 5.208

7 0.711 0.896 1.415 1.895 2.365 2.998 3.499 4.785

8 0.706 0.889 1.397 1.860 2.306 2.896 3.355 4.501

9 0.703 0.883 1.383 1.833 2.262 2.821 3.250 4.297

10 0.700 0.879 1.372 1.812 2.228 2.764 3.169 4.144

11 0.697 0.876 1.363 1.796 2.201 2.718 3.106 4.025

12 0.695 0.873 1.356 1.782 2.179 2.681 3.055 3.930

13 0.694 0.870 1.350 1.771 2.160 2.650 3.012 3.852

14 0.692 0.868 1.345 1.761 2.145 2.624 2.977 3.787

15 0.691 0.866 1.341 1.753 2.131 2.602 2.947 3.733

16 0.690 0.865 1.337 1.746 2.120 2.583 2.921 3.686

17 0.689 0.863 1.333 1.740 2.110 2.567 2.898 3.646

18 0.688 0.862 1.330 1.734 2.101 2.552 2.878 3.610

19 0.688 0.861 1.328 1.729 2.093 2.539 2.861 3.579

20 0.687 0.860 1.325 1.725 2.086 2.528 2.845 3.552

21 0.686 0.859 1.323 1.721 2.080 2.518 2.831 3.527

22 0.686 0.858 1.321 1.717 2.074 2.508 2.819 3.505

23 0.685 0.858 1.319 1.714 2.069 2.500 2.807 3.485

24 0.685 0.857 1.318 1.711 2.064 2.492 2.797 3.467

25 0.684 0.856 1.316 1.708 2.060 2.485 2.787 3.450

26 0.684 0.856 1.315 1.706 2.056 2.479 2.779 3.435

27 0.684 0.855 1.314 1.703 2.052 2.473 2.771 3.421

28 0.683 0.855 1.313 1.701 2.048 2.467 2.763 3.408

29 0.683 0.854 1.311 1.699 2.045 2.462 2.756 3.396

30 0.683 0.854 1.310 1.697 2.042 2.457 2.750 3.385

35 0.682 0.852 1.306 1.690 2.030 2.438 2.724 3.340

40 0.681 0.851 1.303 1.684 2.021 2.423 2.704 3.307

45 0.680 0.850 1.301 1.679 2.014 2.412 2.690 3.281

(continued)
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APPENDIX A-4 (continued)

df

ν 0.250 0.200 0.100

α=Right-Tail Area

0.050 0.025 0.010 0.005 0.001

50

55

0.679

0.679

0.849

0.848

1.299

1.297

1.676

1.673

2.009

2.004

2.403

2.396

2.678

2.668

3.261

3.245

60

65

70

80

90

0.679

0.678

0.678

0.678

0.677

0.848

0.847

0.847

0.846

0.846

1.296

1.295

1.294

1.292

1.291

1.671

1.669

1.667

1.664

1.662

2.000

1.997

1.994

1.990

1.987

2.390

2.385

2.381

2.374

2.368

2.660

2.654

2.648

2.639

2.632

3.232

3.220

3.211

3.195

3.183

100

110

120

1 

0.677

0.677

0.677

0.674

0.845

0.845

0.845

0.842

1.290

1.289

1.289

1.282

1.660

1.659

1.658

1.645

1.984

1.982

1.980

1.960

2.364

2.361

2.358

2.326

2.626

2.621

2.617

2.576

3.174

3.166

3.160

3.090



APPENDIXES 765

APPENDIX A-5 Chi-Squared Values for a Specified Right-Tail Area

α=Right-Tail Area
df

ν 0.999 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005 0.001

1 0.00 0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63 7.88 10.83

2 0.00 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21 10.60 13.82

3 0.02 0.07 0.11 0.22 0.35 0.58 6.25 7.81 9.35 11.34 12.84 16.27

4 0.09 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28 14.86 18.47

5 0.21 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09 16.75 20.52

6 0.38 0.68 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 22.46

7 0.60 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 24.32

8 0.86 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.95 26.12

9 1.15 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 27.88

10 1.48 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 29.59

11 1.83 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 26.76 31.26

12 2.21 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 32.91

13 2.62 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 34.53

14 3.04 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 36.12

15 3.48 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80 37.70

16 3.94 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 39.25

17 4.42 5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72 40.79

18 4.90 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 42.31

19 5.41 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.58 43.82

20 5.92 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00 45.31

21 6.45 8.03 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.40 46.80

22 6.98 8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80 48.27

23 7.53 9.26 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18 49.73

24 8.08 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 51.18

25 8.65 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93 52.62

26 9.22 11.16 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29 54.05

27 9.80 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 49.64 55.48

28 10.39 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99 56.89

29 10.99 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34 58.30

30 11.59 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 59.70

(continued)
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APPENDIX A-5 (continued)

df

ν 0.999 0.995 0.990 0.975 0.950

α=Right-Tail Area

0.900 0.100 0.050 0.025 0.010 0.005 0.001

32

34

36

38

40

12.81

14.06

15.32

16.61

17.92

15.13

16.50

17.89

19.29

20.71

16.36

17.79

19.23

20.69

22.16

18.29

19.81

21.34

22.88

24.43

20.07

21.66

23.27

24.88

26.51

22.27

23.95

25.64

27.34

29.05

42.58

44.90

47.21

49.51

51.81

46.19

48.60

51.00

53.38

55.76

49.48

51.97

54.44

56.90

59.34

53.49

56.06

58.62

61.16

63.69

56.33

58.96

61.58

64.18

66.77

62.49

65.25

67.99

70.70

73.40

42

44

46

48

50

19.24

20.58

21.93

23.29

24.67

22.14

23.58

25.04

26.51

27.99

23.65

25.15

26.66

28.18

29.71

26.00

27.57

29.16

30.75

32.36

28.14

29.79

31.44

33.10

34.76

30.77

32.49

34.22

35.95

37.69

54.09

56.37

58.64

60.91

63.17

58.12

60.48

62.83

65.17

67.50

61.78

64.20

66.62

69.02

71.42

66.21

68.71

71.20

73.68

76.15

69.34

71.89

74.44

76.97

79.49

76.08

78.75

81.40

84.04

86.66

55

60

65

70

75

28.17

31.74

35.36

39.04

42.76

31.73

35.53

39.38

43.28

47.21

33.57

37.48

41.44

45.44

49.48

36.40

40.48

44.60

48.76

52.94

38.96

43.19

47.45

51.74

56.05

42.06

46.46

50.88

55.33

59.79

68.80

74.40

79.97

85.53

91.06

73.31

79.08

84.82

90.53

96.22

77.38

83.30

89.18

95.02

100.84

82.29

88.38

94.42

100.43

106.39

85.75

91.95

98.11

104.21

110.29

93.17

99.61

105.99

112.32

118.60

80

85

90

95

100

46.52

50.32

54.16

58.02

61.92

51.17

55.17

59.20

63.25

67.33

53.54

57.63

61.75

65.90

70.06

57.15

61.39

65.65

69.92

74.22

60.39

64.75

69.13

73.52

77.93

64.28

68.78

73.29

77.82

82.36

96.58

102.08

107.57

113.04

118.50

101.88

107.52

113.15

118.75

124.34

106.63

112.39

118.14

123.86

129.56

112.33

118.24

124.12

129.97

135.81

116.32

122.32

128.30

134.25

140.17

124.84

131.04

137.21

143.34

149.45
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APPENDIX A-6 Values of F for a Specified Right-Tail Area

ν1=Degrees of Freedom for Numerator

ν2 α 1 2 3 4 5 6 7 8 9 10 11

0.100 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.5

0.050 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.0

1 0.025 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 973.0

0.010 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5 6055.8 6083.3

0.005 16210.7 19999.5 21614.7 22499.6 23055.8 23437.1 23714.6 23925.4 24091.0 24224.5 24334.4

0.001 405284.1 499999.5 540379.2 562499.6 576404.6 585937.1 592873.3 598144.2 602284.0 605621.0 608367.7

0.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40

0.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.40

2 0.025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41

0.010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41

0.005 198.50 199.00 199.17 199.25 199.30 199.33 199.36 199.37 199.39 199.40 199.41

0.001 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 999.40 999.41

0.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22

0.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76

3 0.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.37

0.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.13

0.005 55.55 49.80 47.47 46.19 45.39 44.84 44.43 44.13 43.88 43.69 43.52

0.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 129.25 128.74

0.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.91

0.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94

4 0.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.79

0.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.45

0.005 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14 20.97 20.82

0.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 48.05 47.70

0.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28

0.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70

5 0.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.57

0.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.96

0.005 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.77 13.62 13.49

0.001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24 26.92 26.65

(continued)
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APPENDIX A-6 (continued)

ν1=Degrees of Freedom for Numerator

ν2 α 1 2 3 4 5 6 7 8 9 10 11

6

0.100

0.050

0.025

0.010

0.005

0.001

3.78

5.99

8.81

13.75

18.63

35.51

3.46

5.14

7.26

10.92

14.54

27.00

3.29

4.76

6.60

9.78

12.92

23.70

3.18

4.53

6.23

9.15

12.03

21.92

3.11

4.39

5.99

8.75

11.46

20.80

3.05

4.28

5.82

8.47

11.07

20.03

3.01

4.21

5.70

8.26

10.79

19.46

2.98

4.15

5.60

8.10

10.57

19.03

2.96

4.10

5.52

7.98

10.39

18.69

2.94

4.06

5.46

7.87

10.25

18.41

2.92

4.03

5.41

7.79

10.13

18.18

7

0.100

0.050

0.025

0.010

0.005

0.001

3.59

5.59

8.07

12.25

16.24

29.25

3.26

4.74

6.54

9.55

12.40

21.69

3.07

4.35

5.89

8.45

10.88

18.77

2.96

4.12

5.52

7.85

10.05

17.20

2.88

3.97

5.29

7.46

9.52

16.21

2.83

3.87

5.12

7.19

9.16

15.52

2.78

3.79

4.99

6.99

8.89

15.02

2.75

3.73

4.90

6.84

8.68

14.63

2.72

3.68

4.82

6.72

8.51

14.33

2.70

3.64

4.76

6.62

8.38

14.08

2.68

3.60

4.71

6.54

8.27

13.88

8

0.100

0.050

0.025

0.010

0.005

0.001

3.46

5.32

7.57

11.26

14.69

25.41

3.11

4.46

6.06

8.65

11.04

18.49

2.92

4.07

5.42

7.59

9.60

15.83

2.81

3.84

5.05

7.01

8.81

14.39

2.73

3.69

4.82

6.63

8.30

13.48

2.67

3.58

4.65

6.37

7.95

12.86

2.62

3.50

4.53

6.18

7.69

12.40

2.59

3.44

4.43

6.03

7.50

12.05

2.56

3.39

4.36

5.91

7.34

11.77

2.54

3.35

4.30

5.81

7.21

11.54

2.52

3.31

4.24

5.73

7.10

11.35

9

0.100

0.050

0.025

0.010

0.005

0.001

3.36

5.12

7.21

10.56

13.61

22.86

3.01

4.26

5.71

8.02

10.11

16.39

2.81

3.86

5.08

6.99

8.72

13.90

2.69

3.63

4.72

6.42

7.96

12.56

2.61

3.48

4.48

6.06

7.47

11.71

2.55

3.37

4.32

5.80

7.13

11.13

2.51

3.29

4.20

5.61

6.88

10.70

2.47

3.23

4.10

5.47

6.69

10.37

2.44

3.18

4.03

5.35

6.54

10.11

2.42

3.14

3.96

5.26

6.42

9.89

2.40

3.10

3.91

5.18

6.31

9.72

10

0.100

0.050

0.025

0.010

0.005

0.001

3.29

4.96

6.94

10.04

12.83

21.04

2.92

4.10

5.46

7.56

9.43

14.91

2.73

3.71

4.83

6.55

8.08

12.55

2.61

3.48

4.47

5.99

7.34

11.28

2.52

3.33

4.24

5.64

6.87

10.48

2.46

3.22

4.07

5.39

6.54

9.93

2.41

3.14

3.95

5.20

6.30

9.52

2.38

3.07

3.85

5.06

6.12

9.20

2.35

3.02

3.78

4.94

5.97

8.96

2.32

2.98

3.72

4.85

5.85

8.75

2.30

2.94

3.66

4.77

5.75

8.59

11

0.100

0.050

0.025

0.010

0.005

0.001

3.23

4.84

6.72

9.65

12.23

19.69

2.86

3.98

5.26

7.21

8.91

13.81

2.66

3.59

4.63

6.22

7.60

11.56

2.54

3.36

4.28

5.67

6.88

10.35

2.45

3.20

4.04

5.32

6.42

9.58

2.39

3.09

3.88

5.07

6.10

9.05

2.34

3.01

3.76

4.89

5.86

8.66

2.30

2.95

3.66

4.74

5.68

8.35

2.27

2.90

3.59

4.63

5.54

8.12

2.25

2.85

3.53

4.54

5.42

7.92

2.23

2.82

3.47

4.46

5.32

7.76

12

0.100

0.050

0.025

0.010

0.005

0.001

3.18

4.75

6.55

9.33

11.75

18.64

2.81

3.89

5.10

6.93

8.51

12.97

2.61

3.49

4.47

5.95

7.23

10.80

2.48

3.26

4.12

5.41

6.52

9.63

2.39

3.11

3.89

5.06

6.07

8.89

2.33

3.00

3.73

4.82

5.76

8.38

2.28

2.91

3.61

4.64

5.52

8.00

2.24

2.85

3.51

4.50

5.35

7.71

2.21

2.80

3.44

4.39

5.20

7.48

2.19

2.75

3.37

4.30

5.09

7.29

2.17

2.72

3.32

4.22

4.99

7.14

15

0.100

0.050

0.025

0.010

0.005

0.001

3.07

4.54

6.20

8.68

10.80

16.59

2.70

3.68

4.77

6.36

7.70

11.34

2.49

3.29

4.15

5.42

6.48

9.34

2.36

3.06

3.80

4.89

5.80

8.25

2.27

2.90

3.58

4.56

5.37

7.57

2.21

2.79

3.41

4.32

5.07

7.09

2.16

2.71

3.29

4.14

4.85

6.74

2.12

2.64

3.20

4.00

4.67

6.47

2.09

2.59

3.12

3.89

4.54

6.26

2.06

2.54

3.06

3.80

4.42

6.08

2.04

2.51

3.01

3.73

4.33

5.94
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APPENDIX A-6 (continued)

ν1=Degrees of Freedom for Numerator

ν2 α 1 2 3 4 5 6 7 8 9 10 11

18

0.100

0.050

0.025

0.010

0.005

0.001

3.01

4.41

5.98

8.29

10.22

15.38

2.62

3.55

4.56

6.01

7.21

10.39

2.42

3.16

3.95

5.09

6.03

8.49

2.29

2.93

3.61

4.58

5.37

7.46

2.20

2.77

3.38

4.25

4.96

6.81

2.13

2.66

3.22

4.01

4.66

6.35

2.08

2.58

3.10

3.84

4.44

6.02

2.04

2.51

3.01

3.71

4.28

5.76

2.00

2.46

2.93

3.60

4.14

5.56

1.98

2.41

2.87

3.51

4.03

5.39

1.95

2.37

2.81

3.43

3.94

5.25

20

0.100

0.050

0.025

0.010

0.005

0.001

2.97

4.35

5.87

8.10

9.94

14.82

2.59

3.49

4.46

5.85

6.99

9.95

2.38

3.10

3.86

4.94

5.82

8.10

2.25

2.87

3.51

4.43

5.17

7.10

2.16

2.71

3.29

4.10

4.76

6.46

2.09

2.60

3.13

3.87

4.47

6.02

2.04

2.51

3.01

3.70

4.26

5.69

2.00

2.45

2.91

3.56

4.09

5.44

1.96

2.39

2.84

3.46

3.96

5.24

1.94

2.35

2.77

3.37

3.85

5.08

1.91

2.31

2.72

3.29

3.76

4.94

25

0.100

0.050

0.025

0.010

0.005

0.001

2.92

4.24

5.69

7.77

9.48

13.88

2.53

3.39

4.29

5.57

6.60

9.22

2.32

2.99

3.69

4.68

5.46

7.45

2.18

2.76

3.35

4.18

4.84

6.49

2.09

2.60

3.13

3.85

4.43

5.89

2.02

2.49

2.97

3.63

4.15

5.46

1.97

2.40

2.85

3.46

3.94

5.15

1.93

2.34

2.75

3.32

3.78

4.91

1.89

2.28

2.68

3.22

3.64

4.71

1.87

2.24

2.61

3.13

3.54

4.56

1.84

2.20

2.56

3.06

3.45

4.42

30

0.100

0.050

0.025

0.010

0.005

0.001

2.88

4.17

5.57

7.56

9.18

13.29

2.49

3.32

4.18

5.39

6.35

8.77

2.28

2.92

3.59

4.51

5.24

7.05

2.14

2.69

3.25

4.02

4.62

6.12

2.05

2.53

3.03

3.70

4.23

5.53

1.98

2.42

2.87

3.47

3.95

5.12

1.93

2.33

2.75

3.30

3.74

4.82

1.88

2.27

2.65

3.17

3.58

4.58

1.85

2.21

2.57

3.07

3.45

4.39

1.82

2.16

2.51

2.98

3.34

4.24

1.79

2.13

2.46

2.91

3.25

4.11

40

0.100

0.050

0.025

0.010

0.005

0.001

2.84

4.08

5.42

7.31

8.83

12.61

2.44

3.23

4.05

5.18

6.07

8.25

2.23

2.84

3.46

4.31

4.98

6.59

2.09

2.61

3.13

3.83

4.37

5.70

2.00

2.45

2.90

3.51

3.99

5.13

1.93

2.34

2.74

3.29

3.71

4.73

1.87

2.25

2.62

3.12

3.51

4.44

1.83

2.18

2.53

2.99

3.35

4.21

1.79

2.12

2.45

2.89

3.22

4.02

1.76

2.08

2.39

2.80

3.12

3.87

1.74

2.04

2.33

2.73

3.03

3.75

50

0.100

0.050

0.025

0.010

0.005

0.001

2.81

4.03

5.34

7.17

8.63

12.22

2.41

3.18

3.97

5.06

5.90

7.96

2.20

2.79

3.39

4.20

4.83

6.34

2.06

2.56

3.05

3.72

4.23

5.46

1.97

2.40

2.83

3.41

3.85

4.90

1.90

2.29

2.67

3.19

3.58

4.51

1.84

2.20

2.55

3.02

3.38

4.22

1.80

2.13

2.46

2.89

3.22

4.00

1.76

2.07

2.38

2.78

3.09

3.82

1.73

2.03

2.32

2.70

2.99

3.67

1.70

1.99

2.26

2.63

2.90

3.55

60

0.100

0.050

0.025

0.010

0.005

0.001

2.79

4.00

5.29

7.08

8.49

11.97

2.39

3.15

3.93

4.98

5.79

7.77

2.18

2.76

3.34

4.13

4.73

6.17

2.04

2.53

3.01

3.65

4.14

5.31

1.95

2.37

2.79

3.34

3.76

4.76

1.87

2.25

2.63

3.12

3.49

4.37

1.82

2.17

2.51

2.95

3.29

4.09

1.77

2.10

2.41

2.82

3.13

3.86

1.74

2.04

2.33

2.72

3.01

3.69

1.71

1.99

2.27

2.63

2.90

3.54

1.68

1.95

2.22

2.56

2.82

3.42

100

0.100

0.050

0.025

0.010

0.005

0.001

2.76

3.94

5.18

6.90

8.24

11.50

2.36

3.09

3.83

4.82

5.59

7.41

2.14

2.70

3.25

3.98

4.54

5.86

2.00

2.46

2.92

3.51

3.96

5.02

1.91

2.31

2.70

3.21

3.59

4.48

1.83

2.19

2.54

2.99

3.33

4.11

1.78

2.10

2.42

2.82

3.13

3.83

1.73

2.03

2.32

2.69

2.97

3.61

1.69

1.97

2.24

2.59

2.85

3.44

1.66

1.93

2.18

2.50

2.74

3.30

1.64

1.89

2.12

2.43

2.66

3.18

(continued)
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APPENDIX A-6 (continued)

ν1=Degrees of Freedom for Numerator

ν2 α 1 2 3 4 5 6 7 8 9 10 11

1 

0.100

0.050

0.025

0.010

0.005

0.001

2.71

3.84

5.03

6.64

7.88

10.83

2.30

3.00

3.69

4.61

5.30

6.91

2.08

2.61

3.12

3.78

4.28

5.43

1.95

2.37

2.79

3.32

3.72

4.62

1.85

2.21

2.57

3.02

3.35

4.11

1.77

2.10

2.41

2.80

3.09

3.75

1.72

2.01

2.29

2.64

2.90

3.48

1.67

1.94

2.19

2.51

2.75

3.27

1.63

1.88

2.11

2.41

2.62

3.10

1.60

1.83

2.05

2.32

2.52

2.96

1.57

1.79

1.99

2.25

2.43

2.85

ν1=Degrees of Freedom for Numerator

ν2 α 12 15 20 40 50 60 75 100 120

0.100 60.7 61.2 61.7 62.5 62.7 62.8 62.9 63.0 63.1 63.32

0.050 243.9 245.9 248.0 251.1 251.8 252.2 252.6 253.0 253.3 254.30

1 0.025 976.7 984.9 993.1 1005.6 1008.1 1009.8 1011.5 1013.2 1014.0 1018.21

0.010 6106.3 6157.3 6208.7 6286.8 6302.5 6313.0 6323.6 6334.1 6339.4 6365.55

0.005 24426.4 24630.2 24836.0 25148.2 25211.1 25253.1 25295.3 25337.5 25358.6 25463.18

0.001 610667.8 615763.7 620907.7 628712.0 630285.4 631336.6 632389.5 633444.3 633972.4 636587.61

0.100 9.41 9.42 9.44 9.47 9.47 9.47 9.48 9.48 9.48 9.49

0.050 19.41 19.43 19.45 19.47 19.48 19.48 19.48 19.49 19.49 19.50

2 0.025 39.41 39.43 39.45 39.47 39.48 39.48 39.48 39.49 39.49 39.50

0.010 99.42 99.43 99.45 99.47 99.48 99.48 99.49 99.49 99.49 99.50

0.005 199.42 199.43 199.45 199.47 199.48 199.48 199.49 199.49 199.49 199.50

0.001 999.42 999.43 999.45 999.47 999.48 999.48 999.49 999.49 999.49 999.50

0.100 5.22 5.20 5.18 5.16 5.15 5.15 5.15 5.14 5.14 5.13

0.050 8.74 8.70 8.66 8.59 8.58 8.57 8.56 8.55 8.55 8.53

3 0.025 14.34 14.25 14.17 14.04 14.01 13.99 13.97 13.96 13.95 13.90

0.010 27.05 26.87 26.69 26.41 26.35 26.32 26.28 26.24 26.22 26.13

0.005 43.39 43.08 42.78 42.31 42.21 42.15 42.09 42.02 41.99 41.83

0.001 128.32 127.37 126.42 124.96 124.66 124.47 124.27 124.07 123.97 123.48

0.100 3.90 3.87 3.84 3.80 3.80 3.79 3.78 3.78 3.78 3.76

0.050 5.91 5.86 5.80 5.72 5.70 5.69 5.68 5.66 5.66 5.63

4 0.025 8.75 8.66 8.56 8.41 8.38 8.36 8.34 8.32 8.31 8.26

0.010 14.37 14.20 14.02 13.75 13.69 13.65 13.61 13.58 13.56 13.46

0.005 20.70 20.44 20.17 19.75 19.67 19.61 19.55 19.50 19.47 19.33

0.001 47.41 46.76 46.10 45.09 44.88 44.75 44.61 44.47 44.40 44.06

0.100 3.27 3.24 3.21 3.16 3.15 3.14 3.13 3.13 3.12 3.11

0.050 4.68 4.62 4.56 4.46 4.44 4.43 4.42 4.41 4.40 4.37

5 0.025 6.52 6.43 6.33 6.18 6.14 6.12 6.10 6.08 6.07 6.02

0.010 9.89 9.72 9.55 9.29 9.24 9.20 9.17 9.13 9.11 9.02

0.005 13.38 13.15 12.90 12.53 12.45 12.40 12.35 12.30 12.27 12.15

0.001 26.42 25.91 25.39 24.60 24.44 24.33 24.22 24.12 24.06 23.79

0.100 2.90 2.87 2.84 2.78 2.77 2.76 2.75 2.75 2.74 2.72

0.050 4.00 3.94 3.87 3.77 3.75 3.74 3.73 3.71 3.70 3.67

6 0.025 5.37 5.27 5.17 5.01 4.98 4.96 4.94 4.92 4.90 4.85

0.010 7.72 7.56 7.40 7.14 7.09 7.06 7.02 6.99 6.97 6.88

0.005 10.03 9.81 9.59 9.24 9.17 9.12 9.07 9.03 9.00 8.88

0.001 17.99 17.56 17.12 16.44 16.31 16.21 16.12 16.03 15.98 15.75

(continued)

1 
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APPENDIX A-6 (continued)

ν1=Degrees of Freedom for Numerator

ν2 α 12 15 20 40 50 60 75 100 120 1 
0.100 2.67 2.63 2.59 2.54 2.52 2.51 2.51 2.50 2.49 2.47

0.050 3.57 3.51 3.44 3.34 3.32 3.30 3.29 3.27 3.27 3.23

7 0.025 4.67 4.57 4.47 4.31 4.28 4.25 4.23 4.21 4.20 4.14

0.010 6.47 6.31 6.16 5.91 5.86 5.82 5.79 5.75 5.74 5.65

0.005 8.18 7.97 7.75 7.42 7.35 7.31 7.26 7.22 7.19 7.08

0.001 13.71 13.32 12.93 12.33 12.20 12.12 12.04 11.95 11.91 11.70

0.100 2.50 2.46 2.42 2.36 2.35 2.34 2.33 2.32 2.32 2.29

0.050 3.28 3.22 3.15 3.04 3.02 3.01 2.99 2.97 2.97 2.93

8 0.025 4.20 4.10 4.00 3.84 3.81 3.78 3.76 3.74 3.73 3.67

0.010 5.67 5.52 5.36 5.12 5.07 5.03 5.00 4.96 4.95 4.86

0.005 7.01 6.81 6.61 6.29 6.22 6.18 6.13 6.09 6.06 5.95

0.001 11.19 10.84 10.48 9.92 9.80 9.73 9.65 9.57 9.53 9.34

0.100 2.38 2.34 2.30 2.23 2.22 2.21 2.20 2.19 2.18 2.16

0.050 3.07 3.01 2.94 2.83 2.80 2.79 2.77 2.76 2.75 2.71

9 0.025 3.87 3.77 3.67 3.51 3.47 3.45 3.43 3.40 3.39 3.33

0.010 5.11 4.96 4.81 4.57 4.52 4.48 4.45 4.41 4.40 4.31

0.005 6.23 6.03 5.83 5.52 5.45 5.41 5.37 5.32 5.30 5.19

0.001 9.57 9.24 8.90 8.37 8.26 8.19 8.11 8.04 8.00 7.82

0.100 2.28 2.24 2.20 2.13 2.12 2.11 2.10 2.09 2.08 2.06

0.050 2.91 2.85 2.77 2.66 2.64 2.62 2.60 2.59 2.58 2.54

10 0.025 3.62 3.52 3.42 3.26 3.22 3.20 3.18 3.15 3.14 3.08

0.010 4.71 4.56 4.41 4.17 4.12 4.08 4.05 4.01 4.00 3.91

0.005 5.66 5.47 5.27 4.97 4.90 4.86 4.82 4.77 4.75 4.64

0.001 8.45 8.13 7.80 7.30 7.19 7.12 7.05 6.98 6.94 6.76

0.100 2.21 2.17 2.12 2.05 2.04 2.03 2.02 2.01 2.00 1.97

0.050 2.79 2.72 2.65 2.53 2.51 2.49 2.47 2.46 2.45 2.41

11 0.025 3.43 3.33 3.23 3.06 3.03 3.00 2.98 2.96 2.94 2.88

0.010 4.40 4.25 4.10 3.86 3.81 3.78 3.74 3.71 3.69 3.60

0.005 5.24 5.05 4.86 4.55 4.49 4.45 4.40 4.36 4.34 4.23

0.001 7.63 7.32 7.01 6.52 6.42 6.35 6.28 6.21 6.18 6.00

0.100 2.15 2.10 2.06 1.99 1.97 1.96 1.95 1.94 1.93 1.90

0.050 2.69 2.62 2.54 2.43 2.40 2.38 2.37 2.35 2.34 2.30

12 0.025 3.28 3.18 3.07 2.91 2.87 2.85 2.82 2.80 2.79 2.73

0.010 4.16 4.01 3.86 3.62 3.57 3.54 3.50 3.47 3.45 3.36

0.005 4.91 4.72 4.53 4.23 4.17 4.12 4.08 4.04 4.01 3.91

0.001 7.00 6.71 6.40 5.93 5.83 5.76 5.70 5.63 5.59 5.42

0.100 2.02 1.97 1.92 1.85 1.83 1.82 1.80 1.79 1.79 1.76

0.050 2.48 2.40 2.33 2.20 2.18 2.16 2.14 2.12 2.11 2.07

15 0.025 2.96 2.86 2.76 2.59 2.55 2.52 2.50 2.47 2.46 2.40

0.010 3.67 3.52 3.37 3.13 3.08 3.05 3.01 2.98 2.96 2.87

0.005 4.25 4.07 3.88 3.58 3.52 3.48 3.44 3.39 3.37 3.26

0.001 5.81 5.54 5.25 4.80 4.70 4.64 4.57 4.51 4.47 4.31

0.100 1.93 1.89 1.84 1.75 1.74 1.72 1.71 1.70 1.69 1.66

0.050 2.34 2.27 2.19 2.06 2.04 2.02 2.00 1.98 1.97 1.92

18 0.025 2.77 2.67 2.56 2.38 2.35 2.32 2.30 2.27 2.26 2.19

0.010 3.37 3.23 3.08 2.84 2.78 2.75 2.71 2.68 2.66 2.57

0.005 3.86 3.68 3.50 3.20 3.14 3.10 3.05 3.01 2.99 2.87

0.001 5.13 4.87 4.59 4.15 4.06 4.00 3.93 3.87 3.84 3.67

(continued)
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APPENDIX A-6 (continued)

ν1=Degrees of Freedom for Numerator

ν2 α 12 15 20 40 50 60 75 100 120 1 

20

0.100

0.050

0.025

0.010

0.005

0.001

1.89

2.28

2.68

3.23

3.68

4.82

1.84

2.20

2.57

3.09

3.50

4.56

1.79

2.12

2.46

2.94

3.32

4.29

1.71

1.99

2.29

2.69

3.02

3.86

1.69

1.97

2.25

2.64

2.96

3.77

1.68

1.95

2.22

2.61

2.92

3.70

1.66

1.93

2.20

2.57

2.87

3.64

1.65

1.91

2.17

2.54

2.83

3.58

1.64

1.90

2.16

2.52

2.81

3.54

1.61

1.84

2.09

2.42

2.69

3.38

25

0.100

0.050

0.025

0.010

0.005

0.001

1.82

2.16

2.51

2.99

3.37

4.31

1.77

2.09

2.41

2.85

3.20

4.06

1.72

2.01

2.30

2.70

3.01

3.79

1.63

1.87

2.12

2.45

2.72

3.37

1.61

1.84

2.08

2.40

2.65

3.28

1.59

1.82

2.05

2.36

2.61

3.22

1.58

1.80

2.02

2.33

2.56

3.15

1.56

1.78

2.00

2.29

2.52

3.09

1.56

1.77

1.98

2.27

2.50

3.06

1.52

1.71

1.91

2.17

2.38

2.89

30

0.100

0.050

0.025

0.010

0.005

0.001

1.77

2.09

2.41

2.84

3.18

4.00

1.72

2.01

2.31

2.70

3.01

3.75

1.67

1.93

2.20

2.55

2.82

3.49

1.57

1.79

2.01

2.30

2.52

3.07

1.55

1.76

1.97

2.25

2.46

2.98

1.54

1.74

1.94

2.21

2.42

2.92

1.52

1.72

1.91

2.17

2.37

2.86

1.51

1.70

1.88

2.13

2.32

2.79

1.50

1.68

1.87

2.11

2.30

2.76

1.46

1.62

1.79

2.01

2.18

2.59

40

0.100

0.050

0.025

0.010

0.005

0.001

1.71

2.00

2.29

2.66

2.95

3.64

1.66

1.92

2.18

2.52

2.78

3.40

1.61

1.84

2.07

2.37

2.60

3.14

1.51

1.69

1.88

2.11

2.30

2.73

1.48

1.66

1.83

2.06

2.23

2.64

1.47

1.64

1.80

2.02

2.18

2.57

1.45

1.61

1.77

1.98

2.14

2.51

1.43

1.59

1.74

1.94

2.09

2.44

1.42

1.58

1.72

1.92

2.06

2.41

1.38

1.51

1.64

1.81

1.93

2.23

50

0.100

0.050

0.025

0.010

0.005

0.001

1.68

1.95

2.22

2.56

2.82

3.44

1.63

1.87

2.11

2.42

2.65

3.20

1.57

1.78

1.99

2.27

2.47

2.95

1.46

1.63

1.80

2.01

2.16

2.53

1.44

1.60

1.75

1.95

2.10

2.44

1.42

1.58

1.72

1.91

2.05

2.38

1.41

1.55

1.69

1.87

2.00

2.31

1.39

1.52

1.66

1.82

1.95

2.25

1.38

1.51

1.64

1.80

1.93

2.21

1.33

1.44

1.55

1.68

1.79

2.03

60

0.100

0.050

0.025

0.010

0.005

0.001

1.66

1.92

2.17

2.50

2.74

3.32

1.60

1.84

2.06

2.35

2.57

3.08

1.54

1.75

1.94

2.20

2.39

2.83

1.44

1.59

1.74

1.94

2.08

2.41

1.41

1.56

1.70

1.88

2.01

2.32

1.40

1.53

1.67

1.84

1.96

2.25

1.38

1.51

1.63

1.79

1.91

2.19

1.36

1.48

1.60

1.75

1.86

2.12

1.35

1.47

1.58

1.73

1.83

2.08

1.29

1.39

1.48

1.60

1.69

1.89

100

0.100

0.050

0.025

0.010

0.005

0.001

1.61

1.85

2.08

2.37

2.58

3.07

1.56

1.77

1.97

2.22

2.41

2.84

1.49

1.68

1.85

2.07

2.23

2.59

1.38

1.52

1.64

1.80

1.91

2.17

1.35

1.48

1.59

1.74

1.84

2.08

1.34

1.45

1.56

1.69

1.79

2.01

1.32

1.42

1.52

1.65

1.74

1.94

1.29

1.39

1.48

1.60

1.68

1.87

1.28

1.38

1.46

1.57

1.65

1.83

1.22

1.28

1.35

1.43

1.49

1.62

1 

0.100

0.050

0.025

0.010

0.005

0.001

1.55

1.75

1.95

2.19

2.36

2.75

1.49

1.67

1.83

2.04

2.19

2.52

1.42

1.57

1.71

1.88

2.00

2.27

1.30

1.40

1.49

1.59

1.67

1.84

1.26

1.35

1.43

1.53

1.59

1.74

1.24

1.32

1.39

1.48

1.54

1.66

1.22

1.28

1.35

1.42

1.47

1.58

1.19

1.25

1.30

1.36

1.40

1.50

1.17

1.22

1.27

1.33

1.37

1.45

1.00

1.00

1.00

1.00

1.00

1.00

(continued)
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APPENDIX A-8 Uniform Random Numbers

97878 44645 60468 86596 29743 98439 64428 50357

64600 47935 55776 38732 70498 61832 11372 30484

21734 98488 94734 99531 25282 24016 50366 11021

71402 60964 28456 72686 45225 00076 81351 82365

00358 30750 23487 57473 60720 34874 64186 80531

40782 28908 67197 86933 87919 65522 30539 71547

76722 69512 95964 74114 44095 12630 81913 13102

11137 92332 34009 04099 92740 95264 04667 40145

23984 99243 90979 95199 25357 84703 07202 51970

30262 22720 64621 91122 00940 07670 24647 58469

41609 32500 37060 75444 99182 59388 38806 14520

17469 07308 37637 75591 67256 74415 97339 84763

85130 96392 70015 42639 36885 35159 20170 98134

04204 59281 44421 93374 42647 75392 25164 45359

02387 34404 31376 52748 41546 70173 03409 96409

98770 39674 03575 97601 91398 39995 10671 61442

68709 98636 78218 25617 46255 22234 88613 31217

56293 30564 01867 87371 50834 67311 96809 72744

35017 39984 13007 16757 37348 09247 22734 01217

03193 76349 97895 26047 80563 29319 70426 64120

67759 40380 74450 91825 03074 66039 28096 22809

18755 25573 14639 38260 47489 58234 50219 32596

49269 80057 24228 09605 34931 01224 76877 87911

97434 82611 58899 30042 16356 01293 31830 69230

68837 56094 82048 93441 72467 62565 38400 99459

03797 28132 17109 57402 62259 98531 14472 35450

57828 30374 98465 13151 43132 32193 78184 50939

32393 43266 85401 41622 45396 80588 53661 83531

54176 40988 97983 10019 97341 14550 47511 18987

82120 01302 88694 94271 22290 39296 63110 02916

25874 68357 81583 69948 24461 25326 60400 54006

76479 94047 52701 61100 21783 11980 48124 30173

29314 93695 41337 67648 70136 83831 54796 56998

08217 12006 91741 94542 68309 73687 66076 51625

83677 66495 97931 36805 92243 35255 38746 20177

59042 24587 47017 23384 29948 40591 17259 78456

27293 16782 69543 20522 15442 37452 62532 86340

44154 11467 26355 64544 00741 63428 49008 79631

56887 08762 65555 94922 56064 72304 13685 13303

02523 15422 14344 90718 98416 79818 15141 90939

74141 88274 34566 57489 34419 85325 64590 71890

28175 40295 48870 65330 13591 31724 96311 09956

99599 73883 62419 89694 87842 72571 09171 47657

84925 48510 18369 35883 88947 33572 51302 43004

46361 94992 31390 72792 18506 42730 72923 20226

91086 96394 97533 42656 20758 94888 83053 80529

60435 33374 18112 25029 62553 32646 84162 21814

30737 01996 59146 76739 63951 31707 04183 04168

33045 97426 48039 92940 47647 19067 75199 72413

06223 02998 98687 40526 32807 89534 02039 76278
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Acceptable quality levels (AQL)

acceptable sampling, 504

standardized sampling plan, 533

Acceptance control chart, 350–352

Acceptance number, 13

Acceptance sampling plan

average outgoing quality (AOQ), 511–512

average outgoing quality limit (AOQL), 513

average sample number (ASN), 514–516

average total inspection (ATI), 513–514

double sampling plan, 509–510

history of, 5

meaning of, 13

multiple sampling plan, 510

operating characteristic curve,

505–509

pros and cons of, 505, 510–511

risks in sampling plan, 505

sample size, 508–509

single sampling plan, 509

time for, 504

variable sampling, 543–555

Accumulation analysis, 692–694

Accuracy, of data set, 157

Activity-based costing (ABC), 20–23

Act stage, of Deming cycle, 64–65

Adams, B. M., 333

Additive law, of probability, 153

Adjustment factor, 662

Aliases, 654, 655–658

Alias structure, 658, 694

Alt, F. B., 346, 364, 387

Alternate fraction, 654

Alternative hypothesis, 199, 201

American National Standards Institute (ANSI)/

American Society for Quality (ASQ).

See� entries under ANSI/ISO/ASQ

American Society for Quality (ASQ), 17, 46, 298

history of, 5

Analysis of variance (ANOVA), 614–618

differences among treatment means, 615–617

F�-statistic, 615–617

Minitab for, 616–617, 622, 639–640

Anderson-Darling test, 237–238

ANSI/ISO/ASQ� Q9000� Standard, 7, 137–138

ANSI/ISO/ASQ� Standard� A3534-2�, 298

ANSI/ISO/ASQ� Standard� A8402�, 9, 46

ANSI/ISO/ASQ� Standard� QS� 9000, 137

ANSI/ISO/ASQ� Standard� Z1.4, 533, 562

ANSI/ISO/ASQ� Standard� Z1.9, 554–555, 562

Appraisal costs, 23–24

Arnold, S. F., 198, 228, 234, 272

Arrays, orthogonal, 675–685

AS� 9100� Standard, 138

Assemblies, tolerances on, 480–487

Association, measures of, 247

mean-squared contingency, 247

Cramer’ s V, 247

AT&T, 315, 385

benchmarking, 106

Attribute control charts

advantages of, 390

c�-chart when zero defects are not

observable, 411–417

control

for demerits per unit, 423–425

disadvantages of, 391–392

np-chart, 409–411
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Attribute control charts (Continued)

for number of nonconforming items, 409–411

for number of nonconformities, 411–417

for number of nonconformities per unit,

417–422

g-chart, 390, 430

operating characteristic curves, 431–434

p-chart, 392–408, 431–433

risk-adjusted p-chart, 390, 404–407

preliminary decision making, 392

process capability analysis based on, 476–477

for proportion of nonconforming

items, 392–404

sample size, 391–392

U-chart, 417–422

u-charts, 423

risk-adjusted u-charts, 390, 420, 422

Attributes

levels of, 390

of quality, 7, 8

Attribute sampling plan

chain sampling plan, 537–539

Deming’s kp rule, 540–543

Dodge–Romig plans, 533–537

double sampling plan, 526–531

multiple sampling plan, 532

sequential sampling plan, 539–540

single sampling plan, 519–526

standardized sampling plan, 533–537

Auditors, types of, 111

Autocorrelation

Cochrane–Orcutt procedure, 726

Automotive Industry Action Group

(AIAG), 115, 132

Availability, 570

Average outgoing quality (AOQ), 511–512

Average outgoing quality limit (AOQL), 512–513

Dodge–Romig plans, 533–534

Average run length (ARL)

control charts, 287–289, 431

cumulative sum chart (cusum charts)

for, 336–338

Average sample number (ASN), 514–516,

528–529

Average total inspection (ATI), 513–514,

528–529

Balanced experiment, 615

Balanced scorecard (BSC), 94–96

diagnostic measures, 94

outcome measures, 95

performance drivers, 95

perspectives of, 94

strategic measures, 94

Banks, J., 186, 228

Barnard, G. A., 336, 387

Bathtub curve, phases in, 566

Bayes’ rule, 516–519

posterior probability, 516–517

prior probability, 516

Beaver, R., 189, 208, 228

Behrens–Fisher problem, 194

Benchmarking, 107–110

benefits of, 106

impetus for, 110

models for, 107

Besterfield, D. H., 289, 298, 423, 448,

566, 603

Big data, 7, 116, 117

Binomial distribution

calculation of, 177–179

cumulative, table for, 753–757

hypergeometric distribution

approximation, 212

normal approximation, 213

Poisson approximation, 212

Blischke, W. R., 570, 603

Blocking, experimental design, 610

Boudot, J. R., 674, 709

Bowker, A. H., 339, 387

Box, G. E., 606, 612, 614, 658, 674,

695, 708

Box–Cox transformation, 478

Box plots, 232–234

notched box plot, 234

Boyles, R. A., 464, 467, 499

Bunches, control charts, 318

Calibration

of measurement instrument, 158

Campanella, J., 23, 46

Capability ratio (CR), 461–463

Cause-and-effect diagrams, 126

cause enumeration, 126

dispersion analysis, 126

fishbone diagrams, 126

history of, 6

Ishikawa diagrams, 126

process analysis, 126

use of, 127

Cause enumeration, 126

c-chart, 411–417

with no standard given, 412

and Poisson distribution, 412, 414
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process capability measurement, 471

with standard specified, 412

Centerline

control charts, 276, 279

factors for computation of, 773

Central limit theorem, 189, 204, 278

Chain sampling plan, 537–539

operating characteristic curve, 537–539

Chambers, J. M., 232, 272

Chance-failure phase, 566

Change management, and benchmarking, 109

Check stage, of Deming cycle, 64

Chi-squared distribution, 197, 245–247

chi-square values for right-tail area, 765–766

Chi-squared test, 244–245, 246

Chou, Y., 242, 272

Chronic problems, 84

MalcolmBaldrige National Quality Award, 107

Clearance fits, 484–485

Clement, J., 293, 298

Cleveland, W. S., 232, 272

Clustering, 235–236

Cluster sample, 260

Cochran, W. G., 457, 499

Coefficient of determination

adjusted R2, 720

Cohen, L., 15, 46

Common causes, nature of, 18, 84, 277

Competitive position, and quality

improvement, 35

Complementary events, probability, 152

Completely randomized design, 612–618

two-factor factorial experiment, 632–635

Complex systems, and reliability, 575–576

Components in parallel, and reliability, 573–575

Components in series, and reliability, 571–572

Compound events, probability, 151–153

Confidence coefficient

Bonferroni method, 727

family level, 727, 729

Schéffe method, 729

Working–Hotelling method, 729

Confidence interval, 190–199

for difference between two binomial

proportions, 196

for difference between two means, 194–195

for the mean, 192–194

one- and two-sided, 191–192

for proportion, 195–196

for ratio of two variances, 198–199

for variance, 196–198

Confirmation experiments, 663

Conformance, quality of, 10

Conformity quality audit, 111

Confounding

meaning of, 652

in 2k factorial experiment, 652–653

Constant failure rate, exponential

distribution, 567–568

Consumer’s risk

acceptance sampling, 504

and OC curve, 505–508, 578

single sampling plan, 522–526

Contingency tables, 245–247

Continuous quality improvement

practices, 106–115

benchmarking, 107–110

and innovation, 106–107

quality audits, 110–112

and vendors, 112–115

Continuous quality improvement tools

cause-and-effect diagrams, 126

flow charts, 124–125

Pareto diagrams, 124

scatter plots, 126–127

Continuous variables, 157

Contrast

contrasts of totals, 645–646

defining contrast, 654

factorial experiments, 642–648

orthogonal contrasts, 644–645

Control chart construction

acceptance control chart, 351–352

control limits, 304–312

cumulative sum chart (cusum chart), 332–339

risk-adjusted cusum chart, 355

exponentially weighted moving average

(EWMA) chart, 343–347

risk-adjusted EWMA chart, 355

geometric moving-average control

chart, 343–347

Hotelling’s T2 control chart, 362–363

for highly conforming processes, 426–431

for individual units, 326–329

for mean and range, 303–321

for mean and standard deviation, 321–326

Minitab, 308

modified control chart, 347–352

moving-average control chart, 341–343

from moving ranges, 327

multivariate control charts, 359–372

R-chart, 305, 311

risk-adjusted sequential probability ratio

test, 354–355
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Control chart construction (Continued)

sample size, 309

s-chart, 322–325

short production runs, 330–332

standardized control charts, 309–310

steps in development, 303–306

variable life-adjusted (VLAD) chart, 356
–
X-chart, 330

Z-MR chart, 330–332

Control chart patterns

bunches/groups, 318

cyclic patterns, 317

freaks, 318

gradual shifts in level, 315–316

interaction patterns, 320

mixture patterns, 318–319

natural patterns, 315

stratification patterns, 319–320

sudden shifts in level, 315

trending pattern, 316–317

wild patterns, 318

Control charts

for attributes. See Attribute charts

average run length, 287–289

benefits of, 276, 277

characteristics for investigation, 301–302

construction of. SeeControl chart construction

control limits effects, 285–286

control limits selection, 279–280

data recording forms, 303

history of, 5

instant-of-time method for sample

observations, 289

interpretation of plots, 292–294, 313–314

lines, meaning of, 277–278

maintenance of, 294–295

measuring instrument selection, 303

and online process control, 278

operating characteristic curve, 284–285

out-of-control points, cause of, 294, 311–312

out-of-control process identification, 290–292

pattern analysis, steps in, 290–292

pre-construction decisions, 302–303

process capability analysis based on, 476–480

purpose of, 275

rational samples, selection of, 289–290, 302

sample size, 289, 303

sample size effects, 286–287

sampling frequency, 289–290, 303

for service industries, 352

statistical process control (SPC), 277

and type I error, 281

and overall type I errors, 292–293

and type II errors, 281–282

variation, causes of, 277

warning limits, 286

Control limits

compared to specification limits, 450–451

control chart construction, 303–306,

309–310

for control charts, 276, 300

factors for computation of, 773

Convenience sampling, 53

Corporate culture, 58

Corrective action, 305–306

process of, 78

Correlation coefficient, 170–172

calculation of, 170

degrees of correlation, types of, 170–171

Cost base index, quality cost measure, 27

Costs, product and service, 19–23

batch level, 20

direct, 19

drivers of, 20

indirect, 19

product/service level, 20

production/service sustaining, 20

unit level, 20

Count data, analysis, 244–247

Cp index, 457–458, 464–468, 475–476

Cpk index, 459–461, 463–468

Critical to quality (CTQ) characteristics,

98, 137

Crosby, Philip B., 8, 46, 75–78, 88

absolutes of quality management, 76

background information, 75

14-step quality improvement plan, 76–78

quality management grid, 77

Cumulative binomial distribution, table for,

753–757

Cumulative distribution function, 175

Cumulative Poisson distribution, table

for, 758–759

Cumulative sum chart (cusum charts),

332–340

for average run length (ARL), 337–340

process variability, for, 340

pros/cons of, 332

tabular method, 333–334

V-mask parameters, 336–337

Customers

Deming’s view of, 59

Juran’s view, 79–80

needs of, 15
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and quality function deployment (QFD),

99–106

satisfaction, 48

and total quality management (TQM),

90, 91

Cyclic patterns, control charts, 317–318

Data collection, 156–158

accuracy and precision, 157–158

continuous and discrete variables, 157

by observation, 156

Debugging phase, 566

Defect

Deming’s view of, 61

meaning of, 9

Defining contrast, 654

Degrees of freedom, 193, 194

Dehnad, K., 659, 708

Demerits per unit, chart for, 423–425

Deming’s kp rule, 540–543

basic assumptions in, 541

evaluation of, 542–543

Deming, W. Edwards, 5, 56–75, 92, 540

deadly diseases of, 72–75

Deming cycle, 63–64

extended process of, 57–58

14 points for management, 58–72

philosophy of, 56–57

System of profound knowledge, 56–57

Department of Defense (DOD), 5

Descriptive statistics, nature of, 156

Design for manufacturability, 11, 60

Design, quality of, 9–10

Design resolution, 2k factorial

experiment, 655–656

Diagnostic arm, 81

Direct observation, 156

Discrete variables, 157

Dispersion analysis, 126

Dodge, H. F., 5, 533, 562

Dodge–Romig plans, 533–537

average outgoing quality limit

(AOQL), 536–537

limiting quality level, 535

Do stage, of Deming cycle, 64

Double-blind study, 612

Double sampling plan

acceptance sampling, 509–510

attribute sampling, 526–531

average sample number, 514–516, 528

average total inspection curve, 513–514,

528–529

design of, 529–531

OC curve, 526–528

Draper, N. R., 606, 612, 695, 708

Duncan, A. J., 189, 208, 228, 237, 272, 457, 499,

551, 562

Durbin–Watson test, 725, 726

Eastman Chemical Company, and total quality

management (TQM), 92, 93

Eco-Management and Auditing Scheme

(EMAS), 37

Effectiveness, service business, 51

Efficiency, service business, 51

Ehrlich, B. H., 133, 144

Electronic data interchange, 32

El-Haik, B., 135, 144

Elsayed, A., 659, 709

Empirical distribution plots, 230–235

Employee

quality and service industries, 50–52

Enterprise resource planning, 32–33

Environmental management, 37–39

benefits of, 38–39

scope of activities, 37

standards development, 37

Error bound, 260–261

Error component

independence, 725–726

mean, 723

mean square, 696, 721

probability distribution, 712, 714, 715

variance, 718, 739, 744

Errors in sampling, 258

misspecification, 258

nonresponse, 258

random variation, 258

Estimation

mean response, 728

simultaneous confidence intervals, 729

Ethical characteristics, of quality, 8

Expected opportunity loss, 517–519

Expected value, 175

of perfect information (EVPI), 518

Experimental design

analysis of variance (ANOVA), 614–617, 620

balanced/unbalanced experiment, 613

blocking, 611

completely randomized design, 612–618

confirmation experiments, 663

design elements, 611

double-blind study, 612

factorial experiments, 631–659
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Experimental design (Continued)

fixed effects model, 612

Latin square design, 623–631

measurement bias, 612

random effects model, 612

randomization, 610–611

randomized block design, 618–623

replication, 610

single-blind study, 612

usefulness of, 606–607

variables, 608–610

See also Factorial experiments; Taguchi

method

Experimental error, 607

Experimental unit, in experiment, 607

Exponential distribution

calculation of, 184–186

for model failure rate, 566–568, 571, 573

standby system, 576–578

systems with components in parallel,

575–576

systems with components in series,

573–575

systems with components in series/

parallel, 575–576

Exponentially weighted moving average

(EWMA) chart, 343–347

Extended process, Deming’s view, 57–58

External failure costs, 24

External noise, 661

F, values for right-tail area, 767–772

Factorial experiments, 631–659

contrast, role of, 642–648

2k factorial experiment, 648–659

two-factor with completely randomized

design, 632–635

two-factor with randomized block

design, 636–642

uses of, 631–632

Factors, in experiment, 606–607

Failure mode and effects criticality analysis

(FMECA), 131–137

risk priority number (RPN), 131

Failure-rate function

exponential distribution, 567–568

Weibull distribution, 568–570

Failure-terminated test, 580–581

with Handbook H-108, 584

F-distribution, 198

Federal Express Company, performance

measures of, 113

Feigenbaum, A. V., 5, 6, 46

Fellers, G., 58, 88

Fishbone diagrams, 126

history of, 6

Fixed effects model, 612

Flow charts, use of, 117

Ford Motor Company, 38

Foreman Quality Control period, 4

Forms 1 and 2

variable sampling plans, 551, 553

14 points for management, of Deming, 58–72

14-step quality improvement plan,

Crosby’s, 76–78

Freaks, control charts, 318

Frequency distribution, 230–231

Frequency histogram, 230–231

F-statistic, 615–617

analysis of variance (ANOVA), 615–617

Latin square design, 627–630

randomized block design, 620–622

Gage, study of, 470–475

bias, 471

design of, 472

linearity, 471

repeatability, 470

reproducibility, 470

R&R, 469–470, 471

stability, 471

Gamma distribution, 188

probability density function, 188

Gap analysis, 108

Garvin, D. A., 7, 46

Generator, in 2k factorial experiment, 655

Geometric moving-average control

chart, 343–347

Gitlow, H. S., 58, 88

Gitlow, S. J., 58, 88

Goals

Crosby’s view, 78

Deming’s view, 68–69, 73–74

Godfrey, A. B., 295, 298, 431, 448, 709

Goh, T. N., 428, 448,

Goodness-of-fit tests, 237–239

Graeco-Latin square design, 675

Graphical methods

box plots, 232–234

cause-and-effect diagrams, 126–127

frequency distribution, 230–231

histogram, 231

matrix plots, 129–119–121

normal probability plots, 237–239
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Pareto diagrams, 124

run charts, 235–237

scatter diagrams, 126, 127

stem-and-leaf plots, 231–232

three-dimensional scatter plot, 131

Grubbs, F. E., 521, 529, 562

Gunter, B. H., 459, 499, 606, 608–609, 708

Half-fraction, of 2k factorial experiment, 654–655

Hawkins, D. M., 333, 340, 387

Health care analytics

data visualization, 116

predictive models, 116

prescriptive models, 116

Health information technology, 122

health care decision support systems, 122–123

Henley, E. J., 186, 228, 568, 603

Highly conforming processes

control charts, 431

exponential distribution, use of, 426–427

geometric distribution, use of, 427,

429

power transformation, 478

probability limits, 414–417

Histogram, 230–231

Homoscedasticity, 715, 718, 723, 724

Hotelling, H., 362

Hotelling’s T2 control chart, 345–362

construction of, 367, 368–372

control ellipse procedure, 359, 362

percentile points, values of, 363, 488

House of quality, 99, 100

Hsiang, T., 659, 709

Human factors, service industries, 50

Hunter, J. S., 606, 614, 658, 674, 708–709

Hunter, W. G., 606, 614, 658, 674, 708

Hurley, P., 463, 499

Hyatt Hotel Corporation, performance

standards, 96

Hybrid orthogonal arrays, 684–685

Hypergeometric distribution, 176–177,

212

Hypothesis testing, 199–211

alternative hypothesis, 199, 201

correlation coefficient, 205

difference between two means from paired

samples, 207

for difference between two binomial

proportions, 208–209

of difference between two means, 205–207

of mean, 204

null hypothesis, 199, 201, 203

one-tailed test, 201

for proportion, 207–208

for ratio of two variances, 210

steps in, 203–204

test statistic, 199

two-tailed test, 201

type I/type II errors, 202–203

for variance, 209–210

IBM Direct, and total quality management

(TQM), 93

Incomplete block design, Latin square design

as, 624

Independent events, probability, 154

Indirect observation, 156

Infant mortality phase, 566

Inferential statistics, 188–210

confidence interval, 191–199

hypothesis testing, 199–211

interval estimation, 190–191

simultaneous intervals, 727–728

nature of, 156

point estimation, 190

sampling distributions, 189–190

Influential observations

Cook’s distance, 741–742

Innovation

benefits of, 106

and continuous improvement, 106–107

Deming’s view, 66–67

Inspection and Quality Control Handbook

H108,, 603

Inspection quality control period, 4

Instant-of-time method, for sample

observations, 289

Interaction patterns, control charts, 320

Interactions, experiments, 608–610

Interference fits, 484

Internal failure costs, 23

Internal noise, 661

International Organization for Standardization

(ISO), 7

vendor certification, 115

See also entries under ISO and ANSI/ISO/

ASQ

Interquartile range, calculation of, 165–166

Interval estimation

calculation of, 190–191

confidence interval, 191–199

Interval scale, 158

Ishikawa diagrams, 126

history of, 6
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ISO 1800 Standard, 139

ISO 9000-9004, 137–138

ISO 13485 Standard, 139

ISO 14000: An International Environmental

Management Standard, 38

ISO 14001, 38

ISO 14010, 38

ISO 14020, 38

ISO 14031, 38

ISO 14040, 38

ISO 14060, 38

ISO/TS 16949 Standards, 115, 138

Japan

and Deming, 5

and Juran, 78

Johnson, N. L., 211, 241, 448, 462, 463, 499

Joint Commission onAccreditation ofHealthcare

Organizations, 443

Judgment sampling, 53

Juran Institute, 78
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Sample space, 151
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